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Abstract

Deep Neural Networks (DNNs) are compute-intensive learning models with growing applicability in a wide range 
of domains. Due to their computational complexity, DNNs demand implementations that utilize custom hardware 
accelerators to meet performance and response time as well as classification accuracy constraints. In this paper, 
DeepMaker framework is proposed, which aims to automatically design a highly robust DNN architecture for 
embedded devices as the closest processing unit to the sensors. DeepMaker explores and prunes the design space to 
find improved neural architectures. Our proposed framework takes advantage of a multi-objective evolutionary 
approach, which exploits a pruned design space inspired by a dense architecture. Unlike recent works that mainly 
have tried to generate highly accurate networks, DeepMaker also considers the network size factor as the second 
objective to build a highly optimized network fitting with limited computational resource budgets while delivers 
comparable accuracy level. In comparison with the best result on CIFAR-10 and CIFAR-100 dataset, a generated 
network by DeepMaker presents up to 26.4 compression rate while loses only 4% accuracy. In addition, DeepMaker 
maps the generated CNN on the commodity programmable devices including ARM Processor, High-Performance 
CPU, GPU, and FPGA.

Index Terms — Convolutional neural networks (CNNs), Design Space Exploration (DSE), Embedded Systems, and 
Multi-Objective Optimization (MOO).
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1. Introduction

In recent years, deep learning, which uses deep neural networks as the learning model, has shown excellent 
performance on many challenging artificial intelligence and machine learning tasks, such as image 
classification[1][1], speech recognition[2], and unsupervised learning tasks[3]. In particular, Convolutional 
Neural Networks (CNNs) propose massive success in visual recognition tasks in the past few years and are 
applied to various computer vision applications[4]. CNNs have penetrated in a wide-spectrum of platforms from 
workstations to embedded devices due to influential learning capabilities. 

However, modern CNN architectures are becoming more complex to provide superior accuracy leading to 
remarkable energy consumption. Dealing with huge computing throughput demand of up-coming complex 
learning models in the context of big data will be more acute where the failure of traditional energy and 
performance scaling paradigm in affording of modern applications requirements leads computing landscape 
towards inefficiency[42]. On the other hand, leveraging high-performance cloud infrastructures for providing 
required computational capacity is not always feasible specially for mission-critical applications due to limited 
network bandwidth, privacy constraints, low-power efficiency, and not guaranteeing worst-case response-time. 

Generally, there are two approaches aiming to tackle these challenges: 1) diminishing the network size by 
leveraging network pruning techniques during training phase[1] and 2) employing customized hardware 
accelerators [13], [9], [35]. However, optimizing the network architecture at design time should be taken into 
account as the third approach since the choice of the architecture strongly impacts on both the performance and 
the output quality of DNNs. To benefit from this opportunity, we propose a neural acceleration framework, 
named DeepMaker, which automatically generates a robust DNN in terms of network accuracy and network 
size, then maps the generated network to an embedded device. Unlike previous neural architectural solutions 
that their focus are only on improving the accuracy level, DeepMaker also considers network size as the second 
objective of the search space in order to adaptively find a fit DNN for limited resource embedded devices. For 
this, DeepMaker is equipped with a Multi-Objective Optimization (MOO) method to solve the neural 
architectural search problem by finding a set of Pareto-optimal surfaces. The design space has been pruned by 
taking inspirations from a cutting-edge architecture, DenseNet [6], to boost the convergence speed to an optimal 
result. 

The proposed DeepMaker framework uses a multi-objective neuro-evolutionary approach for the space 
exploration of finding optimal deep neural architectures while mapping the generated network to the given 
hardware. An overview of the proposed framework is illustrated in Figure 1.  The configuration file of 
DeepMaker comprises predefined parameters for the MOO algorithm and network training parameters. As 
shown in Figure 1. , the input of the framework is a dataset for generating a neural network. 

Figure 1. The overview of DeepMaker framework
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To approximate execution of an application, developer first needs to identify the approximation region of the 
code, then provides a training dataset for the specified code block in order to be mimicked by a DNN generated 
by DeepMaker. Approximation region of the code should be both hotspot and less sensitive to a quality loss in 
both data and operations. We can define a hotspot as a code region which consumes considerable energy or 
occupies the main part of execution time [7]. 

The output of DeepMaker framework is a set of optimized architectures. Network pruning is a popular 
solution for diminishing the amount of network computation. In addition to design space exploration, 
DeepMaker can apply a network pruning method on a dense architecture to accelerate finding the optimal neural 
networks. In nutshell, our main contributions in DeepMaker are as follows:

• Developed a multi-objective neuro-evolutionary method to discover near-optimal DNN architectures in 
terms of the accuracy and the network size. 

