
Multi-Objective Design Space Exploration to Design Deep
Neural Networks for Embedded Systems

Mohammad Lonia, Sima Sinaeia, Ali Zoljodib,

Masoud Daneshtalaba , Mikael Sjödina

a School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden
b Shiraz University of Technology, Shiraz, Iran

Abstract

Deep Neural Networks (DNNs) are compute-intensive learning models with growing applicability in a wide range
of domains. Due to their computational complexity, DNNs demand implementations that utilize custom hardware
accelerators to meet performance and response time as well as classification accuracy constraints. In this paper,
DeepMaker framework is proposed, which aims to automatically design a highly robust DNN architecture for
embedded devices as the closest processing unit to the sensors. DeepMaker explores and prunes the design space to
find improved neural architectures. Our proposed framework takes advantage of a multi-objective evolutionary
approach, which exploits a pruned design space inspired by a dense architecture. Unlike recent works that mainly
have tried to generate highly accurate networks, DeepMaker also considers the network size factor as the second
objective to build a highly optimized network fitting with limited computational resource budgets while delivers
comparable accuracy level. In comparison with the best result on CIFAR-10 and CIFAR-100 dataset, a generated
network by DeepMaker presents up to 26.4 compression rate while loses only 4% accuracy. In addition, DeepMaker
maps the generated CNN on the commodity programmable devices including ARM Processor, High-Performance
CPU, GPU, and FPGA.

Index Terms — Convolutional neural networks (CNNs), Design Space Exploration (DSE), Embedded Systems, and
Multi-Objective Optimization (MOO).

https://www.researchgate.net/institution/Shiraz_University_of_Technology/department/Department_of_Computer_Engineering/members

2 Mohammad Loni Et Al., Microprocessors and Microsystems Journal

1. Introduction

In recent years, deep learning, which uses deep neural networks as the learning model, has shown excellent
performance on many challenging artificial intelligence and machine learning tasks, such as image
classification[1][1], speech recognition[2], and unsupervised learning tasks[3]. In particular, Convolutional
Neural Networks (CNNs) propose massive success in visual recognition tasks in the past few years and are
applied to various computer vision applications[4]. CNNs have penetrated in a wide-spectrum of platforms from
workstations to embedded devices due to influential learning capabilities.

However, modern CNN architectures are becoming more complex to provide superior accuracy leading to
remarkable energy consumption. Dealing with huge computing throughput demand of up-coming complex
learning models in the context of big data will be more acute where the failure of traditional energy and
performance scaling paradigm in affording of modern applications requirements leads computing landscape
towards inefficiency[42]. On the other hand, leveraging high-performance cloud infrastructures for providing
required computational capacity is not always feasible specially for mission-critical applications due to limited
network bandwidth, privacy constraints, low-power efficiency, and not guaranteeing worst-case response-time.

Generally, there are two approaches aiming to tackle these challenges: 1) diminishing the network size by
leveraging network pruning techniques during training phase[1] and 2) employing customized hardware
accelerators [13], [9], [35]. However, optimizing the network architecture at design time should be taken into
account as the third approach since the choice of the architecture strongly impacts on both the performance and
the output quality of DNNs. To benefit from this opportunity, we propose a neural acceleration framework,
named DeepMaker, which automatically generates a robust DNN in terms of network accuracy and network
size, then maps the generated network to an embedded device. Unlike previous neural architectural solutions
that their focus are only on improving the accuracy level, DeepMaker also considers network size as the second
objective of the search space in order to adaptively find a fit DNN for limited resource embedded devices. For
this, DeepMaker is equipped with a Multi-Objective Optimization (MOO) method to solve the neural
architectural search problem by finding a set of Pareto-optimal surfaces. The design space has been pruned by
taking inspirations from a cutting-edge architecture, DenseNet [6], to boost the convergence speed to an optimal
result.

The proposed DeepMaker framework uses a multi-objective neuro-evolutionary approach for the space
exploration of finding optimal deep neural architectures while mapping the generated network to the given
hardware. An overview of the proposed framework is illustrated in Figure 1. The configuration file of
DeepMaker comprises predefined parameters for the MOO algorithm and network training parameters. As
shown in Figure 1. , the input of the framework is a dataset for generating a neural network.

Figure 1. The overview of DeepMaker framework

Mohammad Loni Et Al., Microprocessors and Microsystems Journal 3

To approximate execution of an application, developer first needs to identify the approximation region of the
code, then provides a training dataset for the specified code block in order to be mimicked by a DNN generated
by DeepMaker. Approximation region of the code should be both hotspot and less sensitive to a quality loss in
both data and operations. We can define a hotspot as a code region which consumes considerable energy or
occupies the main part of execution time [7].

The output of DeepMaker framework is a set of optimized architectures. Network pruning is a popular
solution for diminishing the amount of network computation. In addition to design space exploration,
DeepMaker can apply a network pruning method on a dense architecture to accelerate finding the optimal neural
networks. In nutshell, our main contributions in DeepMaker are as follows:

• Developed a multi-objective neuro-evolutionary method to discover near-optimal DNN architectures in
terms of the accuracy and the network size.

• Developed a cutting-edge network pruning method on the neural network architecture to obtain less
complex network with acceptable accuracy.

• Supporting both Multi-Layer Perceptron (MLP) and Convolutional Neural Network (CNN) models
fitting with the required accuracy of diverse applications from mathematical function to image
classification.

• Adaptive finding the best architecture regarding resource budget and execution time constraints. Then,
mapping the generated network on different platforms to evaluate the applicability of DeepMaker is our
last contribution.

