
Thesis Proposal

A resource-efficient event detection algebra

Jan Carlson
Department of Computer Science and Engineering

Mälardalen University, Sweden
jan.carlson@mdh.se

Abstract

Event detection is an important aspect of many application types, ranging from
active databases over digital libraries and stock market agents, to reactive embedded
systems. To allow systems to react to complex events patterns rather than to simple
primitive events, an event algebra can be used.

We intend to develop an event algebra suitable for resource-conscious applications
such as real-time and embedded systems. The algebra should have well-defined formal
semantics, carefully designed to allow implementation with limited resources while at
the same time retaining the intuitive properties of the operators.

1 Background and motivation

A wide range of applications, including active databases, monitoring systems and rule
based embedded systems, arereactivein nature, meaning that the execution is driven by
external events to which the system should react with an appropriate response. Events can
be simple, e.g., sampled directly from the environment or occurring within the system, but
it is often necessary to react to more sophisticated situations involving a number of simpler
events that occur in accordance with some pattern.

A systematic approach to handle this type of systems is to separate the mechanism for
detecting composite events from the rest of the application logic. The detection mechanism
takes as input primitive events and detects occurrences of composite events which are used
as input to the application logic. This separation of concerns facilitates design and analysis
of reactive systems, as detection of complex events can be given a formal semantics inde-
pendent from the application in which it is used, and the remaining application logic is free
from auxiliary rules and information about partially completed patterns.

The mechanism to detect composite events can be constructed as an event algebra, i.e., a
number of operators from which expressions can be built that represent the event patterns
of interest. In order to allow formal reasoning about the behaviour of the system, it is
essential that the algebra has a well-defined semantics. This is particularly important when
the algebra is used in safety-critical applications for which formal verification is required.
In addition, reasoning on a high level of abstraction is facilitated if the designer is provided
a number of formal properties that the algebra conforms to. Such properties include, for
example, laws of associativity and distributivity.

For embedded applications and systems with strict timeliness requirements, it is es-
sential that the event detection can be implemented with limited resources. For a given
complex event, defined in the algebra, one would like to know the maximum memory us-
age, or at least a safe approximation thereof, as well as the worst case execution time of the
detection mechanism for that event.

1



2 Event algebra essentials

The following operations, or variants of them, are found in many event algebras. The
disjunctionof A andB represents that either ofA andB occurs, here denotedA∨B.
Conjunctionmeans that both events have occurred, possibly not simultaneously, and is
denotedA+B. Thenegation, denotedA−B, occurs when there is an occurrence ofA
during which there is no occurrence ofB. Finally, asequenceof A andB is an occurrence
of A followed by an occurrence ofB, and is denotedA;B. Additionally, we plan to include
a temporal restrictionconstruct. For example,(A;B)τ occurs when an occurrence ofA is
followed by an occurrence ofB within τ time units.

The operator semantics described informally above does not specify how to handle
situations where an occurrence could participate in several occurrences of a composite
event. For example, three occurences ofA followed by two occurrences ofB result in six
occurrences ofA+B. While this may be acceptable, or even desirable, in some applications,
the memory requirements (each occurrence ofA andB must be remembered forever) and
the increasing number of simultaneous events means that it is unsuitable in many cases.

A common way to deal with this is to define the algebra in two steps. The operations
are given an unrestricted, straightforward meaning. Then a restriction policy is applied to
the operator, that acts like a filter so that only a subset of the occurrences allowed by the
unrestricted definition are detected.

In most algebras, each complex event, including those that require more than one occur-
rence of simpler events in order to occur, is associated with a single time point (the time of
detection, i.e., the time of the last occurrence that was required). Galton and Augusto [11]
showed that this results in unintended semantics for some operation compositions. They
suggest solving the problem by associating the occurrence of a complex event with the
occurrence interval, i.e., the interval in which all required simpler events occurred, rather
than the time of detection.

3 Related work

A lot of work, especially formal approaches, on event algebras has been done in the con-
text of active databases. In addition, work in knowledge representation and general event
notification services is also of relevance.

3.1 Active databases

One area where event algebras are used is active databases which, unlike passive databases,
react automatically to situations that arise within or outside the database. The reactions are
specified by so calledevent-condition-action rules(ECA rules) stating that when a certain
event occurs, and the condition is satisfied, the given action should be performed. The
event part of a ECA rule can be expressed by an event algebra to allow the database to react
to complex events.

The event expression language uses in the object database Ode has the same expressive
power as regular expressions, which allows the detection mechanism to be implemented by
finite state automata [14]. The definition is based on a global, totally ordered set of prim-
itive event occurrences, implying that primitive events can not occur simultaneously. To
allow event occurrences to carry values and composite events that occur only under given
restrictions on the values of the constituent events, the automata mechanism is extended
with data structures that store the values of events that have occurred.