• Developed a cutting-edge network pruning method on the neural network architecture to obtain less 
complex network with acceptable accuracy.

• Supporting both Multi-Layer Perceptron (MLP) and Convolutional Neural Network (CNN) models 
fitting with the required accuracy of diverse applications from mathematical function to image 
classification.

• Adaptive finding the best architecture regarding resource budget and execution time constraints. Then, 
mapping the generated network on different platforms to evaluate the applicability of DeepMaker is our 
last contribution.

The remainder of this paper is organized as follows: Section 2 gives preliminaries on CNN and the MOO 
algorithm. Details of the proposed framework are presented in Section 3 which consist of two solutions for 
network optimization: Design Space Exploration and Design Space Pruning. The experimental results are 
presented in Section 4. Section 5 reviews related work in this scope, after which Section 6 concludes the paper.

2. Preliminaries

2.1. Convolutional Neural Networks (CNNs)

A Convolutional Neural Network (CNN) is a multi-layer neural network that is composed of neurons ordered 
in a layered structure. The neurons in different layers perform different kinds of computations and have different 
connection structures. The four basic layers in CNNs are convolutional layers (Conv), activation layers (Act), 
pooling layers (Pool) and classifier layers (Class). A typical NN structure is composed of several stacks of 
{Conv-Act-Pool} at the beginning, and a few stacks of {Class-Act} at the end. Each layer gets feature maps 
information from previous layers and generates new output feature maps by using a filter kernel. The 
convolution, pooling, normalization, and activation layers are used for feature extraction, and fully connected 
layers are responsible for classification. The performance criteria of a DNN include the ability to classify data 
that has never seen before, inference time, and learning rate which all depend on the multiple hyper-parameters 
of network architecture. 

The Conv and Class layers are the most computation-intensive layers in CNNs. They have the same basic 
operations: , i.e., the weighted sum of the inputs. The weights (wi,j) are learned from the training 𝑏𝑗 = ∑

𝑖𝑎𝑖.𝑤𝑖,𝑗
phase and the inputs (ai) are from the previous layer. While the Conv layers use small groups of weights (called 
kernels) to slide over the inputs, the Class layers use a full connection between input and output neurons. The 
Act layers apply a nonlinear function, e.g., ReLU (max (0, x)), Sigmoid ( ) on each neuron. The Pool 1

1 + e - x

layers are used to decrease the feature dimension size by either selecting the largest neuron (i.e., max pooling) 
or computing the mean value (i.e., mean pooling) from a subset of neurons in a local region.
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2.2. Multi-Objective Optimization (MOO)

The problem of finding the best configuration(s) of a parameterized system S with n different parameters 
with respect to m different objectives is called a MOO Problem[41]. The set of all possible configurations is 
called the Design Space, whereas each point C in this space (each configuration C) is called a solution to the 
MOOP problem. The goal of solving the MOO problem is to find the Pareto optimal set. However, in almost 
all practical design space exploration situations, the size of design space is exponential and finding the exact 
Pareto set is not feasible[41]. So the goal of design space exploration has been modified as: Finding the Pareto 
optimal set or a good approximation of it. 

Each point C in the design space can be shown by an n-tuple <v1, v2, …, vn> in which vi is the value of i-th 
parameter for that solution. The values of all design objectives for a specific solution can be shown by an m-
tuple <a1, a2, …, am> in which ai is the value of i-th objective function corresponding to that solution.

Definition 1: Let <a1, a2, …, am> and <b1, b2, …, bm> be the objective values corresponding to solutions A 
and B, respectively. The solution A is said to dominate the solution B, if and only if:

jjii bajandbai  :: 

Definition 2: A solution is said to be Pareto Optimal if and only if it is not dominated by any other solution 
of the problem. For example, assuming that the design space of Figure 2. Figure 2. contains only the seven 
points mentioned above, solutions A, C, D, and F are Pareto optimal since none of the is dominated by any 
other solution.

Definition 3: The set of all Pareto optimal solutions in a MOOP is called Pareto Optimal Set. The set of all 
n-tuples of objective values corresponding to Pareto optimal solutions is called Pareto Front.

The goal of MOO problem is to find the Pareto optimal set. But, in almost all practical design space 
exploration situations the size of design space is exponential and finding the exact Pareto set is not feasible. So, 
the goal of design space exploration is modified as: To the Pareto optimal set or a good approximation of it.

