
Towards a Model of Testers’ Cognitive Processes:
A Problem Solving Approach for Software Testing

Eduard Paul Enoiu
eduard.enoiu@mdh.se

Software Testing Laboratory (STL),
Mälardalen University, Västerås, Sweden.

Abstract—No applicable model of testers’ cognitive processes in
software testing exists. As a first step in formulating such a model,
a cognitive model for software testing is developed. The new
model is grounded in problem solving and cognitive psychology
theory. The theoretical foundation of problem solving as a
reference description for exploring software testing is provided.
The use of problem solving as applied to software testing is
instantiated for the creation of new test cases. The practical and
research implications of the new approach are discussed.

I. INTRODUCTION

For many years, researchers have tried to create new
techniques for effectively testing software. This research has
answered many questions, but still many of them remain
unanswered. For example, not that much research has focused
on discovering how humans create test cases. The purpose
herein is to develop a model of the cognitive processes
involved in software testing. Software testing includes all ac-
tivities associated with verifying existing software applications
from test planning and test creation to test execution [1]. A
significant portion of the software testing effort involves the
creation of test cases based on a variety of test goals. Ammann
and Offutt [1] classified the process of creating test cases in
two general approaches: criteria-based test design satisfying
certain engineering goals and human-based test design based
on domain and human knowledge of testing. However, in
practice this is an artificial distinction, since these are com-
plementary and in many cases human testers are using both
to fully test software. Itkonen et al. [2] observed testing ses-
sions of eleven software professionals performing system level
functional testing. They identified several practices for test
session and execution strategies including exploratory testing
(e.g., simulating abnormal and extreme situations, exploring
against old functionality, feature interaction testing and defect
based exploring), systematic comparison (e.g., comparing with
another application or version, checking all the effects) and
input partitioning (e.g., testing boundaries and restrictions,
testing input alternatives, covering input combinations). It is
obvious that in a domain like software testing, test goals
and strategies for creating test cases seem to be less well
defined than problems in other areas like physics and math.
Research in software testing has identified several variables
that influence the quality and performance of software testing
[3], [4]. Among these are knowledge and strategies for testing,
as well as external factors.

In response to this need to better understand the software
testing process, this works explores the cognitive processes
used by testers engaged in software testing. In this paper we
use a problem solving approach to map the steps and sequence
by which testers perform test activities. Finally, we outline
different methods that can be used to research and refine the
proposed cognitive model of software testing.

II. BACKGROUND

The software testing process can be divided into four
steps [1]: test design, test automation, test execution and test
evaluation. These activities occur within an organizational
environment and one or more persons are assigned to per-
form them. Many factors influence these activities such as
organization structure, training, experience, testing knowledge,
automation environment and testing standards. All too often,
researchers focus on different technical aspects of software
testing without taking into account the human aspects of
different test activities. Humans involved in the creation of test
cases are basically trying to solve certain problems that have
been posed to them (e.g., assignments from test managers)
or recognized on their own (e.g., the need for additional
confidence in releasing a certain feature). Despite the diversity
of these testing problems (i.e., test goals), the ways people go
about solving them show a number of common characteristics
to general problem solving [5]. Problem solving is a very
important topic of research in the field of artificial intelligence
and cognitive science. Over the years many researchers have
delved into this topic and have discovered a great deal of
knowledge about how humans solve problems. We recognize
here the need for examining and classifying the underlying
characteristics of problem solving models when applied to
software testing.

III. FOUNDATIONS FOR A COGNITIVE MODEL OF
SOFTWARE TESTING

Many models representing the problem solving processes
are devised principally from Polya’s phases [6]. Several psy-
chologists have described the problem solving process as a
cycle [7]–[9]. Problem solving occurs throughout life. A young
child may be trying to figure out how to solve a mathematical
problem. An architect may be designing an apartment building,
or a software tester is attempting to find certain effective test
inputs using boundary value analysis. Despite the diversity of



Software
Testing
Process

UNDERSTAND

PL
ANEXECUTE

CH
EC
K

Identify Test Goal

Define Test Goal

An
aly

ze
Kn

ow
led

ge

Form StrategyOrganize
Information

Allocate

Resources

M
on

ito
r P

ro
gr

es
s

Evaluate

Fig. 1: The software testing process viewed as a cyclical problem solving model.

problems, examining these as a problem solving process, their
commonalities and what they tell us about human thought and
intelligence is important.

Traditionally, problem solving has been viewed in psy-
chology and artificial intelligence research as determined by
representation and search processes [5], [10]. In this way, a
problem is represented as a problem space, consisting of states
and operators. A human or a program solves a problem when
it finds a path from the initial goal to the goal state. In search-
based software testing [11], much of the work has focused on
understanding different search strategies that might be used
for guiding the search towards a test goal.

More recently, problem representation has become an area
of high interest in problem solving research [9]. The represen-
tation seems to be at least as crucial in determining whether
a problem is solved as how the search is performed.

