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Abstract 

We present a case study where a concept vehicle is re-
modeled using a new systems modeling approach, the 
EAST ADL (Architecture Description Language). EAST 
ADL is a language for modeling and development of 
software based systems. The application domain is 
automotive software-based systems. The language has 
been developed within the project EAST-EEA by 
representatives of European automotive industries and 
academic research sites. 

EAST ADL supports modeling during all stages of 
development of vehicle functions; from function selection, 
through function specification, to implementation of a 
running system. The language further supports modeling 
of aspects orthogonal to software structure, such as 
requirements, behavior, validation, and verification. 

The FAR vehicle has been previously developed, using 
model based development. Within this paper we re-model 
the FAR vehicle using the EAST ADL. The new model ties 
together the various models, code and documentation in a 
consistent structure with clear relationships between 
entities. 

1. Introduction 

Electronics and software are firmly established in 
automotive systems, ever since the introduction of 
electronic engine management systems in the eighties. An 
increasing part of value, characteristics and new 
functionality is based on software. This trend has brought 
several challenges for the development of software based 
automotive systems. 

Development of software and electronics for an 
automotive system is a large scale effort. A typical project 
can involve 10 first tier suppliers, require integration of 
30 ECUs, and may consist of up to 300000 lines of code. 
The total effort is in the range of 50 person-years. 

 

The integration of different systems is becoming 
tighter, and is particularly difficult when different 
suppliers are involved. The number of computers (ECU, 
electronic control unit) increases because most systems 
have their own set of ECUs. Each ECU introduces cost, 
fault-prone electrical connections and requires space. The 
increased complexity, integration and criticality of 
software based functions calls for a new approach to 
embedded software. This challenge is amplified by the 
necessity to share ECUs between systems. 

The EAST-EEA [1] project addresses this challenge 
by investigating architecture and development aspects to 
support hardware independent software development 
under the new needs mentioned above. Most European 
car manufacturers, major suppliers and several research 
institutes are involved in the project. EAST-EEA is an 
ITEA project running for 3 years, ending 2004. 

One of the aspects addressed by the project is the 
modeling of software based systems. It was recognized 
that adequate models are necessary to manage 
complexity, perform analysis and verification, make good 
allocation decisions, as well as support the supplier-
manufacturer relationship. To this end, the EAST ADL 
(Architecture Description Language) has been designed 
to provide a unified language for the necessary models. 

This paper gives an introduction to the EAST ADL 
and demonstrates its use to model the software and 
electronics architecture of the concept vehicle FAR, a by-
wire scale car developed using state of the art 
development tools [2]. The modeling work was done as 
part of a thesis project at Volvo Technology Corp., 
Gothenburg. 

2. Background 

A key challenge in developing electronics and 
software for automotive systems is the provision of 
adequate modeling techniques and tools. Such techniques 
need to address the inherent product complexity in terms 



of a number the constituent entities (e.g. functions, tasks, 
ECU’s and networks) and different relations (e.g. 
communication, refinement, variants and allocation) 
between them. In addition, such techniques need to 
explicitly support multidisciplinary development 
providing adequate abstractions and views for engineers 
using a diverse set of models, methods and tools. 
Moreover, such techniques need to consider both the 
description of functional requirements and non-functional 
constraints. 

Model based development is well developed in 
mechanical engineering, however, much less so when it 
comes to embedded software. Several attempts have been 
made over the last decades to define suitable modeling 
languages and descriptions. A recent survey indicates that 
there still remains lots of work and research for modeling 
approaches [3]. Limitations include the lack of coverage 
of certain design stages (e.g. no functional description) 
and lack of support for certain design activities and 
analysis techniques (e.g. typically little support for non-
functional constraints).  

Important in any modeling approach is the explicit 
definition of the purpose of the models, the stakeholders, 
and consideration of requirements imposed by relevant 
design and analysis techniques. 