Figure 2. The notion of domination and Pareto optimality in objective space. Solution G is dominated by all other points, A dominates B 
and G while the solutions A, C, D, and F are not dominated by any other solution. 

In this paper, MOO is used to solve the neural architectural search problem by finding a set of Pareto-optimal 
sets of network hyperparameters. The key design objectives which are considered in this paper for the network 
optimization are classification accuracy and network size. In this work, Non-Dominated Sorting Genetic 
Algorithm (NSGA-II)[8] has been used to solve the exploration problems. NSGA-II is a powerful meta-heuristic 
population-based evolutionary algorithm solving MOO problems which aim to adaptively fit a set of candidates 
to Pareto frontier. 
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NSGA-II works as follows: In the first step, an offspring population Ut is formed from a parent population 
Pt by using Genetic Programming, both with size N. Then we combine Ut and Pt to devise a third population Rt 
of size 2*N. Next, NSGA-II extracts a population (with size N) from Rt by employing multiple objectives non-
dominated sorting and crowding distance comparison. The main aim of non-dominated sorting is to find a set 
of solution which cannot dominante each other. Moreover, by doing crowding distance sorting, we can 
orchestrate the density of solution for each Pareto front. NSGA-II selects the best N candidates for generating 
the next population called Pt+1. This procedure is repeated for the next generations until exceeds a predefined 
maximum number of generations or satisfies developer’s criterion including the desired level of 
accuracy/network size. Although DeepMaker walks toward an optimal solution, it does not always guarantee 
to reach the developer’s criterion. 

3. The Proposed Framework

In this section, DeepMaker framework for neural network optimization is proposed. DeepMaker provides 
two solutions for network optimization: Design Space Exploration and Design Space Pruning which will be 
presented in section 3.1and section 3.2, respectively.

Figure 3. The template architecture of generated networks

DeepMaker framework is composed of frontend and backend layers. The frontend is responsible to generate 
the optimized DNN while the backend layer deals with hardware configuration and mapping. The hand-craft 
designing of DNN architectures needs deep expertise and a large number of trial and error imposing a 
considerable design cost and efficiency risk. Thereby, tailoring the DNN architecture automatically has emerged 
as an efficient alternative solution in the machine learning community. This approach is considered for the 
frontend layer of our framework in which we propose an evolutionary-based approach to search the design 
space inspired from DenseNet to vanish the probability of generating huge design space. This decision leads 
DeepMaker to generate compact-inclined networks in a reasonable time by gaining from human experience in 
designing efficient DNNs. 

The basic template architecture of the network is shown in Figure 3. The generated network consists of back-
to-back Condense Layers for feature extraction while each layer consists of multiple Convolution Layers. Each 
Convolution Block includes Batch Normalization, Activation Function, 2D Convolution and Dropout layers, 
respectively. The final classification is integrated by the max-pooling and the fully connected layers as the 
output layer with the softmax activation function. To pass maximum information between layers in the network, 
all the layers are connected to each other in a feed-forward manner such that each layer receives the additional 
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feature map information from the whole former layer and combining them by using a concatenation layer. This 
structure leading us to enlarge sharing information and shorten the path from the first layer to the last layer.

3.1. Design Space Exploration 

Design Space Exploration (DSE) is the process of finding a set of optimal or near-optimal design 
configurations for a system subject to one or more design criteria. As discussed in the introduction, the design 
objectives are considered as accuracy and network size. After computational analysis of a popular CNN, 
VGG16[31], we have concluded that convolutional layers (Conv.) are extremely computationally intensive. 
Thus, for optimizing a CNN architecture, convolutional parameters including the number of convolutional 
layers, the sizes of each layer, and the filter size should be considered as the networks optimization 
hyperparameters. Moreover, the choice of activation functions in DNNs outstandingly influence on the training 
performance since the heart of neural networks is an activation function applied to a linear transformation. So, 
the activation function is also considered as a pivotal metric in designing the DNN architecture.

TABLE I. THE CNN HYPERPARAMETERS USED AS SEARCHING NEURAL DESIGN SPACE PARAMETERS.

Parameters Value Range

Activation Function Hard-sigmoid, relu, elu, tanh, sigmoid, softplus, linear, selu

# Condense_Layer 1, 2, 3, 4

# Convolution_Layer 16, 28, 40, 52

Learning Rate 0.001, 0.0001, 0.00001

Kernel Size 3x3, 5x5

Optimizar Rmsprop, adam, sgd, adagrad, adadelta, adamax, nadam

The main architectural hyperparameters of DNNs are listed in TABLE I. For cutting back the search space, 
the range of each hyperparameter is limited. Different combinations of these parameters form several 
architectures with various performances. Finding a near-optimal network architecture of the combination of 
these hyperparameters is the main goal of the search algorithm. In other word, we can model the DNN 
architecture selection problem as the hyperparameter optimization problem. DeepMaker is equipped with the 
fast and multi-objective GP, NSGA-II, to discover a near-optimal set of hyperparameters considering both the 
accuracy and the network size as the objectives. Total trainable network weights are defined as the network size 
objective since the performance and energy efficiency of the backend accelerator highly rely on inner product 
operations which are execution bottleneck of DNNs [9].