In the active database SAMOS, event detection is implemented using Petri nets [12, 13].
Event occurrences are associated with a number of parameter-value pairs, and it can be
specified that a complex event should occur only if the constituent event occurrences have

2



the same value for a given parameter. SAMOS does not allow simultaneous primitive event
occurrences.

Snoop [10, 9] is an event specification language for active databases. It defines four
different restriction policies (called parameter contexts) that can be applied to the operators
of the algebra. The unrestricted context is defined formally, but for the restriction policies
only informal descriptions are given. The detection mechanism is based on trees corre-
sponding to the event expressions, where primitive event occurrences are inserted at the
leaves and propagate upwards in the tree as they cause more complex events to occur.

None of the algebras described above provide algebraic properties for their respective
operators, and little is said about the memory and time complexity associated with the
detection of complex events.

A formalized schema for this type of event detection, including a definition of the oper-
ations and restriction policies of Snoop using this schema, has been defined by Mellin and
Andler [22]. The operators have definitions parameterised on restriction policies, which
facilitates formal reasoning about the operators with different restriction policies applied,
without requiring explicit definitions for each operator- restriction combination. They pro-
pose, as future work, to extend the operators with temporal constraints, which would allow
an investigation of the temporal complexity of the detection algorithm.

Zimmer and Unland present a formal restriction framework in which the event algebras
of Snoop, SAMOS, Ode and a few other systems are compared [28]. They also highlight a
number of ambiguities and inconsistencies of the various approaches.

Liu et al. uses Real Time Logic to define a system where composite events are expressed
as timing constraints and handled by general timing constraint monitoring techniques [21].
They present a mechanism for early detection of timing constraint violation, and show that
it is possible to calculate a upper bound on the length of the structures needed to detect an
event. In general, the time complexity of detection is inO(n3), but for a certain subset of
expressions, aO(n) algorithm is possible [23, 24].

The algebra presented by Baily and Mikulás [3], including four restriction policies,
is defined formally in temporal logic. They identify a class of complex events for which
testing whether two complex events are equivalent is decidable, and show that testing for
implication is undecidable.

3.2 Event notification systems

Many systems and frameworks have been developed where clients register their interest
in certain types of events with a central server. The server monitors the environment and,
upon the detection of an event, notifies the concerned clients. As the clients typically
perform monitoring tasks, they are generally interested in particular event sequences rather
than single occurrences. Rather that having each application implement this separately, it
is beneficial to extend the server to allow registration of complex event descriptions. The
system presented by Hayton et al. [16] contains a simple event algebra, implemented using
a pushdown automata.

The event algebra developed by Hinze and Voisard is designed to suit event notification
service systems in general [18, 17]. Their algebra contains time restricted sequence and
conjunction, which permits events likeA occurs less thant time units beforeB to be
expressed. Following the framework presented by Zimmer and Unland [28], the algebra is
parameterised with respect to policies for event instance selection and consumption.

Additional examples of event notification systems that allow composite events ex-
pressed by an event algebra are the READY system [15] and the event specification lan-
guage developed by Zang and Unger [27].

3



3.3 Knowledge representation

In the area of knowledge representation, similar techniques are used to reason about event
occurrences. Interval Calculus introduce formalised concepts for properties, actions and
events, where events are expressed in terms of conditions for their occurrence [1], and
Event Calculus [20, 19] also deals with the occurrences of events. However, the motivation
is slightly different from that of event algebras. Rather than detecting complex events as
they occur, the focus of Event Calculus is to express formally the fact that some event has
occurred, and to allow inferences to be made from it.

In the area of temporal data mining, event operators similar to those in event detection
are used. A crucial difference is that the task of event detection is to detect patterns that
match a given event description, while in data mining the data is analysed in search for
trends and patterns for which matching descriptions are to be derived [2].

4 Research description

We intent to develop an event algebra suitable for applications where the ability to reason
formally about the system is required, and where resources such as memory and time are
limited. The algebra should be implemented together with an existing language for reactive
systems.

4.1 Detailed description

In order to allow formal reasoning about the algebra or a system that uses it, we believe that
a fully formal definition of the algebra is essential. We will use techniques such as interval-
based semantics and restriction policies to handle complexity issues while retaining an
intuitive semantics for the operators.

A key factor is the development of a suitable restriction policy. It should be restrictive
enough to permit the formulation of memory consumption bounds, while at the same time
allowing a simple formal relation between the restricted semantics and the unrestricted
version. Such a relation facilitates formal reasoning since it allows, for example, properties
to be proved for the simple, unrestricted semantics and then applied to the restricted version
by means of this relation. These two objectives are contradictory to some extent, and
careful investigation is required to find an optimal balance.