The remainder of this paper is organized as follows: Section 2 gives preliminaries on CNN and the MOO
algorithm. Details of the proposed framework are presented in Section 3 which consist of two solutions for
network optimization: Design Space Exploration and Design Space Pruning. The experimental results are
presented in Section 4. Section 5 reviews related work in this scope, after which Section 6 concludes the paper.

2. Preliminaries

2.1. Convolutional Neural Networks (CNNs)

A Convolutional Neural Network (CNN) is a multi-layer neural network that is composed of neurons ordered
in a layered structure. The neurons in different layers perform different kinds of computations and have different
connection structures. The four basic layers in CNNs are convolutional layers (Conv), activation layers (Act),
pooling layers (Pool) and classifier layers (Class). A typical NN structure is composed of several stacks of
{Conv-Act-Pool} at the beginning, and a few stacks of {Class-Act} at the end. Each layer gets feature maps
information from previous layers and generates new output feature maps by using a filter kernel. The
convolution, pooling, normalization, and activation layers are used for feature extraction, and fully connected
layers are responsible for classification. The performance criteria of a DNN include the ability to classify data
that has never seen before, inference time, and learning rate which all depend on the multiple hyper-parameters
of network architecture.

The Conv and Class layers are the most computation-intensive layers in CNNs. They have the same basic
operations: , i.e., the weighted sum of the inputs. The weights (wi,j) are learned from the training 𝑏𝑗 = ∑

𝑖𝑎𝑖.𝑤𝑖,𝑗
phase and the inputs (ai) are from the previous layer. While the Conv layers use small groups of weights (called
kernels) to slide over the inputs, the Class layers use a full connection between input and output neurons. The
Act layers apply a nonlinear function, e.g., ReLU (max (0, x)), Sigmoid () on each neuron. The Pool 1

1 + e - x

layers are used to decrease the feature dimension size by either selecting the largest neuron (i.e., max pooling)
or computing the mean value (i.e., mean pooling) from a subset of neurons in a local region.

4 Mohammad Loni Et Al., Microprocessors and Microsystems Journal

2.2. Multi-Objective Optimization (MOO)

The problem of finding the best configuration(s) of a parameterized system S with n different parameters
with respect to m different objectives is called a MOO Problem[41]. The set of all possible configurations is
called the Design Space, whereas each point C in this space (each configuration C) is called a solution to the
MOOP problem. The goal of solving the MOO problem is to find the Pareto optimal set. However, in almost
all practical design space exploration situations, the size of design space is exponential and finding the exact
Pareto set is not feasible[41]. So the goal of design space exploration has been modified as: Finding the Pareto
optimal set or a good approximation of it.

Each point C in the design space can be shown by an n-tuple <v1, v2, …, vn> in which vi is the value of i-th
parameter for that solution. The values of all design objectives for a specific solution can be shown by an m-
tuple <a1, a2, …, am> in which ai is the value of i-th objective function corresponding to that solution.

Definition 1: Let <a1, a2, …, am> and <b1, b2, …, bm> be the objective values corresponding to solutions A
and B, respectively. The solution A is said to dominate the solution B, if and only if:

jjii bajandbai  :: 

Definition 2: A solution is said to be Pareto Optimal if and only if it is not dominated by any other solution
of the problem. For example, assuming that the design space of Figure 2. Figure 2. contains only the seven
points mentioned above, solutions A, C, D, and F are Pareto optimal since none of the is dominated by any
other solution.

Definition 3: The set of all Pareto optimal solutions in a MOOP is called Pareto Optimal Set. The set of all
n-tuples of objective values corresponding to Pareto optimal solutions is called Pareto Front.

The goal of MOO problem is to find the Pareto optimal set. But, in almost all practical design space
exploration situations the size of design space is exponential and finding the exact Pareto set is not feasible. So,
the goal of design space exploration is modified as: To the Pareto optimal set or a good approximation of it.

Figure 2. The notion of domination and Pareto optimality in objective space. Solution G is dominated by all other points, A dominates B
and G while the solutions A, C, D, and F are not dominated by any other solution.

In this paper, MOO is used to solve the neural architectural search problem by finding a set of Pareto-optimal
sets of network hyperparameters. The key design objectives which are considered in this paper for the network
optimization are classification accuracy and network size. In this work, Non-Dominated Sorting Genetic
Algorithm (NSGA-II)[8] has been used to solve the exploration problems. NSGA-II is a powerful meta-heuristic
population-based evolutionary algorithm solving MOO problems which aim to adaptively fit a set of candidates
to Pareto frontier.

Mohammad Loni Et Al., Microprocessors and Microsystems Journal 5

NSGA-II works as follows: In the first step, an offspring population Ut is formed from a parent population
Pt by using Genetic Programming, both with size N. Then we combine Ut and Pt to devise a third population Rt
of size 2*N. Next, NSGA-II extracts a population (with size N) from Rt by employing multiple objectives non-
dominated sorting and crowding distance comparison. The main aim of non-dominated sorting is to find a set
of solution which cannot dominante each other. Moreover, by doing crowding distance sorting, we can
orchestrate the density of solution for each Pareto front. NSGA-II selects the best N candidates for generating
the next population called Pt+1. This procedure is repeated for the next generations until exceeds a predefined
maximum number of generations or satisfies developer’s criterion including the desired level of
accuracy/network size. Although DeepMaker walks toward an optimal solution, it does not always guarantee
to reach the developer’s criterion.

3. The Proposed Framework

In this section, DeepMaker framework for neural network optimization is proposed. DeepMaker provides
two solutions for network optimization: Design Space Exploration and Design Space Pruning which will be
presented in section 3.1and section 3.2, respectively.