Figure 4. Genome type
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Network hyperparameters are represented as a string of genomes using direct encoding and the recombination 
of these genes occurs with one-point crossover operation shown in Figure 4. The neural architectural exploration 
algorithm is explained in four steps as follows: 

1. After generating a random initial parent population Pt with size N, DeepMaker generates a network 
model based on the hyperparameters of each genome in the parent population. Then DeepMaker trains 
each individual model to calculate the network accuracy and network size for all the models. 

2. The offspring populating Ut will be created by using GP including crossover and mutation steps. 
3. The NSGA-II sorts the combination of Tt and Pt to find the next generation parent population of N 

acceptable individuals which cannot dominate each other in terms of accuracy and network size. 
4. This process will continue until attaining the predefined maximum number of generations. 

Algorithm 1: Pseudo Code of DeepMaker’s Design Space Exploration Procedure

Input: N: Population Size, G: Max. Number of Generations, H: Possible 
Output: A Set of Optimal Architectures on Pareto Frontier 

Function DeepMaker(N, G, H):
      P0= Random Population (N, H); 
      //Creating initial random solutions with size N
      Objectives Function (P0, Size (P0)); 
      //Evaluating the objectives of each solution in the population 
      U0= Selection Crossover Mutation (P0); 
      //Generating the offspring population by doing random crossover and mutation 
      t=1; 
      while (t < G) or (Criterion Not satisfied) do 
            Rt = Combine (Pt , Ut); 
            //Merging Parent and Offspring population, the size of Pt+1 is 2∗N 
            Objectives Function (Pt+1, Size (Pt+1)); 
            Sortt = Non Dominant Sort(Pt+1); 
            //Sorting the first population in fronts 
            p f s[t] = Crowding Distance Sorting(Sortt); 
            //Symmetric disturbing offspring population by crowding distance sort 
            to build Pareto frontier and save it in p f s 
            Pt+1 = p f s[t]; 
            // Creating Next Population 
            Ut+1=Selection Crossover Mutation (Pt+1); 
            Objectives Function (Ut+1, Size (Ut+1)); 
      return p f s[G]; 

Function Objectives_Function(Population P, Size N): 
      i=1; 
      while (i<N ) do 
      List [i]= Extract Network Parameters(Pi); 
      model[i]= Create Model (List [i]); 
      //Generating a DNN model using network hyperparameters 
      Acc.[i], #Params[i]=Train_Evaluate(model[i]); 
      // Train the ntwork to get validation accuracy and num. network parameters 
return Accuracy, #Parameters;

The entire search procedure is summarized in Algorithm 1. Compare to DenseNet, DeepMaker generates 
more accurate networks with superior flexibility regarding resource limitation of the backend platform. To 
increase the rate of optimal discovering, we monitor all genomes in all previous generations. The output of the 
frontend layer is an asset of improved network architectures on the Pareto curve with different network 
accuracies and sizes. Efficient mapping of the generated network on hardware is the next step. Using 
Application-Specific Integrated Circuit (ASIC) as a customized DeepMaker’s backend accelerator can gain 
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considerable power and performance efficiency, nonetheless, ASIC cannot be reconfigured and reprogrammed. 
Graphic Processing Units (GPUs) are popular performance centric accelerators refereed as another possibility 
to cope with diminishing the efficiency trend in the multi-core era [11]. Although GPUs offer a higher level of 
programmability and memory bandwidth, they suffer from huge power consumption and are efficient only for 
data parallel kernels and dense data structures[12]. On the other hand, the combination of supporting arbitrary 
forms of parallelism, flexibility, and power efficiency of off-the-shelf Field-Programmable Gate Arrays 
(FPGAs) provide a promising opportunity for efficient neural network implementation. Unfortunately, on-chip 
memory limitation, relatively primitive memory abstraction model, and the lack of efficient high-level APIs are 
the major bottlenecks of FPGA as a neural-based accelerator[9]. In fact, each of these hardware devices offers 
various capabilities for real work problems. Section 4.4 presents implementation results on different processing 
platforms.

