
Software Qualities and their Dependencies
Report on two editions of the workshop

Séverine Sentilles1, Barry Boehm2, Catia Trubiani3, Xavier Franch4, and Anne Koziole5

1Mälardalen University, Väster̊as (Sweden), severine.sentilles@mdh.se

2USC, Los Angeles, CA (USA), boehm@usc.edu

3Gran Sasso Science Institute, L’Aquila (Italy), catia.trubiani@gssi.it

4Universitat Politècnica de Catalunya, Barcelona, Catalonia (Spain), franch@essi.upc.edu

5 Karlsruhe Institute of Technology, Karlsruhe (Germany), koziolek@kit.edu

ABSTRACT
New trends in software engineering recently emerged to cope with
even more complex systems which in turns highlight problems
software shortfalls and defects. The SQUADE (Software QUAli-
ties and their DEpendencies) workshop focuses on increasing the
understanding of the nature of Software Qualities (SQs), i.e., non-
functional properties or extra-functional requirements (e.g., relia-
bility, security, maintainability, etc.), and their interrelationships
with the aim of bringing them into practice of software engineer-
ing. The topic is highly relevant due to the current trend of
designing and developing software-intensive systems with larger
complexity, increased autonomy, higher speed of changes, and
growing need for interoperability within systems of systems. Un-
fortunately, this new trend comes with more software shortfalls
and defects, which are widely and publicly spread. The primary
goal of the workshop is to bring together researchers and practi-
tioners to build more solid foundations when dealing with software
qualities.

During the first edition of the workshop, we identified a number of
SQ topics which need further research, namely, the inadequacy of
existing SQ standards, the potential benefit of machine-learning
to the field and the latent needs for regulatory practices. This year
we are pleased to have received many submissions covering several
SQ topics such as security and privacy, accessibility, modifiabil-
ity, interoperability, reliability, development vs. runtime metrics.
The growing interest in these topics is promising, and may foster
many other future editions of the workshop, thus to build a large
community available to join forces in this domain.

1. INTRODUCTION
The increasing prevalence of software in today’s society calls for
the ability to develop high quality software at a faster pace. Most
of the existing solutions in software engineering have been quite
successful at taming software complexity as far as the sole func-
tionality is concerned, whereas quality has been less considered so
far. Software quality specifies how well systems and software per-
form their functionality and encompasses properties such costs,
performance, reliability, availability, security, etc.

The importance and timeliness of SQUADE is highlighted by
current and future trends toward more software-intensive sys-
tems. These systems are characterized by larger complexity, au-
tonomy, speed of change, and need for interoperability within sys-
tems of systems, simultaneously demand of higher levels of safety,

security, scalability, adaptability, multi-cultural usability, speed
of development and evolution, and affordability. These systems
are found in Internet of Things (IoT), Cyber-Physical Systems
(CPS), massive-data analytics, self-driving cars, dynamic global
supply chains, e-Health, and Industry 4.0, among many others
new emerging domains.

An example of the current chaos among SQ practices, definitions,
standards and relationships is the current standard in the area,
i.e., ISO/IEC 25010. For example, it defines reliability as the “de-
gree to which a system, product, or component performs specified
functions under specified conditions for a specified period of time”.
As a standard, this statement is supposed to hold for any defini-
tion of “specified functions” and “specified conditions”. However,
for agile methods for example, “specified functions and conditions”
are often sunny-day stories and use cases, and a system will then
be judged to be ISO/IEC-reliable if it satisfies only the specified
sunny-day conditions (but nonetheless fails on the rainy-day con-
ditions). Further, the definition can be considered restrictive, in
fact it focuses on performing functions only.

Another source of chaos is the diversity of SQ definitions. As a
simple example we can look at the definition of “Resilience”, as
defined in Wikipedia. The definitions differ between and within
the domains of Ecology, Energy Development, Engineering and
Construction, Network, Organizational, Psychological, and Soil.
The differences are indeed non-trivial as they include ten different
definitions of the system’s post-resilience state.

In this chaotic context, the SQUADE workshop aims at bringing
together researchers and practitioners working with different as-
pects of software qualities and their dependencies. The goal is to
discuss the current state-of-the-art and state-of-practice, existing
solutions, and to identify open challenges that must be addressed
to improve the different software qualities. In this note, we sum-
marize the discussions and findings of the two editions of the work-
shop. The first one was held on May 27th, 2018 in Gothenburg,
Sweden in conjunction with International Conference on Software
Engineering (ICSE), 2018, and the second one on August 26, 2019
in Tallin, Estonia together with the ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2019.