An implementation of the algebra is required to investigate time and space complexity
in more detail. Preferably, the implementation is designed to work together with an existing
language for reactive systems. This would give, in addition to an evaluation of the algebra
itself, feedback on to how well the proposed algebra suits this domain.

Preliminary results indicate that as a result of ensuring some of the desired properties,
only a subset of all expressions will be possible to detect with constant memory. In this
case, it is important to clearly identify this class of expressions. Also, in some cases it
might be possible to apply the algebraic properties to transform an expression into a form
which belongs to the class of well-behaved expressions.

4.2 Project plan

The algebra The semantics of the event algebra, including the restriction policy, should
be defined. Our restriction policy must be carefully designed to retain many of the oper-
ator properties that are intuitive. These include, for example, associativity of sequence,
conjunction and disjunction; commutativity of conjunction and disjunction; and distribu-
tative laws. Additionally, we will investigate the relation between the restricted and the
unrestricted semantics.

4



Operational semantics An imperative algorithm will be developed, and we will prove
that it is equivalent to the declarative semantics of the algebra. This algorithm should be
analysed with respect to resource requirements, and criteria under which it can be guaran-
teed to execute with bounded resources should be identified.

Transformations We will investigate the possibility of developing semantic-preserving
expression transformations in order to increase the class of expressions that can be detected
with bounded resources. Preferably, a transformation algorithm should be developed, as
well as a precise definition of the class of expressions that, after applying the algorithm,
can be detected with bounded resources.

Implementation The algebra will be implemented to work in concert with some exist-
ing language for reactive systems. Candidate languages include the functional reactive
language suite AFRP based on time varying behaviours and discrete events [26, 25], the
object-oriented reactive language Timber [8], and the synchronous language Esterel [4, 5].

Evaluation and experiments Once an implementation is developed, case studies can be
carried out in order to evaluate the practical relevance of the algebra. This would also
provide the basis for a discussion on how to extend the algebra, for example in terms of
additional operators or restriction policies.

4.3 Preliminary results

A first version of the algebra was presented in [6], including the declarative and operational
semantics, a number of algebraic properties and a short discussion regarding the resource
weakness.

This algebra was extended with a temporally restricted sequence operator in [7]. This
article also contains correctness proofs for the algorithm, additional properites of the oper-
ators, and a description of a class of expressions that can be detected by an implementation
with a constant memory bound.

Currently, a revised version of the declarative semantics is being developed which uses
a simpler restriction policy. As a result, the relation between the restricted and the un-
restricted version is strengthened, at the cost of a worse average-case memory and time
usage.

4.4 Timeplan

This section gives an overview of the planned activities.

2000 - 2003
Courses (37 credits)
Literature study
Developing the algebra

Spring 2004
Finishing a first complete version of the algebra (declarative and operational semantics,
resource analysis and expression transformations) for the licentiate thesis.

Fall 2004
Course in Database Systems
Implementing the algebra

5



Spring 2005
Courses, including Distributed Systems and Software Engineering
Evaluation and experiments

Fall 2005
Courses
Developing the final version of the algebra

Spring 2006
Finishing the final version of the algebra for the PhD thesis

4.5 Milestones

The following milestones are defined for the project:

State-of-the-art report Aug 2002
Publication FORMATS03 Sep 2003
Licentiate proposal (MdH) Nov 2003
Thesis proposal (CUGS) Feb 2004
Licentiate thesis Apr 2004
PhD proposal (MdH) Jun 2005
PhD thesis Jun 2006

References

[1] J. F. Allen and G. Ferguson. Actions and events in interval temporal logic.Journal of
Logic and Computation, 4(5):531–579, October 1994.

[2] C. M. Antunes and A. L. Oliveira. Temporal data mining: An overview. InKDD
Workshop on Temporal Data Mining, pages 1–13, San Francisco, CA, 26 August
2001.

[3] J. Bailey and S. Mikuĺas. Expressiveness issues and decision problems for active
database event queries. InDatabase Theory - ICDT 2001, 8th International Confer-
ence, volume 1973 ofLecture Notes in Computer Science, pages 68–82, London, UK,
4–6 January 2001. Springer.

[4] G. Berry. The Esterel-V5 Language Primer. CMA and Inria, Sophia-Antipolis,
France, v 5.21, release 2.0 edition, May 1999.

[5] G. Berry. The foundations of esterel. In G. Plotkin, C. Stirling, and M. Tofte, editors,
Proof, Language, and Interaction: Essays in Honour of Robin Milner, pages 425–
454. MIT Press, 2000.

[6] J. Carlson and B. Lisper. An interval-based algebra for restricted event detection.
In Proceedings of First International Workshop on Formal Modeling and Analysis of
Timed Systems (FORMATS 2003), Marseille, France, 6–7 September 2003.