3.2. Design Space Pruning

In general, neural network pruning techniques try to reduce the storage and computation required by neural 
networks without considerable affecting on the network accuracy by learning the important weights. The 
pruning method used in this paper is based on the work presented in[39]. This technique tries to select and 
remove redundant filters which affected zero or very low in the network results. To select appropriate filters for 
pruning many strategies are candidate such as random selection. In this work, K-means++ algorithm has been 
utilized. First, we employ the k-means++ algorithm to enforce the filters to enter specific clusters. Second, we 
will retain the filter which is the closest to the cluster center and prune the others in every cluster. Then the 
pruned model will be fine-tuned to recover accuracy. Our approach aims to find the correlation among the 
importance of each filter. A filter may be selected as unimportant one if most outputs of the filter are zero. In 
Algorithm 2, the pseudo code of DeepMaker’s design space pruning procedure is presented.

Algorithm 2: Pseudo Code of DeepMaker’s Design Space Pruning Procedure

Input: A trained CNN model, target layer i and tolerance threshold α for pruning rate 
Output: Pruned CNN model
1. Initialize k=Ni -1 
2. Repeat
       a. Use k-means++ to force the  (1 ≤ n ≤ Ni) into k clusters 𝑊𝑖

𝑛
       b. Keep the filter which is the most closet to centroid for each cluster, prune the others and their 
       output feature maps 
       c. Fine tuning the pruned model as training process  
       d. k=k-1 
3. Until Pruning rate is lower than α

4. Experimental Results

In this section, first, the used datasets for the experiments will be introduced. After that, the experimental 
results of design space exploration and design space pruning of the proposed framework are presented 
respectively. In the end, the hardware implementation of the proposed framework on four prevalent hardware 
platforms, Xilinx UltraScale plus FPGA, NVIDIA Tesla M60 GPU, Intel Core i7-7820, and ARM Cortex-A15 
are discussed.
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4.1. Training Datasets

DeepMaker framework has been evaluated using well-known datasets and compare with cutting-edge 
architectures. The experiments have been performed on the following data sets: a) MNIST[14]: This is a dataset 
of black and white images for handwritten digit recognition containing 60,000 training and 10,000 testing 
images, respectively. Each image in the MNIST dataset is a 28x28 pixels with ten labeled output as 0 to 9 
numbers. b) CIFAR-10[15]: This is a complex colorful benchmark dataset of natural images, each with 32x32 
pixels which are mainly used for object recognition. This benchmark contains ten labeled output classes. 
CIFAR-10 training and testing datasets contain 50000 and 1000 images, respectively. c) CIFAR-100[15]: 
CIFAR-100 is similar to CIFAR-10, but with 100 classes while each class has 500 instead of 5,000 as in 
CIFAR10 making the classification more challenging.

4.2. Design Space Exploration 

DeepMaker searches the optimal network architecture using partial training by using just 16 epochs since 
this epoch number is enough for making the decision. Figure 5. plots the validation loss and validation accuracy 
progression by increasing the number of epochs for Net-CNN-Arch.3 with 0.14 million parameters. We got 
roughly 90% of the maximum achievable accuracy after 16 epochs. DeepMaker utilizes the Keras Library[10] 
for training the network. 

Figure 5. Accuracy and loss Validation for Net-CNN-3 with 0.14M parameters

As mentioned before, the objectives of the network optimization and design space exploration are Accuracy 
and Network size. We realized a strong relationship between inference time and the network size of a CNN. 
Figure 6. illustrates the relationship between inference time per each forward query and the number of 
parameters executed on an NVIDIA Quadro K5100M GPU (R2=0.7858, p-value=0.000149, Pearson 
correlation=0.942). The results are plotted in the logarithmic scale to improve visual comprehension. These 
results imply that the network size is a strong proxy for network architectural complexity [1], [6], [18]. These 
experimental results indicate that DeepMaker efficiently decreases inference time by considering network size 
as its objective.
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Figure 6. Inference time vs. network size

The near-optimal Pareto frontier results are illustrated in Figure 7.  to Figure 9. on MNIST, CIFAR-10 and 
CIFAR-100 datasets after just five generations. These results are obtained with the following setting in 
DeepMaker’s configuration: dropout=0.2, epoch=16, batch size=128, number of generations=5, and random 
initial population with the size equal to 30. As can be seen, Pareto-optimal curves shifted toward left implying 
that our results have gotten improved set of network architecture candidates.

Figure 7. Pareto frontier plots for CNN architecture generated for MNIST dataset.
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Figure 8. Pareto frontier plots for CNN architecture generated for CIFAR-10 dataset.