Figure 3. The template architecture of generated networks

DeepMaker framework is composed of frontend and backend layers. The frontend is responsible to generate
the optimized DNN while the backend layer deals with hardware configuration and mapping. The hand-craft
designing of DNN architectures needs deep expertise and a large number of trial and error imposing a
considerable design cost and efficiency risk. Thereby, tailoring the DNN architecture automatically has emerged
as an efficient alternative solution in the machine learning community. This approach is considered for the
frontend layer of our framework in which we propose an evolutionary-based approach to search the design
space inspired from DenseNet to vanish the probability of generating huge design space. This decision leads
DeepMaker to generate compact-inclined networks in a reasonable time by gaining from human experience in
designing efficient DNNs.

The basic template architecture of the network is shown in Figure 3. The generated network consists of back-
to-back Condense Layers for feature extraction while each layer consists of multiple Convolution Layers. Each
Convolution Block includes Batch Normalization, Activation Function, 2D Convolution and Dropout layers,
respectively. The final classification is integrated by the max-pooling and the fully connected layers as the
output layer with the softmax activation function. To pass maximum information between layers in the network,
all the layers are connected to each other in a feed-forward manner such that each layer receives the additional

6 Mohammad Loni Et Al., Microprocessors and Microsystems Journal

feature map information from the whole former layer and combining them by using a concatenation layer. This
structure leading us to enlarge sharing information and shorten the path from the first layer to the last layer.

3.1. Design Space Exploration

Design Space Exploration (DSE) is the process of finding a set of optimal or near-optimal design
configurations for a system subject to one or more design criteria. As discussed in the introduction, the design
objectives are considered as accuracy and network size. After computational analysis of a popular CNN,
VGG16[31], we have concluded that convolutional layers (Conv.) are extremely computationally intensive.
Thus, for optimizing a CNN architecture, convolutional parameters including the number of convolutional
layers, the sizes of each layer, and the filter size should be considered as the networks optimization
hyperparameters. Moreover, the choice of activation functions in DNNs outstandingly influence on the training
performance since the heart of neural networks is an activation function applied to a linear transformation. So,
the activation function is also considered as a pivotal metric in designing the DNN architecture.

TABLE I. THE CNN HYPERPARAMETERS USED AS SEARCHING NEURAL DESIGN SPACE PARAMETERS.

Parameters Value Range

Activation Function Hard-sigmoid, relu, elu, tanh, sigmoid, softplus, linear, selu

Condense_Layer 1, 2, 3, 4

Convolution_Layer 16, 28, 40, 52

Learning Rate 0.001, 0.0001, 0.00001

Kernel Size 3x3, 5x5

Optimizar Rmsprop, adam, sgd, adagrad, adadelta, adamax, nadam

The main architectural hyperparameters of DNNs are listed in TABLE I. For cutting back the search space,
the range of each hyperparameter is limited. Different combinations of these parameters form several
architectures with various performances. Finding a near-optimal network architecture of the combination of
these hyperparameters is the main goal of the search algorithm. In other word, we can model the DNN
architecture selection problem as the hyperparameter optimization problem. DeepMaker is equipped with the
fast and multi-objective GP, NSGA-II, to discover a near-optimal set of hyperparameters considering both the
accuracy and the network size as the objectives. Total trainable network weights are defined as the network size
objective since the performance and energy efficiency of the backend accelerator highly rely on inner product
operations which are execution bottleneck of DNNs [9].

Figure 4. Genome type

Mohammad Loni Et Al., Microprocessors and Microsystems Journal 7

Network hyperparameters are represented as a string of genomes using direct encoding and the recombination
of these genes occurs with one-point crossover operation shown in Figure 4. The neural architectural exploration
algorithm is explained in four steps as follows:

1. After generating a random initial parent population Pt with size N, DeepMaker generates a network
model based on the hyperparameters of each genome in the parent population. Then DeepMaker trains
each individual model to calculate the network accuracy and network size for all the models.

2. The offspring populating Ut will be created by using GP including crossover and mutation steps.
3. The NSGA-II sorts the combination of Tt and Pt to find the next generation parent population of N

acceptable individuals which cannot dominate each other in terms of accuracy and network size.
4. This process will continue until attaining the predefined maximum number of generations.

Algorithm 1: Pseudo Code of DeepMaker’s Design Space Exploration Procedure

Input: N: Population Size, G: Max. Number of Generations, H: Possible
Output: A Set of Optimal Architectures on Pareto Frontier

Function DeepMaker(N, G, H):
 P0= Random Population (N, H);
 //Creating initial random solutions with size N
 Objectives Function (P0, Size (P0));
 //Evaluating the objectives of each solution in the population
 U0= Selection Crossover Mutation (P0);
 //Generating the offspring population by doing random crossover and mutation
 t=1;
 while (t < G) or (Criterion Not satisfied) do
 Rt = Combine (Pt , Ut);
 //Merging Parent and Offspring population, the size of Pt+1 is 2∗N
 Objectives Function (Pt+1, Size (Pt+1));
 Sortt = Non Dominant Sort(Pt+1);
 //Sorting the first population in fronts
 p f s[t] = Crowding Distance Sorting(Sortt);
 //Symmetric disturbing offspring population by crowding distance sort
 to build Pareto frontier and save it in p f s
 Pt+1 = p f s[t];
 // Creating Next Population
 Ut+1=Selection Crossover Mutation (Pt+1);
 Objectives Function (Ut+1, Size (Ut+1));
 return p f s[G];