The rest of this note is organized as follows: Section 2 gives a
brief overview of the structure of the workshop, whereas Section 3
highlights key research issues which have been discussed by the

DOI: 10.1145/3375572.3375581
http://doi.acm.org/10.1145/3375572.3375581

ACM SIGSOFT Software Engineering Notes Page 31 January 2020 Volume 45 Number 1



participants of the workshop during the breakout sessions. Sec-
tion 4 concludes the report by highlighting the key take-away from
the two first editions of the SQUADE workshop.

2. WORKSHOP FORMAT
The workshop’s main objective is to foster discussions and ex-
changes of ideas between participants coming from different fields.
As a result, SQUADE gives prominence to breakout sessions and
mingle opportunities and is typically organized with:

• an opening session and keynotes,
• a set of flash presentation sessions, during which the

authors of accepted papers give a brief overview of their
contribution in 10-15 minutes;

• a set of breakout sessions, i.e., the participants brain-
storm on topics identified during the presentation sessions.

In the first edition of the workshop, Harold “Bud” Lawson, the
2000 Computer Pioneer Award for his invention of the pointer
variable, gave an invited talk on an overview of an Automatic
Train Control System with a special focus on its related software
qualities. An interesting particularity of this system is that it has
been in use since the 70s. Besides, seven papers were presented
on topics including user’s satisfaction, usability, code quality, soft-
ware maturity, timing properties, maintainability, static analysis,
validation/verification and testing.

In the second edition of the workshop six papers were selected
to foster discussions at the workshop. The discussed topics in-
cluded security and privacy, accessibility, modifiability, interop-
erability, reliability, development vs runtime data. An increasing
need of sharing experiences emerged, in fact there was an initiative
for building Free/Open Source Software (FOSS) along with their
qualities. Chatbot platforms have been proposed as test-beds to
quantify software qualities and evaluating their interactions. Pre-
dictions and preliminary estimations have been recognized of key
relevance since they may anticipate flaws that are very difficult
and expensive to be fixed in later stages of the software develop-
ment process.

3. IDENTIFIED RESEARCH ISSUES
During the two editions of the workshop, a number of topics
related to software qualities and their dependencies which need
further research were identified, namely, the inadequacy of ex-
isting SQ standards, the potential benefit of machine-learning to
the field and the latent needs for regulatory practices. This year
we receive many submissions covering several SQ topics such as
security and privacy, accessibility, modifiability, interoperability,
reliability, development vs runtime data. A summary of the dis-
cussions on these issues from the two editions of the workshop are
described hereafter.

3.1 Inadequacy of definitions and standards
When dealing with software qualities in software engineering, the
first question is whether the reference material is actually suf-
ficient. Most of the definitions and standards do have implicit
assumptions, which obfuscate their understanding and limit their
applicability. As a result, people often do not understand SQs in
the same way, which introduce unnecessary chaos and additional
complexity in the development process.

In spite of this, the ISO standards have become the de-facto stan-
dards (e.g., lifecycle management, the software quality [1]). The
workshop participants, however, unanimously questioned their
usefulness to improve software quality as they provide ambiguous

software quality definitions and do not support well enough the
dependencies between qualities. For example, in ISO 25010 [1],
testability is a sub-category of maintainability. However testabil-
ity influences many other properties such as reliability, security.
It is thus questionable whether it should be a sub-category of
maintainability, a category in its own right, or a sub-category of
another property. Besides this structural aspects, another prob-
lem with static standards is that they become rapidly obsolete
and do not keep up with the latest trends in software engineering,
such as new upcoming laws and regulations (e.g., GDPR [2]), or
the emergence of new properties (e.g., sustainability [3]).

The workshop participants identified the following research direc-
tions to improve the work on software qualities:

• Use of (supervised and unsupervised) machine-learning tech-
niques to learn from a system under analysis the most rele-
vant software qualities and their dependencies;

• Use of empirical studies to investigate the opinions of differ-
ent stakeholders (e.g., end-users, developers, project man-
agers) when evaluating the software qualities;

• Revise the definitions and standards to take into considera-
tion the context of software qualities and their dependencies,
thus to adapt these definitions when needed.

3.2 Limited regulation practices
As stated in [4, 5], “IT governance is typically the weakest aspect
of corporate governance”, which means little focus is put on satis-
fying software qualities unless it is required. Increased regulatory
and governance practices may be a solution to enforce companies
to pay more attention on software qualities. Some governments
and international agencies have already started to envisage such
options as visible, for instance through the creation of the new
EU-law on General Data Protection Regulation [2].