Given these foundations on problem solving, we consider
in the next section a cognitive model of software testing per-
formed by human testers based on problem solving activities.

IV. A COGNITIVE MODEL OF SOFTWARE TESTING

To get a handle on the issues involved in studying the psy-
chology of software testing performed by humans, we need a
way of defining and classifying the process of human software
testing. In response to the need for a better understanding

of the test creation process, this work explores the cognitive
underpinnings used by testers in the test design phase. The
model shown in Figure 1 is centered around our observation
that test design and execution can be viewed as a problem
solving process. In order to precisely describe this process, we
need to better understand the cognitive processes associated
with test design.

The software testing cycle viewed as a problem solving
process consists of the following stages (mirrored in Figure
1) in which the human tester must:

• Identify Test Goal: Recognize and identify the test goal as
a problem that needs to be solved. According to Getzels
[12], there are three kinds of problems one can identify
those that are presented, those that are discovered, and
those that are created. A presented test goal is one that is
given to the tester directly and it is stated clearly (i.e.,
predefined criteria-based test goal). A discovered and
created test goal, however, is one that must be recognized.
In this case, testers are using exploratory strategies and
seek out to discover what the test goal by intuition and
experience.

• Define Test Goal: Define and understand the test goal
mentally and what the test cases must do. The test goal
definition is the aspect of testing in which the scope and



the test goals are clearly stated. Mental representations
are composed of four parts: a description of the initial
state of the test goal, a description of the goal state, a set
of operators, and a set of constraints. A test goal may be
represented in a variety of ways, for example, visually
or verbally. For instance, in achieving pairwise coverage
[1], one would need to define and represent the goal as
the task to create all possible pairs of parameter values
that can be covered by at least one test case.

• Analyze Knowledge: Organize his or her testing knowl-
edge about the test goal. Everyone approaches a problem
situation with a unique knowledge base. For somebody
with knowledge in test design techniques, analyzing the
knowledge involves creating abstract models and using
them to for a strategy to create test cases.

• Form Strategy: Develop a solution strategy for creating
the necessary test cases. The set of operations you per-
form to get to the goal state constitutes the test specifica-
tion (i.e., how the test case should be obtained). In many
cases, the operators are not specified in the test goal,
but we can infer them from our prior knowledge (e.g.,
mathematical operators like division and multiplication,
mental operators like calculations).

• Organize Information and Allocate Resources: Organize
information, allocate mental and physical resources for
creating and executing test cases. Testers are using gen-
eral skills such as inferencing, case-based reasoning,
abstraction and generalization for organizing the informa-
tion from different steps. At an even more general level
there are metacognitive skills related to motivation and
allocating cognitive resources such as attention and effort.
In addition, testers can use test automation for embedding
the test values in executable scripts and allocate certain
computing resources for executing test cases. If tests are
run by hand, testers will allocate physical resources and
record the results.

• Monitor Progress: Monitor his or her progress toward the
test goal. This step monitors the results of test creation
and execution. For test execution one will use test oracles
embedded into scripts or manually monitor when the
correct output cannot be encoded easily.

• Evaluate. Evaluate the test cases for accuracy. If you find
that the test goal is not met, analyze the test goal and then
make corrections. Follow the steps to see if the test cases
really do not check the test goal.

The testers begins the testing process by analyzing the test
goal, breaking it into manageable pieces, and developing a
general solution for each piece called a test case. The solutions
to the pieces are collected together to form a test suite that
solves the original problem (i.e., the identified test goal). The
testing cycle is descriptive, and does not imply that all test
case creation proceeds sequentially through all these steps in
this order. In practice, experienced testers are those who are
flexible. In many cases, once the cycle is completed, the steps
are usually giving rise to a new test goal and then the steps

need to be repeated.

V. WHAT IS A TESTING GOAL?

Before discussing how one would investigate how people
design test cases, we define what is meant by a test problem.
For our purposes, a tester has a problem to solve when it
wants to attain some test goal. We consider a test problem to
have four aspects: test goals, assumptions, means to attain the
goal and obstacles. The test goal is some state for which some
criterion can be applied to assess whether the test problem has
been solved. To give an example, the goal might be to check
if a certain requirement has been implemented correctly or to
find a way to crash the user interface.

Even if different test goals have common aspects, figuring
out how to find test inputs to cover all branches in a program
seems very different from figuring out how to find interface
bugs in the same program. Clearly, these two test goals have
many differences. A crucial activity in understanding problem
solving is to analyze which test goal differences are important
and which are not.

There are two classes of test goals that map directly on the
generic problems solved by humans:

• Well defined test goals (e.g., coverage criteria, boundary-
value analysis, category partitioning) have completely
specified initial conditions, goals and means of attaining
the goal. Many coverage criteria are well defined. For
example, creating tests for covering program branches
is usually well defined. The goal is some well specified
coverage score. Thus, you will know when you have
attained your goal. Finally, the means of attaining the goal
are by exercising the different branches in the program.

