

FAR EAST: Modeling an Automotive Software Architecture Using the EAST ADL

Henrik Lönn and Tripti
Saxena

Electronics and Software,
Volvo Technology Corp.,
Gothenburg, Sweden

Martin Törngren
Department of Machine

Design
Royal Institute of Technology,

Sweden

Mikael Nolin,
Mälardalen Real-Time

Research Center
Mälardalen University,

Sweden

Abstract

We present a case study where a concept vehicle is re-
modeled using a new systems modeling approach, the
EAST ADL (Architecture Description Language). EAST
ADL is a language for modeling and development of
software based systems. The application domain is
automotive software-based systems. The language has
been developed within the project EAST-EEA by
representatives of European automotive industries and
academic research sites.

EAST ADL supports modeling during all stages of
development of vehicle functions; from function selection,
through function specification, to implementation of a
running system. The language further supports modeling
of aspects orthogonal to software structure, such as
requirements, behavior, validation, and verification.

The FAR vehicle has been previously developed, using
model based development. Within this paper we re-model
the FAR vehicle using the EAST ADL. The new model ties
together the various models, code and documentation in a
consistent structure with clear relationships between
entities.

1. Introduction

Electronics and software are firmly established in
automotive systems, ever since the introduction of
electronic engine management systems in the eighties. An
increasing part of value, characteristics and new
functionality is based on software. This trend has brought
several challenges for the development of software based
automotive systems.

Development of software and electronics for an
automotive system is a large scale effort. A typical project
can involve 10 first tier suppliers, require integration of
30 ECUs, and may consist of up to 300000 lines of code.
The total effort is in the range of 50 person-years.

The integration of different systems is becoming
tighter, and is particularly difficult when different
suppliers are involved. The number of computers (ECU,
electronic control unit) increases because most systems
have their own set of ECUs. Each ECU introduces cost,
fault-prone electrical connections and requires space. The
increased complexity, integration and criticality of
software based functions calls for a new approach to
embedded software. This challenge is amplified by the
necessity to share ECUs between systems.

The EAST-EEA [1] project addresses this challenge
by investigating architecture and development aspects to
support hardware independent software development
under the new needs mentioned above. Most European
car manufacturers, major suppliers and several research
institutes are involved in the project. EAST-EEA is an
ITEA project running for 3 years, ending 2004.

One of the aspects addressed by the project is the
modeling of software based systems. It was recognized
that adequate models are necessary to manage
complexity, perform analysis and verification, make good
allocation decisions, as well as support the supplier-
manufacturer relationship. To this end, the EAST ADL
(Architecture Description Language) has been designed
to provide a unified language for the necessary models.

This paper gives an introduction to the EAST ADL
and demonstrates its use to model the software and
electronics architecture of the concept vehicle FAR, a by-
wire scale car developed using state of the art
development tools [2]. The modeling work was done as
part of a thesis project at Volvo Technology Corp.,
Gothenburg.

2. Background

A key challenge in developing electronics and
software for automotive systems is the provision of
adequate modeling techniques and tools. Such techniques
need to address the inherent product complexity in terms

of a number the constituent entities (e.g. functions, tasks,
ECU’s and networks) and different relations (e.g.
communication, refinement, variants and allocation)
between them. In addition, such techniques need to
explicitly support multidisciplinary development
providing adequate abstractions and views for engineers
using a diverse set of models, methods and tools.
Moreover, such techniques need to consider both the
description of functional requirements and non-functional
constraints.

Model based development is well developed in
mechanical engineering, however, much less so when it
comes to embedded software. Several attempts have been
made over the last decades to define suitable modeling
languages and descriptions. A recent survey indicates that
there still remains lots of work and research for modeling
approaches [3]. Limitations include the lack of coverage
of certain design stages (e.g. no functional description)
and lack of support for certain design activities and
analysis techniques (e.g. typically little support for non-
functional constraints).