Function Objectives_Function(Population P, Size N):
 i=1;
 while (i<N) do
 List [i]= Extract Network Parameters(Pi);
 model[i]= Create Model (List [i]);
 //Generating a DNN model using network hyperparameters
 Acc.[i], #Params[i]=Train_Evaluate(model[i]);
 // Train the ntwork to get validation accuracy and num. network parameters
return Accuracy, #Parameters;

The entire search procedure is summarized in Algorithm 1. Compare to DenseNet, DeepMaker generates
more accurate networks with superior flexibility regarding resource limitation of the backend platform. To
increase the rate of optimal discovering, we monitor all genomes in all previous generations. The output of the
frontend layer is an asset of improved network architectures on the Pareto curve with different network
accuracies and sizes. Efficient mapping of the generated network on hardware is the next step. Using
Application-Specific Integrated Circuit (ASIC) as a customized DeepMaker’s backend accelerator can gain

8 Mohammad Loni Et Al., Microprocessors and Microsystems Journal

considerable power and performance efficiency, nonetheless, ASIC cannot be reconfigured and reprogrammed.
Graphic Processing Units (GPUs) are popular performance centric accelerators refereed as another possibility
to cope with diminishing the efficiency trend in the multi-core era [11]. Although GPUs offer a higher level of
programmability and memory bandwidth, they suffer from huge power consumption and are efficient only for
data parallel kernels and dense data structures[12]. On the other hand, the combination of supporting arbitrary
forms of parallelism, flexibility, and power efficiency of off-the-shelf Field-Programmable Gate Arrays
(FPGAs) provide a promising opportunity for efficient neural network implementation. Unfortunately, on-chip
memory limitation, relatively primitive memory abstraction model, and the lack of efficient high-level APIs are
the major bottlenecks of FPGA as a neural-based accelerator[9]. In fact, each of these hardware devices offers
various capabilities for real work problems. Section 4.4 presents implementation results on different processing
platforms.

3.2. Design Space Pruning

In general, neural network pruning techniques try to reduce the storage and computation required by neural
networks without considerable affecting on the network accuracy by learning the important weights. The
pruning method used in this paper is based on the work presented in[39]. This technique tries to select and
remove redundant filters which affected zero or very low in the network results. To select appropriate filters for
pruning many strategies are candidate such as random selection. In this work, K-means++ algorithm has been
utilized. First, we employ the k-means++ algorithm to enforce the filters to enter specific clusters. Second, we
will retain the filter which is the closest to the cluster center and prune the others in every cluster. Then the
pruned model will be fine-tuned to recover accuracy. Our approach aims to find the correlation among the
importance of each filter. A filter may be selected as unimportant one if most outputs of the filter are zero. In
Algorithm 2, the pseudo code of DeepMaker’s design space pruning procedure is presented.

Algorithm 2: Pseudo Code of DeepMaker’s Design Space Pruning Procedure

Input: A trained CNN model, target layer i and tolerance threshold α for pruning rate
Output: Pruned CNN model
1. Initialize k=Ni -1
2. Repeat
 a. Use k-means++ to force the (1 ≤ n ≤ Ni) into k clusters 𝑊𝑖

𝑛
 b. Keep the filter which is the most closet to centroid for each cluster, prune the others and their
 output feature maps
 c. Fine tuning the pruned model as training process
 d. k=k-1
3. Until Pruning rate is lower than α

4. Experimental Results

In this section, first, the used datasets for the experiments will be introduced. After that, the experimental
results of design space exploration and design space pruning of the proposed framework are presented
respectively. In the end, the hardware implementation of the proposed framework on four prevalent hardware
platforms, Xilinx UltraScale plus FPGA, NVIDIA Tesla M60 GPU, Intel Core i7-7820, and ARM Cortex-A15
are discussed.

Mohammad Loni Et Al., Microprocessors and Microsystems Journal 9

4.1. Training Datasets

DeepMaker framework has been evaluated using well-known datasets and compare with cutting-edge
architectures. The experiments have been performed on the following data sets: a) MNIST[14]: This is a dataset
of black and white images for handwritten digit recognition containing 60,000 training and 10,000 testing
images, respectively. Each image in the MNIST dataset is a 28x28 pixels with ten labeled output as 0 to 9
numbers. b) CIFAR-10[15]: This is a complex colorful benchmark dataset of natural images, each with 32x32
pixels which are mainly used for object recognition. This benchmark contains ten labeled output classes.
CIFAR-10 training and testing datasets contain 50000 and 1000 images, respectively. c) CIFAR-100[15]:
CIFAR-100 is similar to CIFAR-10, but with 100 classes while each class has 500 instead of 5,000 as in
CIFAR10 making the classification more challenging.

4.2. Design Space Exploration

DeepMaker searches the optimal network architecture using partial training by using just 16 epochs since
this epoch number is enough for making the decision. Figure 5. plots the validation loss and validation accuracy
progression by increasing the number of epochs for Net-CNN-Arch.3 with 0.14 million parameters. We got
roughly 90% of the maximum achievable accuracy after 16 epochs. DeepMaker utilizes the Keras Library[10]
for training the network.

Figure 5. Accuracy and loss Validation for Net-CNN-3 with 0.14M parameters

As mentioned before, the objectives of the network optimization and design space exploration are Accuracy
and Network size. We realized a strong relationship between inference time and the network size of a CNN.
Figure 6. illustrates the relationship between inference time per each forward query and the number of
parameters executed on an NVIDIA Quadro K5100M GPU (R2=0.7858, p-value=0.000149, Pearson
correlation=0.942). The results are plotted in the logarithmic scale to improve visual comprehension. These
results imply that the network size is a strong proxy for network architectural complexity [1], [6], [18]. These
experimental results indicate that DeepMaker efficiently decreases inference time by considering network size
as its objective.