Figure 9. Pareto frontier plots for CNN architecture generated for CIFAR-100 dataset.

The effectiveness of DeepMaker has been verified compare to the error rate and the total number of trainable 
parameters of the other cutting-edge approaches shown in TABLE II. The results of this table are obtained by 
a full train of the networks with 300 epochs. Network architectures with the highest accuracy are employed as 
the baseline of the comparisons. Compare to a reinforcement learning solution, MetaQNN, we lost 0.06% 
accuracy for MNIST dataset while we have 43x compression rate. Not only compare to MetaQNN but only also 
the superiority of DeepMaker’s optimization rate is clear for MNIST dataset.

Net-CNN-Arch.1, Net-CNN-Arch.2, and Net-CNN-Arch.3 are three different nodes of Pareto frontier 
selected from fifth generation. These three nodes have different network objectives which give a vast authority 
to DeepMaker to select the most appropriate architecture based on the execution time constraints or resource 
limitation of the target hardware platform. Net-CNN-Arch.1 loses 4% accuracy compared to the most accurate 
networks[26], while has 26.4x fewer parameters. Moreover, the MLP model presents comparable accuracy for 
MNIST, but it cannot provide acceptable accuracy for CIFAR-10 and CIFAR-100, revealing we need more 
complex architectures for modern dataset. In nutshell, DeepMaker strikes better the balance between network 
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accuracy and network size compare to reinforcement learning-based solutions, evolutionary-based approaches 
and hand-craft designs.

TABLE II. COMPARISON RESULTS OF ERROR RATE ON MNIST AND CIFAR-10 DATASETS.

Dataset Approach Network Architecture #Params (x106) Error (%)
RL MetaQNN [21] 5.59 0.35

EC EDEN [28] 1.8 1.6

Hand-Crafted SimpleNet [29] 0.3 0.25

Hand-Crafted Wan et al. [30] - 0.21

MO2-EC Our MNIST-MLP 0.19 1.2

MNIST

MO2-EC Our MNIST-CNN 0.13 0.41
RL NAS-v1/v3 [22] 4.2/37.4 5.5/3.65

Hand-Crafted SimpleNet [29] 5.48 4.68

Hand-Crafted VGG-16 [31] 138.0 7.55

Hand-Crafted DenseNet (K=12)-40 [6] 1.0 7.0

Hand-Crafted DenseNet (K=12)-100 [6] 7.0 5.77

Hand-Crafted DenseNet (K=24)-100 [6] 27.2 5.83

EC EDEN [28] 0.17 25.6

Hand-Crafted ResNet-20 [27] 0.27 8.75

Hand-Crafted ResNet-110 [27] 1.7 6.43

EC Masanori et al. [24] 1.68 5.98

RL Block-QNN-22L [23] 39.8 3.54

RL MetaQNN [21] 6.92 11.18

EC Real et al. [25] 5.4 5.4

Hand-Crafted Gastaldi et al. [26] 26.4 2.86

MO2-EC Our Net-MLP 0.66 37.0

MO2-EC Our Net-CNN-Arch.1 1.0 6.9
MO2-EC Our Net-CNN-Arch.2 0.49 8.7

Cifar-10

MO2-EC Our Net-CNN-Arch.3 0.14 14.1
RL MetaQNN [21] 11.18 27.14

RL Block-QNN-22L [23] 6.1 20.65

Hand-Crafted DenseNet (K=12)-40 [6] 1.0 27.55

Hand-Crafted DenseNet (K=12)-100 [6] 7.0 23.79

Hand-Crafted SimpleNet [29] 5.48 26.58

MOO-EC Our C100-Net.1 1.1 26.63

Cifar-100

MOO-EC Our C100-Net.2 1.89 24.87
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4.3. Design Space Pruning

The pruning method has been evaluated on our Net-CNN-Arch.3 for processing Cifar10 dataset. First, the 
network is trained with a constant configuration, without any pruning and the accuracy results is obtained as 
85.9%. Then, we used the filter pruning technique[39] by assuming ‘cluster factor =0.9’ and ‘number of fine 
tune epochs=5’ and ‘pruning iteration=10’ as the constant configuration and ‘maximum pruning percent’ is 
equal to {10, 20, 30, 40, 50, 60, 70} as the threshold on weight pruning. Figure 10. illustrates the impact of the 
network pruning on the accuracy level of the densest architecture. Obviously, the number of network parameters 
will be decreased by increasing the pruning rate. On the other hand, there is not a linear correlation between 
pruning rate and accuracy level since accuracy is also influenced by other factors such as over-fitting, weight 
initialization and etc. 
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Figure 10. The impact of network pruning on Accuracy of dense architecture