• Ill defined test goals (e.g., stress test goals, fault-based
testing) have some aspects that are not completely spec-
ified. The problem of finding faults is clearly ill defined.
Even if you know how to tell whether a fault is discov-
ered, you wouldn’t know exactly what to do to try to
achieve this goal in every specific situation.

Test problems differ on how well defined they are and
we can consider that this categorization is a continuum of
problems rather than a dichotomy.

VI. INVESTIGATING SOFTWARE TESTING PRACTICES
USING PROBLEM SOLVING METHODS

In order to build knowledge on how testers are solving
test problems by creating test cases, it is useful to consider
the methods used in problem-solving research in cognitive
science. Three methods are often used in problem-solving
research [9]: intermediate products, verbal protocols, and
software simulations.

A. Intermediate Products

Getting intermediate products [5] means that instead of
recording and analyzing only the created test case to the
problem, we observe some of the work the subject does in
getting the test case. If we are interested in how people create
test cases for finding logical bugs, we collect information



about the various steps they make in getting to the goal. If we
are interested in testing for requirement coverage, we collect
and analyze the models, equations and other information the
subject writes down in the course of problem solving. The
resulting intermediate products provide finer constraints and
possible explanations.

B. Verbal Protocols

The second method often used in problem solving research
is a verbal protocol [13]. The most common way to collect
such data is to ask the subjects to think aloud as they go
about solving the problem. The idea behind this measure is to
provide information about the course of the problem solving.
Verbal protocols can be used in software testing research as a
direct evidence for some hypothesis or to generate new ideas
that can be tested by other methods.

C. Simulations and Search-Based Testing

A common goal of problem solving research is to build a
simulation that is meant to mimic the problem-solving process
as revealed by the intermediate steps [5]. In testing, automatic
search-based test generation [11] can be used to mimic how
testers solve testing problems, to the extent that problem
solving can be regarded as information processing.

VII. CONCLUSIONS

Problem solving provides the foundation for uniting tester
cognitive processes. The software testing model developed
here allows for a cyclical process that accommodates both
simple and complex test goals.

For the research community, the model proposed in this
works provides a reference on which to ground future in-
vestigations. In general, more questions concerning testers’
cognitive processes in software testing can be posed. Specif-
ically, the process by which a tester identifies and defines a

test goal is not fully understood, nor is the process by which
testers form strategies for creating test cases. The selection of
search strategies could vary with testing experience, but little
is known about this. Likewise, how a tester switches between
test goals and executes test cases has received little attention.

The model also provides a framework from which to inves-
tigate tester knowledge and expertise and it is the first step in
evaluating and refining a testers’ cognitive process model for
software testing.

REFERENCES

[1] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

[2] J. Itkonen, M. V. Mantyla, and C. Lassenius, “How do testers do it?
an exploratory study on manual testing practices,” in 2009 3rd Interna-
tional Symposium on Empirical Software Engineering and Measurement.
IEEE, 2009, pp. 494–497.

[3] ——, “Defect detection efficiency: Test case based vs. exploratory
testing,” in First International Symposium on Empirical Software En-
gineering and Measurement (ESEM 2007). IEEE, 2007, pp. 61–70.

[4] J. Itkonen, M. V. Mäntylä, and C. Lassenius, “The role of the tester’s
knowledge in exploratory software testing,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 707–724, 2012.

[5] D. L. Medin and B. H. Ross, Cognitive psychology. Harcourt Brace
Jovanovich, 1992.

[6] G. Polya, “How to solve it ny,” 1957.
[7] J. D. Bransford, “The ideal problem solver,” Scientific American, Tech.

Rep., 1984.
[8] J. R. Hayes, “Cognitive processes in creativity,” in Handbook of creativ-

ity. Springer, 1989, pp. 135–145.
[9] J. E. Pretz, A. J. Naples, and R. J. Sternberg, “Recognizing, defining,

and representing problems,” The psychology of problem solving, vol. 30,
no. 3, 2003.

[10] A. Newel and H. A. Simon, “Human problem solving,” Englewood
Cliffs, NJ, 1972.

[11] P. McMinn, “Search-based software testing: Past, present and future,”
in 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops. IEEE, 2011, pp. 153–163.

[12] J. W. Getzels, “The problem of the problem,” New directions for
methodology of social and behavioral science: Question framing and
response consistency, vol. 11, pp. 37–49, 1982.

[13] K. A. Ericsson and H. A. Simon, “Protocol analysis,” A companion to
cognitive science, vol. 14, pp. 425–432, 1998.


	Introduction
	Background
	Foundations for a cognitive model of software testing
	A cognitive model of software testing
	What is a Testing Goal?
	Investigating Software Testing Practices using Problem Solving Methods
	Intermediate Products
	Verbal Protocols
	Simulations and Search-Based Testing

	Conclusions
	References