10 Mohammad Loni Et Al., Microprocessors and Microsystems Journal

Figure 6. Inference time vs. network size

The near-optimal Pareto frontier results are illustrated in Figure 7. to Figure 9. on MNIST, CIFAR-10 and
CIFAR-100 datasets after just five generations. These results are obtained with the following setting in
DeepMaker’s configuration: dropout=0.2, epoch=16, batch size=128, number of generations=5, and random
initial population with the size equal to 30. As can be seen, Pareto-optimal curves shifted toward left implying
that our results have gotten improved set of network architecture candidates.

Figure 7. Pareto frontier plots for CNN architecture generated for MNIST dataset.

Mohammad Loni Et Al., Microprocessors and Microsystems Journal 11

Figure 8. Pareto frontier plots for CNN architecture generated for CIFAR-10 dataset.

Figure 9. Pareto frontier plots for CNN architecture generated for CIFAR-100 dataset.

The effectiveness of DeepMaker has been verified compare to the error rate and the total number of trainable
parameters of the other cutting-edge approaches shown in TABLE II. The results of this table are obtained by
a full train of the networks with 300 epochs. Network architectures with the highest accuracy are employed as
the baseline of the comparisons. Compare to a reinforcement learning solution, MetaQNN, we lost 0.06%
accuracy for MNIST dataset while we have 43x compression rate. Not only compare to MetaQNN but only also
the superiority of DeepMaker’s optimization rate is clear for MNIST dataset.

Net-CNN-Arch.1, Net-CNN-Arch.2, and Net-CNN-Arch.3 are three different nodes of Pareto frontier
selected from fifth generation. These three nodes have different network objectives which give a vast authority
to DeepMaker to select the most appropriate architecture based on the execution time constraints or resource
limitation of the target hardware platform. Net-CNN-Arch.1 loses 4% accuracy compared to the most accurate
networks[26], while has 26.4x fewer parameters. Moreover, the MLP model presents comparable accuracy for
MNIST, but it cannot provide acceptable accuracy for CIFAR-10 and CIFAR-100, revealing we need more
complex architectures for modern dataset. In nutshell, DeepMaker strikes better the balance between network

12 Mohammad Loni Et Al., Microprocessors and Microsystems Journal

accuracy and network size compare to reinforcement learning-based solutions, evolutionary-based approaches
and hand-craft designs.

TABLE II. COMPARISON RESULTS OF ERROR RATE ON MNIST AND CIFAR-10 DATASETS.

Dataset Approach Network Architecture #Params (x106) Error (%)
RL MetaQNN [21] 5.59 0.35

EC EDEN [28] 1.8 1.6

Hand-Crafted SimpleNet [29] 0.3 0.25

Hand-Crafted Wan et al. [30] - 0.21

MO2-EC Our MNIST-MLP 0.19 1.2

MNIST

MO2-EC Our MNIST-CNN 0.13 0.41
RL NAS-v1/v3 [22] 4.2/37.4 5.5/3.65

Hand-Crafted SimpleNet [29] 5.48 4.68

Hand-Crafted VGG-16 [31] 138.0 7.55

Hand-Crafted DenseNet (K=12)-40 [6] 1.0 7.0

Hand-Crafted DenseNet (K=12)-100 [6] 7.0 5.77

Hand-Crafted DenseNet (K=24)-100 [6] 27.2 5.83

EC EDEN [28] 0.17 25.6

Hand-Crafted ResNet-20 [27] 0.27 8.75

Hand-Crafted ResNet-110 [27] 1.7 6.43

EC Masanori et al. [24] 1.68 5.98

RL Block-QNN-22L [23] 39.8 3.54

RL MetaQNN [21] 6.92 11.18

EC Real et al. [25] 5.4 5.4

Hand-Crafted Gastaldi et al. [26] 26.4 2.86

MO2-EC Our Net-MLP 0.66 37.0

MO2-EC Our Net-CNN-Arch.1 1.0 6.9
MO2-EC Our Net-CNN-Arch.2 0.49 8.7

Cifar-10

MO2-EC Our Net-CNN-Arch.3 0.14 14.1
RL MetaQNN [21] 11.18 27.14

RL Block-QNN-22L [23] 6.1 20.65

Hand-Crafted DenseNet (K=12)-40 [6] 1.0 27.55

Hand-Crafted DenseNet (K=12)-100 [6] 7.0 23.79

Hand-Crafted SimpleNet [29] 5.48 26.58

MOO-EC Our C100-Net.1 1.1 26.63

Cifar-100

MOO-EC Our C100-Net.2 1.89 24.87

Mohammad Loni Et Al., Microprocessors and Microsystems Journal 13

4.3. Design Space Pruning

The pruning method has been evaluated on our Net-CNN-Arch.3 for processing Cifar10 dataset. First, the
network is trained with a constant configuration, without any pruning and the accuracy results is obtained as
85.9%. Then, we used the filter pruning technique[39] by assuming ‘cluster factor =0.9’ and ‘number of fine
tune epochs=5’ and ‘pruning iteration=10’ as the constant configuration and ‘maximum pruning percent’ is
equal to {10, 20, 30, 40, 50, 60, 70} as the threshold on weight pruning. Figure 10. illustrates the impact of the
network pruning on the accuracy level of the densest architecture. Obviously, the number of network parameters
will be decreased by increasing the pruning rate. On the other hand, there is not a linear correlation between
pruning rate and accuracy level since accuracy is also influenced by other factors such as over-fitting, weight
initialization and etc.