Related work in the area of systems modeling is the 
SysML (Systems Modeling Language) by the OMG [4]. 
SysML is a domain-independent language for the higher 
abstraction levels of systems. Currently, the SysML does 
not specifically cover the implementation aspects of 
software, but relies on the recent UML2 standard. SysML 
is meant to be instantiated for particular domains to 
capture specific needs.  

Another approach is the AADL, Avionics ADL [4]. 
AADL is a further development of the MetaH language. 
Compared to the EAST-ADL it focuses on the software 
architecture and single processor implementation related 
models. MetaH/AADL provides good support for real-
time and reliability analysis compared to many other 
approaches [3]. 

3. The FAR Project 

The concept car used in this work was developed in 
the FAR project. The FAR project was carried out in 
cooperation between Volvo Car Corporation and the 
Department of Machine Design at the Royal Institute of 
Technology (KTH). The project was implemented as part 
of a final-year project-course part of the Master of 
Science specialization in mechatronics at KTH. In the 
project, engineers and senior researchers at KTH and 
Volvo Cars supported a group of 10 students. The overall 
purpose of the FAR project was to develop a suitable 
tool-chain environment that supports model based 
development (MBD) of embedded control systems and in 

particular Function and ARchitecture (FAR) integration. 
This tool chain should allow for rapid prototyping of 
automotive functionality with support for evaluation of 
electrical design concepts in distributed computer 
systems. 

To demonstrate the usefulness of the FAR tool-chain, 
and to support spectacular demonstrations, a physical 
model car with four-wheel steering, individual wheel 
braking and four-wheel drive was also developed. Figure 
1 shows the car.  

Supporting distributed systems was one central aspect 
since tools for distributed control systems development 
are only very recently appearing.  

Because the project was carried out as a more or less 
complete prototype development project, the results 
include everything from requirements specifications and 
function descriptions, to the software and hardware 
architectures and the mechanics of the vehicle itself. 
UML Use cases [2] were used to model requirements in 
early design phases. It describes the functionality that the 
system should provide to the user. In Figure 3, the Use 
case diagram that was given as an input requirement to 
the project is shown. It details three main users and their 
purposes in the project.  

  
Figure 2. The Use Case Diagram for the project. 

Figure 1. The FAR Vehicle. 



3.1 Functional View  

Figure 3 shows the overall structure of the 
functionality. The HMI and actuators are physical 
instances, while global and local control are functionality 
implemented in software. Global control handles the 
vehicle as a complete system, such as collision avoidance 
functionality, while local control handles individual 
actuators. This separation of global and local control 
supports a high degree of reusability and separation of 
concerns. 

3.2 Hardware View  

To separate the driver’s HMI and the car, two radio 
links are used. The HMI consists of one node, one video 
receiver, and a joystick or steering wheel with pedals. On 
the car there are six nodes connected through a TT-CAN 
network. One of the nodes is the central node, connected 
to the driver’s HMI. Another node is the radar node used 
to measure distance to adjacent objects. The four wheel 
nodes control the local actuators at each wheel. 

3.3 Software View and Tool chain 

 The software platform was developed using the Rubus 
real-time operating system, Rubus RTOS [6], and Time-
triggered CAN (TTCAN). The application functionality 
was developed in the Matlab tools Simulink and 
Stateflow from Mathworks. Stateflow models mode logic 
for global control and Simulink models actuator 
coordination and local control, as shown in Figure 4. C-
code is automatically generated from Simulink and 
Stateflow using the Targetlink code generation tool from 
dSPACE.  

4. The EAST ADL 

The goal of this work is to model the FAR vehicle in 
EAST ADL (Architecture Description Language) [7].  

The purpose of this language is to capture the software 
and electronics architecture with enough detail to allow 
modeling for documentation, design, analysis and 
synthesis. These activities require system descriptions on 
several abstraction levels, from top level user features 
down to tasks and communication frames in CPUs and 
communication links. Moreover, the activities also need 
to express non-structural aspects of the system under 
development; this includes aspects like requirements, 
behavior and validation & verification. The EAST ADL 
does not prescribe a process or methodology. Instead, the 
defined set of design artifacts may be developed using 
company specific processes. 