4.4. Hardware Implementation 

To verify the practical impact of DeepMaker, we used four prevalent hardware platforms, Xilinx UltraScale 
plus FPGA, NVIDIA Tesla M60 GPU, Intel Core i7-7820, and ARM Cortex-A15. TABLE III. summarizes the 
specification of test platforms. We picked out four congruent networks offering better accuracy per parameters 
including ResNet-20, ResNet110, DenseNet (k=12)-100, and DenseNet (k=24)-100 to compare with the 
generated networks by DeepMaker. We also did not use any network compression technique to only assess the 
influence of network architecture on inference time. Due to the sake of brevity, we just present the 
implementation results of the more complex dataset, CIFAR-100. Keras framework automatically uses cuDNN 
to compile a neural network for GPU. For obtaining FPGA results, the Amazon EC2 deep learning F1.2xlarge 
instance has been used.
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TABLE III. HARDWARE PLATFORM DETAILS.

Platform CPU GPU ARM FPGA

Frequency (GHz) 2.9 1.178 1.9 0.8

Technology (nm) 14 28 28 16 (FinFER+)

TDP (W) 45 300 5 -

Cores/Total Thread 4/8 4096
CUDA Cores 8/8

FF = 2.5(x106)
LUT = 1.18(x106)

DSP = 6800

Memory 8MB Cache 16GB GDDR5 2.5 MB Cache BRAM = 75.5 Mb

Approx. Price (USD) 378$ 7,532$ 60$/board -

Unlike CPUs, we do need an initialization phase to copy data to GPU/FPGA’s internal memory, before 
lunching processing kernel. Usually, kernel time is used for reporting runtime results, however, considering the 
communication time is vital for embedded implementations, especially for mission critical applications since 
these applications are mainly latency-oriented. Due to this reason, the total execution time must be taken into 
account as the evaluation metric. In addition, we believe compacting a network potentially could diminish the 
overhead of communication time since less number of data packets need to be copied via PCI-Express bus. To 
increase the precision of results, we got them for 10000 times and the average time is leveraged for presenting 
the results. Figure 11. to Figure 14. plot accuracy, the logarithmic scale (to improve visual comprehension) of 
the number of parameters and the speedup compared to the baseline, DenseNet (k=12)-100. The main reason 
of selecting DenseNet (k=12)-100 as the ideal baseline is that it delivers better accuracy-parameters tradeoff in 
comparison with the other networks. Unlike accuracy and the number of parameters, execution time is a 
platform aware metric and highly depends on hardware implementation, compiler, and the software stack. 
Therefore, there is no exact speedup similarity among different hardware platforms. The results show that for 
each hardware platform there is a firm relation among inference time, network accuracy and network 
parameters. In nutshell, we can conclude: 1) the networks with more parameters have higher accuracy, 2) after 
getting a network more complex, the speedup rate will be decrease, e.g. we got maximum speedup up to 39% 
on FPGA platform with minimum number of parameters for Net-CNN-3, while DenseNet (k=24)-100 with the 
best accuracy result always has shown at least 0.33 speed-down. 3) The execution time is scaled by changing 
the number of parameters demonstrating the considering network size as a design objective decreases both the 
communication and kernel execution times.

Figure 11. Speedup of DeepMaker generated networks in comparison to network size and accuracy on ARM platforms.
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Figure 12. Speedup of DeepMaker generated networks in comparison to network size and accuracy on CPU platforms.

Figure 13. Speedup of DeepMaker generated networks in comparison to network size and accuracy on FPGA platforms

Figure 14. Speedup of DeepMaker generated networks in comparison to network size and accuracy on GPU platforms
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5. Related Work