0.00E+00

2.00E+04

4.00E+04

6.00E+04

8.00E+04

1.00E+05

1.20E+05

10

20

30

40

50

60

70

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

Parameters Pruning (%) Accuracy

A
cc

ur
ac

y
(%

)

P
ar

am
et

er
s

Figure 10. The impact of network pruning on Accuracy of dense architecture

4.4. Hardware Implementation

To verify the practical impact of DeepMaker, we used four prevalent hardware platforms, Xilinx UltraScale
plus FPGA, NVIDIA Tesla M60 GPU, Intel Core i7-7820, and ARM Cortex-A15. TABLE III. summarizes the
specification of test platforms. We picked out four congruent networks offering better accuracy per parameters
including ResNet-20, ResNet110, DenseNet (k=12)-100, and DenseNet (k=24)-100 to compare with the
generated networks by DeepMaker. We also did not use any network compression technique to only assess the
influence of network architecture on inference time. Due to the sake of brevity, we just present the
implementation results of the more complex dataset, CIFAR-100. Keras framework automatically uses cuDNN
to compile a neural network for GPU. For obtaining FPGA results, the Amazon EC2 deep learning F1.2xlarge
instance has been used.

14 Mohammad Loni Et Al., Microprocessors and Microsystems Journal

TABLE III. HARDWARE PLATFORM DETAILS.

Platform CPU GPU ARM FPGA

Frequency (GHz) 2.9 1.178 1.9 0.8

Technology (nm) 14 28 28 16 (FinFER+)

TDP (W) 45 300 5 -

Cores/Total Thread 4/8 4096
CUDA Cores 8/8

FF = 2.5(x106)
LUT = 1.18(x106)

DSP = 6800

Memory 8MB Cache 16GB GDDR5 2.5 MB Cache BRAM = 75.5 Mb

Approx. Price (USD) 378$ 7,532$ 60$/board -

Unlike CPUs, we do need an initialization phase to copy data to GPU/FPGA’s internal memory, before
lunching processing kernel. Usually, kernel time is used for reporting runtime results, however, considering the
communication time is vital for embedded implementations, especially for mission critical applications since
these applications are mainly latency-oriented. Due to this reason, the total execution time must be taken into
account as the evaluation metric. In addition, we believe compacting a network potentially could diminish the
overhead of communication time since less number of data packets need to be copied via PCI-Express bus. To
increase the precision of results, we got them for 10000 times and the average time is leveraged for presenting
the results. Figure 11. to Figure 14. plot accuracy, the logarithmic scale (to improve visual comprehension) of
the number of parameters and the speedup compared to the baseline, DenseNet (k=12)-100. The main reason
of selecting DenseNet (k=12)-100 as the ideal baseline is that it delivers better accuracy-parameters tradeoff in
comparison with the other networks. Unlike accuracy and the number of parameters, execution time is a
platform aware metric and highly depends on hardware implementation, compiler, and the software stack.
Therefore, there is no exact speedup similarity among different hardware platforms. The results show that for
each hardware platform there is a firm relation among inference time, network accuracy and network
parameters. In nutshell, we can conclude: 1) the networks with more parameters have higher accuracy, 2) after
getting a network more complex, the speedup rate will be decrease, e.g. we got maximum speedup up to 39%
on FPGA platform with minimum number of parameters for Net-CNN-3, while DenseNet (k=24)-100 with the
best accuracy result always has shown at least 0.33 speed-down. 3) The execution time is scaled by changing
the number of parameters demonstrating the considering network size as a design objective decreases both the
communication and kernel execution times.

Figure 11. Speedup of DeepMaker generated networks in comparison to network size and accuracy on ARM platforms.

Mohammad Loni Et Al., Microprocessors and Microsystems Journal 15

Figure 12. Speedup of DeepMaker generated networks in comparison to network size and accuracy on CPU platforms.

Figure 13. Speedup of DeepMaker generated networks in comparison to network size and accuracy on FPGA platforms

Figure 14. Speedup of DeepMaker generated networks in comparison to network size and accuracy on GPU platforms

16 Mohammad Loni Et Al., Microprocessors and Microsystems Journal

5. Related Work

5.1. Automatic Design of Deep Neural Network

State-of-the-art approaches pointing to automatically design the architecture of DNNs could be categorized
into the hyper-parameter optimization, reinforcement learning and evolutionary approaches.
a) Hyperparameter Optimization: From machine learning point of view, we can model DNN architecture
designing problem as the hyperparameter optimization. There have been proposed many hyperparameter tuning
methods, such as Grid Search (GS)[16], gradient search[17], Random Search (RS) [18], and Bayesian
optimization-based method [19]. However GS is relatively slow, using RS is challenging due to extremely
random sampling in the search space, and Bayesian-based methods suffer from immense computational cost.
In addition, these methods are suitable only for search models with a fixed length space and hard to design more
flexible architectures from scratch[20].
b) Reinforcement Learning: Recently there has been much work at the intersection of reinforcement learning
and deep learning which show better results for image classification applications compared to best hand-craft
DNN accuracy results. Baker et al.[21] have proposed a meta-modeling approach based on reinforcement
learning to produce CNN architectures. In this paper A Q-learning agent explores and exploits a space of model
architectures with greedy strategy and experience replay. In[22], a recurrent neural network (RNN) was used to
generate neural network architectures, and the RNN was trained with reinforcement learning to maximize the
expected accuracy on a learning task. This method uses distributed training and asynchronous parameter updates
with 800 graphic processing units (GPUs) to accelerate the reinforcement learning process. In[23], a block-wise
network generation pipeline called BlockQNN has been provided to automatically build high-performance
networks using the QLearning paradigm with epsilon-greedy exploration strategy. Despite their success, these
models are considerably too slow and require huge computational resources in both training and prediction
steps, e.g. MetaQNN[21] contains 11.18 M trainable parameters and used 10 GPUs for 8-10 days to train a
CIFAR-10 classifier.
c) Evolutionary-based approaches: Suganuma et al. [24] tried to automatically construct CNN architectures
for an image classification task based on Cartesian genetic programming (CGP). The CNN structure and
connectivity represented by the CGP encoding method are optimized to maximize the validation accuracy. Sun
et al. [20] proposed a new method using genetic algorithms for evolving the architectures and connection weight
initialization values of a deep CNN. In their proposed algorithm, an efficient variable-length gene encoding
strategy is designed to represent the different building blocks and the unpredictable optimal depth in
convolutional neural networks. In addition, a new representation scheme is developed for effectively initializing
connection weights which is expected to avoid networks getting stuck into local minima. Real et al.[25]
Proposed simple evolutionary techniques at unprecedented scales to discover models for the CIFAR-10 and
CIFAR-100 datasets. They used novel and intuitive mutation operators that navigate large search spaces.