Please note that the EAST ADL is work in progress. 
The approach may thus be adjusted before the project 
finalization in 2004. 

4.1 Structure 

The EAST ADL is structured into 7 layers, see Figure 
5. The motivation for this layered structure is that the 
abstraction layers may evolve independently of each other 
with only a loose coupling through requirements entities 
and associations. In certain cases, entire abstraction layers 
may be omitted from a model, for example when legacy 
systems are re-modeled. 

The EAST ADL abstraction layers from top to bottom 
are the following: 
• Vehicle View describing user visible features such as 

anti-lock braking or windscreen wipers. 
• Functional Analysis Architecture capturing the 

behavior and algorithms of the Vehicle View 
functions. There is an n-to-m mapping between 
Vehicle View entities and Functional Analysis 
Architecture entities, i.e. one or several functions 
may realize one or several features.  

• Functional Design Architecture representing a 
decomposition of functionality in the Functional 
Analysis Architecture to meet constraints regarding 
allocation, efficiency, re-use, supplier concerns, etc. 

Local Control
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Local Control
(Simulink)
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Actuator
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Figure 3. Functional view of the application.  
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Figure 4. Software view for one computer node 
illustrating the tools used and how functionality 
is integrated in the tasking structure. 



Again, there is an n-to-m mapping between entities 
on Functional Design Architecture and Functional 
Analysis Architecture.  

• Function Instance Model where the class 
representation of the Functional Design Architecture 
has been instantiated to a flat software structure 
suitable for allocation. The function Instance model 
contains the leaf functions of the Functional Design 
Architecture. The Function Instance Model could 
thus be auto-generated in many cases.  

In parallel to the application functionality, the 
execution environment is modeled from three views: 
• The Hardware Architecture contains ECUs, 

communication links, sensors and actuators and their 
connections. 

• The Platform Model models the operating system or 
Middleware API and the services provided. 

• The Allocation Model contains the tasks and frames 
that carry application code and –communication as 
well as the configuration information needed for the 
mapping of the application software to hardware.  

Figure 5 illustrates the relations between layers. 

4.2 Requirements, Behavior and V&V 

Besides the structural decomposition, which is typical 
for any software development/modeling approach, the 
EAST ADL also has support for modeling cross-cutting 
concerns (i.e. concerns that are independent, or existing 
on a multitude, of different abstraction levels) like 
requirements, behavioral descriptions and validation & 
verification activities. 

 
Requirements can be modeled either as textual 

descriptions or using formal descriptions. Requirements 
are not isolated in a view of their own, instead 

requirements can be attached to any ADL object. For 
instance, in the Vehicle View it may be natural to express 
end-user visible requirements on the functions specified 
in that view. Whereas in the function instance model, 
detailed requirements on, e.g., timing behavior such as 
signal delays can be naturally expressed. The 
requirements in EAST ADL are extension to the 
requirements package in SysML [4]. Requirements can 
have traceable dependencies amongst each other and can 
be decomposed into sub-requirements. The EAST ADL 
also has mechanism to handle variants and dependencies 
between variants. This can be used, e.g., to specify 
dependencies such that an automatic gearbox can only 
exist together with a certain set of engines. 

In EAST ADL several types of behaviors can be 
modeled. For instance, behavior modeled in external tools 
like Simulink [9], Statemate [10] or Ascet-MD [11] can 
be attached to EAST ADL objects. This supports 
modeling, analysis and code synthesis of behavior in the 
way that it is currently used within the automotive 
industry. Also, UML 2.0 can be used to describe the 
behavior of an object. In this case, UML-statecharts can 
be used. From behavioral models code can be 
automatically generated. In addition, C code can be 
associated as a behavior description; in this case, 
however, no analysis of the behavior can be made, only 
mapping of the code to the ADL object is performed. The 
EAST ADL separates the concept of "specifying 
behavior" and "implementation behavior" in the sense 
that a software function can have a simple (incomplete) 
model as its specifying behavior, whereas the functions 
implementation behavior specifies its actual (and 
complete) behavior. 