This lead the workshop participants to identify the following open
research questions which would be worth investigating further:

• How the new regulations can be integrated in current devel-
opment practices?

• What would be the long-term effects of these regulations?
How to maintain the developed software?

3.3 Quality-unaware technological evolution
Technology is running ahead providing solutions that no one asked
for initially, and omitting quality in the process. For example,
with the emergence of multicore ECUs, it becomes difficult to
have a look at the software as an isolated black-box. This leads
to trade-off between predictability, accuracy, and costs. On the
other hand, systems such as smartphones work astonishingly well,
even though it can be argue that some SQ-related features should
be better (e.g., battery consumption).

Besides, another problem is that code is often preferred over de-
sign and analysis which can be seen as opposite to the practices
in system engineering which conversely favor models. This might
be due to the fact that code is cheap to change and education in
software engineering often first teaches programming, even before
modelling. However, it is generally acknowledged that only devel-
oping software through manual coding (not to say hacking when
facing increasing timing constraints) introduces lots of issues in
software development [6].

Lastly, wrong decisions are being taken which negatively affect
software qualities and their perceptions. Often, decisions are

ACM SIGSOFT Software Engineering Notes Page 32 January 2020 Volume 45 Number 1



purely taken according to the estimated costs with little regard
for software qualities. In this context, the following solutions were
suggested by the participants:

• Make software qualities a tangible (visible and payable) prop-
erty for end-users;

• Establish a holistic approach integrating software governance,
process, people, and software artifacts;

• Report on best practices and on negative outcomes (through
a failure repository for instance);

• Propose novel and better solutions for immediate quality
feedback during software development.

4. CONCLUSION
An important conclusion of the two first editions of the workshop
is that software qualities and their dependencies are not suffi-
ciently established in today’s software systems. As the complexity
of systems is staggeringly raising, the lack of support for evaluat-
ing SQs and their dependencies is certainly going to become an
more important issue to be further investigated. In particular,
most of the work on SQs and dependencies is currently pair-wise
only. However, SQs are more like a n-dimension matrix of depen-
dencies (whether positive or negative) that are also affected by
other characteristics, such as the software architecture, the im-
plementation code, the deployment infrastructure, etc. This im-
plies that a strong correlation between properties is not enough
to make any conclusion. It is equally important to state when
such a dependency is valid and thus find ways to identify how to
define the context in which a dependency is valid.

Acknowledgements
We would like to thank all the workshop participants who pro-
vided really interested contributions and actively enable lively
discussions. First edition of the workshop has been attended
by: Christopher Ehmke, Lori Flynn, Mattias G̊alnander, Wa-

hab Hamou-Lhadj, Mahshid Helali Moghadam, Harold Lawson,
Jinhua Liu, Dor Maayan, Saad Mubeen, Shola Oyedeji, Efi Pa-
patheocharous, Birgit Penzenstadler, Ralf Reussner, Kamonphop
Srisopha, Miroslaw Staron, Sichao Wen, Florian Wessling, Uwe
Zdun. Second edition of the workshop has been attended by:
Daniela Micucci, Jinjing Zhao, Matthias Miller, Menglong Yang,
Michael Felderer, Saurabh Srivastava, Aytaj Aghabayli, Julian
Harty, Faiz Ali Shah, Xiang Li, Mathias Ellmann.

5. REFERENCES
[1] ISO/IEC, “ISO/IEC 25010 System and Software Quality

Models,” tech. rep., 2010.

[2] “Regulation (EU) 2016/679 of the European Parliament and
of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation).”
https://eur-lex.europa.eu/eli/reg/2016/679/oj, April 2017.
(Accessed on 10/14/2019).

[3] C. Calero, M. F. Bertoa, and M. Á. Moraga, “Sustainability
and Quality: Icing on the Cake,” in International Workshop
on Requirements Engineering for Sustainable Systems
(RE4SuSy), 2013.

[4] S. P.-J. Wu, D. W. Straub, and T.-P. Liang, “How
Information Technology Governance Mechanisms and
Strategic Alignment Influence Organizational Performance:
Insights From A Matched Survey Of Business And It
Managers,” MIS Quarterly, vol. 39, no. 2, pp. 497–518, 2015.

[5] M. Ghobakhloo, “The future of manufacturing industry: a
strategic roadmap toward Industry 4.0,” Journal of
Manufacturing Technology Management, vol. 29, no. 6,
pp. 910–936, 2018.

[6] C. C. Mann, “Why Software Is So Bad,” Technology Review,
vol. 105, no. 6, pp. 33–38, 2002.

ACM SIGSOFT Software Engineering Notes Page 33 January 2020 Volume 45 Number 1