5.2. Design Space Pruning

In[36] a method is proposed that prune CNN filters in two levels. It first clusters network filters by enforcing
the K-means algorithm, then retain the filter which is the closest to the cluster center and pruning some of the
others randomly. In[40] a data-free approach is proposed to carry out CNN model compression. They managed
to avoid employing any training data by minimizing the expected squared difference of logits. Compared to the
former works, they removed a neuron at a time instead of removing weights. Plus, all of the reduction is
implemented on fully connected layers. In[37] a pruning approach by applying L1/L2-norm regularizations is
introduced to remove the small weights. The basic idea of their work is that a weight connectivity should be

Mohammad Loni Et Al., Microprocessors and Microsystems Journal 17

pruned if it is less than a predefined threshold. Both convolutional layers and fully connected layers could be
pruned by using this strategy. Their method achieved the compression ratio on Lenet-5 by a factor of 12×.
Although the performance is inspiring, the pruning would result in unstructured patterns in weights
connectivity. This shortcoming requires long fine tuning time which may exceed the original network training
by a factor of 3×. Research in[39] tries to select the best filters for pruning, for example, uses absolute weight
summation to evaluate the impact of a filter. In this method very low differences in weights are affected too
much, thus, the work presented in[38] introduced Average Percentage of Zeros to assess the importance of each
filter. A filter may be selected as unimportant one if most outputs of the filter are zero. Their solution seems
more reasonable. Nevertheless, this work needs lots of extra calculations and the compression ratio is not
satisfying.

5.3. CNN Acceleration

 After reviewing literature, various approximation code accelerators have been found[32],[33],[34], and [35].
However the main weakness of them is the NN architecture selection procedure. Prior work mainly used a
simple search methodology to explore a small design space which is not applicable for real-world applications.
Moreover, they just generate a deep multi-layer network which is obsolete and does not produce competitive
accurate results for modern applications such as object recognition.

6. Conclusions

CNNs are ever-evolving and complex processing models which is an obstacle for embedded systems. To
handle this problem, we proposed DeepMaker, a framework which automatically generates a highly-optimized
CNN for commercial embedded devices. DeepMaker alleviates the huge computational cost of CNNs by
benefiting from squeezing the network architecture at design time. To reach this goal, DeepMaker integrates a
multi-objective optimization strategy to optimally search the design space of DNNs. Moreover, the proposed
framework has the ability of network pruning to obtain less complex network with acceptable accuracy.
Experimental results show that, in comparison with the best results on CIFAR-10/CIFAR100 datasets,
DeepMaker presents up to 1.59x/3.46x speedup while loses 2.4%/-0.6% accuracy.

ACKNOWLEDGMENT

This work has been supported by KKS within the projects DeepMaker and DPAC.

References

[1] A. Krizhevsky, I. Sutskever and G. E. Hinton, Imagenet classification with deep convolutional neural networks, In Advances in neural
information processing systems, (2012) 1097-1105.

[2] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. R. Mohamed, N. Jaitly, and B. Kingsbury, Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, (2012) 29(6) 82-97.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, and S. Petersen, Human-level control through deep
reinforcement learning. Nature (2015) 518(7540), pp. 529.

[4] R. Zhang, P. Isola and A. A. Efros, Colorful image colorization, In European Conference on Computer Vision (2016) 649-666.
[5] J. T. and W. D. Song Han, J. Pool, Learning both Weights and Connections for Efficient Neural Networks, in Advances in Neural

Information Processing Systems, 50(2) (2015) 1135–1143.

18 Mohammad Loni Et Al., Microprocessors and Microsystems Journal

[6] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, Densely connected convolutional networks, In Proceedings of the IEEE
conference on computer vision and pattern recognition, 1(2) (2017) pp. 3.

[7] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran, AxBench: A multiplatform benchmark suite for approximate
computing, IEEE Des. Test, 34(2) (2017) 60-68.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol.
Comput., vol. 6(2) (2002) 182-197.

[9] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, Caffeine:Towards Uniformed Representation and Acceleration for Deep
Convolutional Neural Networks, Proc. 35th Int. Conf. Comput. Des. (2016) pp. 18.

[10] F. Chollet, Keras, GitHub, 2015. [Online]. Available: https://github.com/fchollet/keras.
[11] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, Power challenges may end the multicore era, Commun.