The final cross-cutting issue handled by the EAST 
ADL is validation & verification (V&V). The ADL has 
entities to specify what V&V methods should be used for 
different ADL objects. Also, the results of the V&V 
activities are stored within the ADL. This facilitates a 
holistic approach to system development, where 
requirements, system description and V&V are integrated 
in one language. Hence, it is easy to make sure that all 
requirements have been verified and what objects need to 
be accounted for when performing a particular 
verification task. The ADL also has entities to support 
automatic verification of key-properties. For instance, 
special requirements entities exists to allow expression of 
timing requirements, and attributes on software functions 
allow specification of timing behavior. Together, these 
requirements and attributes can be used to perform an 
automatic timing (schedulability) analysis. Also, for 
instance, using behavior specifications of objects, 
automatic verification of system behavior or system 
properties (such as absence of dangerous states) can be 
made. The EAST ADL does not specify which V&V 
activities that are to be automated, nor does it provide 

Vehicle View

Functional Analysis
Architecture

Functional Design
Architecture

Allocation
Model

Hardware
Architecture

Platform
Model

Function Instance
Model

So
ftw

ar
e 

D
ev

el
op

m
en

t

E
le

ct
ro

ni
c 

P
la

tfo
rm

 

Mapping

Figure 5. The layers of the EAST ADL 



tools or methods for such automatic V&V. The ADL only 
provides the necessary information to perform V&V 
activities; how this information is used within an 
organization is unspecified. 

5. The FAR Vehicle Model 

The EAST ADL was applied to the software and 
electronics architecture of the FAR vehicle in order to 
explore the different concepts of the language. Explaining 
the models using a middle out approach, we start by 
describing the Functional Design Architecture, FDA. 
Figure 6 shows the overall structure of the FDA. The 

software structure of the FAR vehicle is shown here. Four 
CompositeSoftwareFunctions (hierarchical building 
blocks of the FDA) perform the local control of steer, 
brake and propulsion. These are instances of the same 
wheel controller. The global control is done by several 
CompositeSoftwareFunctions, such as ModeSelector, 
Feedback, CruiseControl, etc. The HMI interpret driver 
commands and feedback and distribute setpoint values to 
the control system. 

Below, a selection of additional aspects from the FAR 
model will be described. We start from the top level with 
the vehicle type hierarchy. 

5.1 Vehicle Types, Features and requirements 

Vehicles generally have a complex variant structure. A 
small vehicle type hierarchy was identified for FAR, see 
Figure 7. This hierarchy is used to define the feature 
content of each vehicle type.  

The various requirements on the vehicle are modelled 
on several abstraction levels. Figure 8 shows two 
examples of functional requirements associated with the 
Braking feature. Other examples of requirements are 
qualitative requirements like safety and performance or 
timing requirements, see Section 5.7.  

Figure 7. The VehicleType hierarchy (VV Layer) 
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A : Enable

B : Actual speed
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E : Lock mode
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<<LocalDeviceManager>>
DDDD iiii ssss pppp llll aaaa yyyy

IIII

instance of ’Display’
{Trigger : Time Triggered}

LDMPort : DisplaySignalLDMPort : DisplaySignal

<<CompositeSoftwareFunction>>
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A : Enable
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<<LocalDeviceManager>>
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instance of ’PC’
{Trigger : Time Triggered}
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<<LocalDeviceManager>>
KKKK eeee yyyy bbbb ooooaaaa rrrr dddd

IIII

instance of ’Keyboard’
{Trigger : Time Triggered}

LDMPort : KeyboardData LDMModeInPort : Mode
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<<CompositeSoftwareFunction>>
NNNN oooorrrr mmmm aaaa llll MMMM oooodddd eeee