[7] J. Carlson and B. Lisper. An event detection algebra for reactive systems, 2004.
Submitted.

[8] M. Carlsson, J. Nordlander, and D. Kieburtz. The semantic layers of Timber. In
Proceedings of the First Asian Symposium on Programming Languages and Systems
(APLAS’2003), Lecture Notes in Computer Science, Beijing, China, 26–29 November
2003. Springer-Verlag. To appear.

6



[9] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events for
active databases: Semantics, contexts and detection. In20th International Conference
on Very Large Data Bases, pages 606–617, Santiago, Chile, 12–15 September 1994.
Morgan Kaufmann Publishers.

[10] S. Chakravarthy and D. Mishra. Snoop: An expressive event specification language
for active databases.Data Knowledge Engineering, 14(1):1–26, 1994.

[11] A. Galton and J. C. Augusto. Two approaches to event definition. InProc. of Database
and Expert Systems Applications 13th International Conference (DEXA’02), vol-
ume 2453 ofLecture Notes in Computer Science, pages 547–556, Aix-en-Provence,
France, 2–6 September 2002. Springer-Verlag.

[12] S. Gatziu and K. R. Dittrich. Events in an active object-oriented database system.
In Proc. 1st Intl. Workshop on Rules in Database Systems (RIDS), Edinburgh, UK,
September 1993. Springer-Verlag.

[13] S. Gatziu and K. R. Dittrich. Detecting composite events in active database systems
using petri nets. InResearch Issues in Data Engineering (RIDE ’94), pages 2–9, Los
Alamitos, Ca., USA, February 1994. IEEE Computer Society Press.

[14] N. Gehani, H. V. Jagadish, and O. Shmueli. COMPOSE: A system for composite
specification and detection. InAdvanced Database Systems, volume 759 ofLecture
Notes in Computer Science. Springer, 1993.

[15] R.E. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the READY
event notification service. InProceedings of the 19th IEEE International Conference
on Distributed Computing Systems, Middleware Workshop, Austin, TX, USA, May
1999.

[16] R. Hayton, J. Bacon, J. Bates, and K. Moody. Using events to build large scale
distributed applications. InProceedings of the ACM SIGOPS European Workshop,
1996.

[17] A. Hinze and A. Voisard. Composite events in notification services with application
to logistics support. Technical Report tr-B-02-10, Freie Universitaet Berlin, 2002.

[18] A. Hinze and A. Voisard. A parameterized algebra for event notification services. In
Proc. of the 9th Int. Symposium on Temporal Representation and Reasoning (TIME
2002), Manchester, UK, July 2002. Springer-Verlag.

[19] R. Kowalski. Database updates in the event calculus.The Journal of Logic Program-
ming, 12:121, January 1992.

[20] R. A. Kowalski and M. J. Sergot. A logic-based calculus of events.New Generation
Computing, 4:67–95, 1986.

[21] G. Liu, A. Mok, and P. Konana. A unified approach for specifying timing constraints
and composite events in active real-time database systems. In4th IEEE Real-Time
Technology and Applications Symposium (RTAS ’98), pages 199–209, Washington -
Brussels - Tokyo, June 1998. IEEE.

[22] J. Mellin and S. F. Adler. A formalized schema for event composition. InProc. 8th
Int. Conf on Real-Time Computing Systems and Applications (RTCSA 2002), pages
201–210, Tokyo, Japan, 18–20 March 2002.

[23] A. Mok and G. Liu. Early detection of timing constraint violation at runtime. InThe
18th IEEE Real-Time Systems Symposium (RTSS ’97), pages 176–186, Washington -
Brussels - Tokyo, December 1997. IEEE.

7



[24] A. Mok and G. Liu. Efficient run-time monitoring of timing constraints. InProceed-
ings of the Third IEEE Real-Time Technology and Applications Symposium (RTAS
’97), pages 252–262, Washington - Brussels - Tokyo, June 1997. IEEE.

[25] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive programming, contin-
ued. InProceedings of the 2002 ACM SIGPLAN Haskell Workshop (HASKELL-02),
pages 51–64, New York, October 3 2002. ACM Press.

[26] Z. Wan and P. Hudak. Functional reactive programming from first principles.ACM
SIGPLAN Notices, 35(5):242–252, May 2000.

[27] R. Zhang and E. Unger. Event specification and detection. Technical Report TR CS-
96-8, Department of Computing and Information Sciences, Kansas State University,
June 1996.

[28] D. Zimmer and R. Unland. On the semantics of complex events in active database
management systems. InProceedings of the 15th International Conference on Data
Engineering, pages 392–399. IEEE Computer Society Press, 1999.

8