ACM, 56(2) (2013) 93.
[12] B. Falsafi, B. Dally, D. Singh, D. Chiou, J. J. Yi, and R. Sendag, FPGAs versus GPUs in Data centers, IEEE Micro, 37(1) (2017)

60-72.
[13] H. Sharma, J. Park, E. Amaro, B. Thwaites, P. Kotha, A. Gupta, J. Kyung, K. Mishra, H. Esmaeilzadeh, DNNWEAVER: From High-

Level Deep Network Models to FPGA Acceleration, IEEE Int. Conf. Mechatronics, Electron. Automot. Eng (2) (2015) 76-80.
[14] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Gradient Based Learning Applied to Document Recognition, Proc. IEEE, 86(11)

(1998) 2278-2324.
[15] A. Krizhevsky and G. Hinton. Cifar-10 dataset. https://www.cs.toronto.edu/ kriz/cifar.html.
[16] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kgl, Algorithms for HyperParameter Optimization, in Advances in Neural Information

Processing Systems (2011) 2546-2554.
[17] Y. Bengio, Gradient-based optimization of hyperparameters, in Neural computation, 8 (2000) 1889-1900.
[18] J. Bergstra and U. Yoshua Bengio, Random Search for Hyper-Parameter Optimization, J. Mach. Learn. Res. (13) (2012) 281-305.
[19] J. Snoek, H. Larochelle, and R. P. Adams, Practical Bayesian Optimization of Machine Learning Algorithms, Adv. Neural Inf.

Process. Syst. (25) (2012) 2960-2968.
[20] Y. Sun, B. Xue, and M. Zhang, Evolving Deep Convolutional Neural Networks for Image Classification (2017)

arXivprepr.arXiv:1710.10741.
[21] B. Baker, O. Gupta, N. Naik, and R. Raskar, Designing Neural Network Architectures using Reinforcement Learning (2016) arXiv

Prepr 116.
[22] B. Zoph, and Q.V. Le, Neural architecture search with reinforcement learning (2016) arXiv prepr. arXiv:1611.01578.
[23] Z. Zhong, J. Yan, and C.L. Liu, Practical Network Blocks Design with Q-Learning (2017) arXiv prepr. arXiv:1708.05552.
[24] M. Suganuma, S. Shirakawa, and T. Nagao, A genetic programming approach to designing convolutional neural network

architectures, Genet. Evol. Comput. Conf. (2017) 497-504.
[25] E. Real, S. Moore, A. Selle, S. Saxena, Y.L. Suematsu, Q. Le, and A. Kurakin, Large-scale evolution of image classifiers (2017) arXiv

prepr. arXiv:1703.01041.
[26] X. Gastaldi, Shake-shake regularization (2017) arXiv prepr. arXiv:1705.07485.
[27] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, in 2016 IEEE Conference on Computer Vision

and Pattern Recognition (2016) 770-778.
[28] E. Dufourq, and B.A. Bassett, EDEN: Evolutionary Deep Networks for Efficient Machine Learning (2017) arXiv prepr.

arXiv:1709.09161.
[29] S. H. Hasanpour, M. Rouhani, M. Fayyaz, and M. Sabokrou, Lets keep it simple, Using simple architectures to outperform deeper

and more complex architectures (2016) arXiv prepr. arXiv:1608.06037.
[30] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, Regularization of neural networks using dropconnect, 1 (2013) 109-111.
[31] K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, Int. Conf. Learn. Represent.,

(2015) 114.
[32] B. Grigorian and G. Reinman, Accelerating divergent applications on SIMD architectures using neural networks, 32nd IEEE

International Conference on Computer Design (2014) 317-323.
[33] Z. Du, A. Lingamneni, Y. Chen, K. V. Palem, O. Temam, and C. Wu, Leveraging the Error Resilience of Neural Networks for

Designing Highly Energy Efficient Accelerators, IEEE Trans. Comput. Des. Integr. Circuits Syst., 34(8) (2015) 1223-1235.
[34] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze, and M. Oskin, SNNAP: Approximate computing on

programmable SoCs via neural acceleration, in 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (2015) 603-614.

[35] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and H. Esmaeilzadeh, Neural acceleration for GPU throughput processors,
in Proceedings of the 48th International Symposium on Microarchitecture - MICRO48 (2015) 482-493.

[36] H. Li, A. K., I. Durdanovic, H. Samet, and H.P. Graf, Pruning filters for efficient convnets (2016) arXiv preprint arXiv:1608.08710.

Mohammad Loni Et Al., Microprocessors and Microsystems Journal 19

[37] S. Han, J. Pool, J. Tran, and W. Dally, Learning both weights and connections for efficient neural network. In Advances in neural
information processing systems (2015) 1135-1143.

[38] H. Hu, R. Peng, Y. W. Tai and C. K. Tang, Network trimming: A data-driven neuron pruning approach towards efficient deep
architectures (2016) arXiv preprint arXiv:1607.03250.

[39] L. Li, Y. Xu and J. Zhu, Filter Level Pruning Based on Similar Feature Extraction for Convolutional Neural Networks. IEICE
Transactions on Information and Systems (2018) 101(4) 203-1206.

[40] S. Srinivas and R.V. Babu, Data-free parameter pruning for deep neural networks (2015) arXiv preprint arXiv:1507.06149.
[41] E. Zitzler and L. Thiele, Multiobjective optimization using evolutionary algorithms—a comparative case study. In International

conference on parallel problem solving from nature (1998) 292-301.
[42] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, Dark silicon and the end of multicore scaling, IEEE

Micro, 32(3) (2012) 122134.