A : Enable

SteerOutPort : Reference Steer

SteerInPort : Reference Steer

SpeedOutPort : Reference Speed

BrakeOutPort : Brake Reference

SpeedInPort : Reference Speed

BrakeInPort : Brake Reference

<<ElementarySoftwareFunction>>
SSSS iiiigggg nnnn aaaa llll SSSS eeee llll eeee cccc tttt iiii oooonnnn

{ESWFPeriod : 20}

SteerSelectPort : Reference Steer

RefValuePort : VehicleMotionRefSpeedSelectPort : Reference Speed

BrakeSelectPort : Brake Reference

<<ElementarySoftwareFunction>>
VVVV eeee hhhh iiii cccc llll eeee MMMM oooodddd eeee CCCC oooonnnn tttt rrrr oooo llll

ModeEnablePort : Enable

C : Emergency Stop

B : ModeSelect

Port : Mode

A : Fail Indicator

<<CompositeSoftwareFunction>>
OOOO uuuu tttt pppp uuuu tttt DDDD iiii ssss tttt rrrr iiii bbbb uuuu tttt iiii oooonnnn

WheelDataPort : Wheel Data FL

: Mode

RefValuePort : VehicleMotionRef

ActSpeedPort : Actual Speed

WheelDataPort : Wheel DataRL

WheelDataPort : Wheel Data FR

Wheel DataPort : Wheel DataRR

<<CompositeSoftwareFunction>>
HHHH MMMM IIII CCCC oooonnnn tttt rrrr oooo llll

StopPort : Emergency Stop

KeypadDataPortIn : KeypadData

ModePort : UserModeChoice

DistPort : setDistance

AccModePort : Lock Mode

RefValuePortIn : VehicleRefValues

HMISteerPort : ReferenceSteer
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HMISpeedPort : ReferenceSpeed

HMIDisplayPort : DisplaySignal

HMIBrakePort : Reference Brake

Log DataOutPort : DataLog

LogDataInPort : DataLog

<<ElementarySoftwareFunction>>
FFFF eeee eeee dddd bbbb aaaa cccc kkkk

Dst : ActDistance

VehicleSteerPort : Actual Steer

Dst : Distance

SpeedPort : RearWheelSpeed

FRWNFeedBack : WheelNodeFeedback

FLWNFeedBack : WheelNodeFeedback

RLWNFeedBack : WheelNodeFeedback

BrakeAct : Actual Brake

Fail : Fail Indicator

RLWNFeedBack : WheelNodeFeedback

LogDataInPort : DataLog

<<CompositeSoftwareFunction>>
FFFF RRRR WWWW hhhh eeee eeee llll CCCC oooonnnn tttt rrrr oooo llll

SSSS

subtype of ’WheelControl’

WheelBrakePort : Brake

BrakeSensorPort : FeedbackSignal

WheelSpeedPort : Scaled SpeedRefVal : WheelControlRefVal

SpeedSensorPort :

WheelSteerPort : WheelSteer

SteerSensorPort : SteerSensorReading

FRFeedBackPort : WheelFeedback

<<CompositeSoftwareFunction>>
WWWW hhhh eeee eeee llll CCCC oooonnnn tttt rrrr oooo llll

SSSS

subtype of ’WheelControl’
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Figure 6. The Functional Design Architecture. 

Figure 8. Functional requirements on braking  

<<FunctionalRequirement>>

description :All wheels must have individually controlled brakes

<<FunctionalRequirement>>

description :Brakes must be properly scaled, compared to a regular vehicle

<<EFeature>>

<<DesignConstraint>>

{DesignConstraintType : Cost}

description : use and maintenace cheap

<<DesignConstraint>>

{DesignConstraintType : Physical}

description : disc diameter according to vehicle length

specifiedBy

specifiedBy

constrains

constrains

Brake Control System

Disc Brake Design Constraint CostConstraint

Functional Requirement

Functional Requirement



 

5.2 Variability 

A vehicle project in EAST ADL has a number of 
features. Which features that are included can be chosen 
based on the vehicle type. For example, two kinds of 
cruise controller can be used, simple CC or Autonomous 
CC, see Figure 9. 