5.1. Automatic Design of  Deep Neural Network 

State-of-the-art approaches pointing to automatically design the architecture of DNNs could be categorized 
into the hyper-parameter optimization, reinforcement learning and evolutionary approaches. 
a) Hyperparameter Optimization: From machine learning point of view, we can model DNN architecture 
designing problem as the hyperparameter optimization. There have been proposed many hyperparameter tuning 
methods, such as Grid Search (GS)[16], gradient search[17], Random Search (RS) [18], and Bayesian 
optimization-based method [19]. However GS is relatively slow, using RS is challenging due to extremely 
random sampling in the search space, and Bayesian-based methods suffer from immense computational cost. 
In addition, these methods are suitable only for search models with a fixed length space and hard to design more 
flexible architectures from scratch[20].
b) Reinforcement Learning: Recently there has been much work at the intersection of reinforcement learning 
and deep learning which show better results for image classification applications compared to best hand-craft 
DNN accuracy results. Baker et al.[21] have proposed a meta-modeling approach based on reinforcement 
learning to produce CNN architectures. In this paper A Q-learning agent explores and exploits a space of model 
architectures with greedy strategy and experience replay. In[22], a recurrent neural network (RNN) was used to 
generate neural network architectures, and the RNN was trained with reinforcement learning to maximize the 
expected accuracy on a learning task. This method uses distributed training and asynchronous parameter updates 
with 800 graphic processing units (GPUs) to accelerate the reinforcement learning process. In[23], a block-wise 
network generation pipeline called BlockQNN has been provided to automatically build high-performance 
networks using the QLearning paradigm with epsilon-greedy exploration strategy. Despite their success, these 
models are considerably too slow and require huge computational resources in both training and prediction 
steps, e.g. MetaQNN[21] contains 11.18 M trainable parameters and used 10 GPUs for 8-10 days to train a 
CIFAR-10 classifier.
c) Evolutionary-based approaches: Suganuma et al. [24] tried to automatically construct CNN architectures 
for an image classification task based on Cartesian genetic programming (CGP). The CNN structure and 
connectivity represented by the CGP encoding method are optimized to maximize the validation accuracy. Sun 
et al. [20] proposed a new method using genetic algorithms for evolving the architectures and connection weight 
initialization values of a deep CNN. In their proposed algorithm, an efficient variable-length gene encoding 
strategy is designed to represent the different building blocks and the unpredictable optimal depth in 
convolutional neural networks. In addition, a new representation scheme is developed for effectively initializing 
connection weights which is expected to avoid networks getting stuck into local minima. Real et al.[25] 
Proposed simple evolutionary techniques at unprecedented scales to discover models for the CIFAR-10 and 
CIFAR-100 datasets. They used novel and intuitive mutation operators that navigate large search spaces. 

5.2. Design Space Pruning

In[36] a method is proposed that prune CNN filters in two levels.  It first clusters network filters by enforcing 
the K-means algorithm, then retain the filter which is the closest to the cluster center and pruning some of the 
others randomly. In[40] a data-free approach is proposed to carry out CNN model compression. They managed 
to avoid employing any training data by minimizing the expected squared difference of logits. Compared to the 
former works, they removed a neuron at a time instead of removing weights. Plus, all of the reduction is 
implemented on fully connected layers. In[37] a pruning approach by applying L1/L2-norm regularizations is 
introduced to remove the small weights. The basic idea of their work is that a weight connectivity should be 
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pruned if it is less than a predefined threshold. Both convolutional layers and fully connected layers could be 
pruned by using this strategy. Their method achieved the compression ratio on Lenet-5 by a factor of 12×. 
Although the performance is inspiring, the pruning would result in unstructured patterns in weights 
connectivity. This shortcoming requires long fine tuning time which may exceed the original network training 
by a factor of 3×. Research in[39] tries to select the best filters for pruning, for example, uses absolute weight 
summation to evaluate the impact of a filter. In this method very low differences in weights are affected too 
much, thus, the work presented in[38] introduced Average Percentage of Zeros to assess the importance of each 
filter. A filter may be selected as unimportant one if most outputs of the filter are zero. Their solution seems 
more reasonable. Nevertheless, this work needs lots of extra calculations and the compression ratio is not 
satisfying.

5.3. CNN Acceleration

 After reviewing literature, various approximation code accelerators have been found[32],[33],[34], and [35]. 
However the main weakness of them is the NN architecture selection procedure. Prior work mainly used a 
simple search methodology to explore a small design space which is not applicable for real-world applications. 
Moreover, they just generate a deep multi-layer network which is obsolete and does not produce competitive 
accurate results for modern applications such as object recognition.

6. Conclusions

CNNs are ever-evolving and complex processing models which is an obstacle for embedded systems. To 
handle this problem, we proposed DeepMaker, a framework which automatically generates a highly-optimized 
CNN for commercial embedded devices. DeepMaker alleviates the huge computational cost of CNNs by 
benefiting from squeezing the network architecture at design time. To reach this goal, DeepMaker integrates a 
multi-objective optimization strategy to optimally search the design space of DNNs. Moreover, the proposed 
framework has the ability of network pruning to obtain less complex network with acceptable accuracy. 
Experimental results show that, in comparison with the best results on CIFAR-10/CIFAR100 datasets, 
DeepMaker presents up to 1.59x/3.46x speedup while loses 2.4%/-0.6% accuracy. 
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