The CruiseController entity is a variation point that is 
replaced by one of its variants Simple CC and ACC. 
Which variant is chosen is decided by the 
SelectonCriterion expression. This is an OCL expression, 
but simplified here for readability. 

The hardware and software entities that implement the 
electronic features will also vary, and the same variability 
concept is applied here, see Figure 10.  

5.3 Legacy Tools and Code 

The FAR system is developed using existing tools like 
Simulink/Stateflow and Targetlink. In order to link the 
EAST ADL model to the legacy tools, the 
ElementarySoftwareFunctions (the atomic building 

blocks of the FDA) of the model have references to these, 
see Figure 11. The interfaces defined in the model are met 
by the code and external model. The model structure is 
thus the master description tying together the various 
tools in use.  

5.4 Device Interfacing 

The link to sensors and actuators go through the 
LocalDeviceManagers which take care of the functional 
interfaces. Low level aspects like setting up A/D 
converters and accessing the right I/O pins are handled by 
HardwareAbstractionFunctions, HAFs. The HAF is in 
turn associated with a peripheral, a hardware entity 
representing the A/D converter or I/O device. Figure 12 
shows the involved entities. 

<<EFeature>>

{SelectionCriteria : VehicleType = FARLuxury}

<<EFeature>>

{SelectionCriteria : VehicleType = FARBasic}

<<EFeature>>
Cruise Control System

SimpleCruiseController AdaptiveCruiseController

Figure 9. Variability illustrated by the Cruise 
Controller 

Figure 10. Variability in software: The cruise 
functionality in the Functional Design Architecture

<<EFeatureReference>>R

reference of ’ACC’

<<EFeatureReference>>R

reference of ’SimpleCC’

<<CompositeSoftwareFunction>>

A : Enable

CCSpeedPort : CCSpeedRef

B : Actual speed

CCBrakePort : CCBrakeRef

C : Reference speed

D : setDistance

F : ActDistance

E : Lock mode

<<CompositeSoftwareFunction>>

A : Enable

CCSpeedPort : CCSpeedRef

B : Actual speed

CCBrakePort : CCBrakeRef

C : Reference speed

D : setDistance

F : ActDistance

E : Lock mode

<<CompositeSoftwareFunction>>

A : Enable

CCSpeedPort : CCSpeedRef

B : Actual speed

CCBrakePort : CCBrakeRef

C : Reference speed

selectsselects

Cruise Controller

Simple CC

Adaptive Cruise Controller 

ACC

Simple Cruise Controller 

Figure 11. Link to legacy tools (FDA layer) 

<<Code>>

compliance : Misra
path : ACCDistanceControl.C

<<ExternalBehaviour>>

path : FARAcc.mdl/DistanceControl
representation : SIMULINK

<<ElementarySoftwareFunction>>

CCSpeedPort : CCSpeedRef

CCBrakePort : CCBrakeRef

F : ActDistance

D : setDistance

E : Lock mode

Distance Control

Code External Behaviour

Figure 12. Device interfacing involving software 
entities from the FDA and PA as well as 
hardware entities. 
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5.5 Allocation 

The software and message allocation is modeled in the 
Allocation Model. Figure 13 shows a part of the AM 
containing the brake setpoint value frame with four 
SignalInstances corresponding to brake values for the 
four wheels. The picture also show an OSTask with the 
brake control software in the form of FunctionInstances 
grouped to a LogicalCluster. The allocated entities all 
belong to the function instance model while the allocation 
targets are hardware architecture entities.  

5.6 Data Types 

Two kinds of data types are defined for signals and 
parameters in the model: The Design Data Type is the 
hardware independent abstract data type that is used to 
specify and then verify the design. For example, the 
resolution, range and unit can be investigated and verified 
by simulation and analysis. To match the chosen 
hardware, an implementation data type is defined that 
matches the DDT in resolution and range. To match more 
than one processor target, two implementation data types 
are defined here using the variability concept.  

5.7 Timing  

Timing aspects are defined both in terms of 
requirements and actual design. The FAR vehicle uses a 
time triggered bus, and the entire architecture is therefore 
periodic and time triggered. The EAST ADL model of 
this vehicle specifies timing in terms of a period and 
offset (relative to the period). The global time in this 
system means that this timing definition can be met in 
practice. 

Timing requirements can be defined using, e.g. end-to-
end deadlines, see Figure 15. 

6. Conclusions  

The need to enhance software integration in 
automotive software is increasingly evident. Integration 
concerns software from different suppliers, across 
domains and from previous projects The Enabling 
technologies for automotive software integration is 
currently emerging from several sources, for example 
industry initiatives like AUTOSAR [12] and EU 6th 
Framework programmes such as EASIS [13]. Gaining 
experience with modeling approaches that tie together all 
aspects of electronic systems development is increasingly 
important in this context. The application of EAST ADL 
to a concept vehicle as presented in this paper is an 
example of this. 

 

<<DDT>>

{DDTUnit : Kmph}
{DDTDataType : Integer}

{DDTDefaultValue : 0}
{Lobound : -30 kmph}
{Upbound : 30 kmph}

{Resolution : 1}
{SignificantDigits : 2}
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visibility : public
contenttype : IDT

<<IDT>>

{IDTDescription : 0 = Max Back , 4095 = Max front}
{IDTDataType : UNUM16}

{ImplementationMin : 0}
{ImplementationMax : 4095}

{DefaultValue : 2048}
{SelectionCriterion : Star12}

<<IDT>>

{IDTDescription : 0 = Max Back , 4095 = Max front}
{IDTDataType : UNUM16}

{ImplementationMin : 0}
{ImplementationMax : 4095}

{DefaultValue : 2048}
{SelectionCriterion : PowerPC}

<<IDT>>

SpeedIDT

DDT

SpeedRef

SpeedIDT

VariantIDT VariantIDT

Figure 13. Design Data Type with Two 
Implementation Data Types 
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Figure 14. Allocation Model 

Figure 15. End to end timing requirement

<<LocalDeviceManager>>I

instance of ’BrakeSensorLDM’
{Trigger : Time Triggered}

SensorPort : SensorSignal SensorPort : SensorSignal

<<LocalDeviceManager>>IIII

instance of ’BrakeServoLDM’
{Trigger : Time Triggered}

BrakePort : Brake BrakeRequest : BrakeSigna

<<RateRestriction>>

{LowerBound : 50}
{UpperBound : 60}

{Jitter : 5}

<<EndtoEndDelay>>

{LowerBound : 200 ms}
{UpperBound : 300 ms}

{Probability : 0.95}

<<CompositeSoftwareFunction>>S

subtype of ’WheelControl’

SteerSensorPort : SteerSensorReading

BrakeSensorPort : FeedbackSignal

SpeedSensorPort :

RefVal : WheelControlRefVal

WheelBrakePort : Brake_dutycycle

FRFeedBackPort : WheelFeedback

WheelSpeedPort : Scaled Speed

WheelSteerPort : Steer_dutycycle

until
from

EndtoEnd Delay

BrakeSensorLDM
BrakeServoLDM

RateRestriction
FRWheelControl



This paper has outlined the modeling concepts of 
EAST ADL, as applied during the re-modeling of an 
existing by-wire model vehicle, FAR. The focus of the 
thesis project has been to model the concrete parts of the 
system, i.e. software, hardware and the vehicle 
configuration. The EAST ADL supports additional 
aspects such as requirements, process and verification and 
validation aspects. A continuation of this work would 
thus be to complete the model in these respects too. Such 
extension would illustrate the progress from requirements 
to implementation, and the use of requirements 
associations to relate entities of different abstraction 
layers. 
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