Important in any modeling approach is the explicit
definition of the purpose of the models, the stakeholders,
and consideration of requirements imposed by relevant
design and analysis techniques.

Related work in the area of systems modeling is the
SysML (Systems Modeling Language) by the OMG [4].
SysML is a domain-independent language for the higher
abstraction levels of systems. Currently, the SysML does
not specifically cover the implementation aspects of
software, but relies on the recent UML2 standard. SysML
is meant to be instantiated for particular domains to
capture specific needs.

Another approach is the AADL, Avionics ADL [4].
AADL is a further development of the MetaH language.
Compared to the EAST-ADL it focuses on the software
architecture and single processor implementation related
models. MetaH/AADL provides good support for real-
time and reliability analysis compared to many other
approaches [3].

3. The FAR Project

The concept car used in this work was developed in
the FAR project. The FAR project was carried out in
cooperation between Volvo Car Corporation and the
Department of Machine Design at the Royal Institute of
Technology (KTH). The project was implemented as part
of a final-year project-course part of the Master of
Science specialization in mechatronics at KTH. In the
project, engineers and senior researchers at KTH and
Volvo Cars supported a group of 10 students. The overall
purpose of the FAR project was to develop a suitable
tool-chain environment that supports model based
development (MBD) of embedded control systems and in

particular Function and ARchitecture (FAR) integration.
This tool chain should allow for rapid prototyping of
automotive functionality with support for evaluation of
electrical design concepts in distributed computer
systems.

To demonstrate the usefulness of the FAR tool-chain,
and to support spectacular demonstrations, a physical
model car with four-wheel steering, individual wheel
braking and four-wheel drive was also developed. Figure
1 shows the car.

Supporting distributed systems was one central aspect
since tools for distributed control systems development
are only very recently appearing.

Because the project was carried out as a more or less
complete prototype development project, the results
include everything from requirements specifications and
function descriptions, to the software and hardware
architectures and the mechanics of the vehicle itself.
UML Use cases [2] were used to model requirements in
early design phases. It describes the functionality that the
system should provide to the user. In Figure 3, the Use
case diagram that was given as an input requirement to
the project is shown. It details three main users and their
purposes in the project.

Figure 2. The Use Case Diagram for the project.

Figure 1. The FAR Vehicle.

3.1 Functional View

Figure 3 shows the overall structure of the
functionality. The HMI and actuators are physical
instances, while global and local control are functionality
implemented in software. Global control handles the
vehicle as a complete system, such as collision avoidance
functionality, while local control handles individual
actuators. This separation of global and local control
supports a high degree of reusability and separation of
concerns.

3.2 Hardware View

To separate the driver’s HMI and the car, two radio
links are used. The HMI consists of one node, one video
receiver, and a joystick or steering wheel with pedals. On
the car there are six nodes connected through a TT-CAN
network. One of the nodes is the central node, connected
to the driver’s HMI. Another node is the radar node used
to measure distance to adjacent objects. The four wheel
nodes control the local actuators at each wheel.

3.3 Software View and Tool chain

 The software platform was developed using the Rubus
real-time operating system, Rubus RTOS [6], and Time-
triggered CAN (TTCAN). The application functionality
was developed in the Matlab tools Simulink and
Stateflow from Mathworks. Stateflow models mode logic
for global control and Simulink models actuator
coordination and local control, as shown in Figure 4. C-
code is automatically generated from Simulink and
Stateflow using the Targetlink code generation tool from
dSPACE.

4. The EAST ADL

The goal of this work is to model the FAR vehicle in
EAST ADL (Architecture Description Language) [7].

The purpose of this language is to capture the software
and electronics architecture with enough detail to allow
modeling for documentation, design, analysis and
synthesis. These activities require system descriptions on
several abstraction levels, from top level user features
down to tasks and communication frames in CPUs and
communication links. Moreover, the activities also need
to express non-structural aspects of the system under
development; this includes aspects like requirements,
behavior and validation & verification. The EAST ADL
does not prescribe a process or methodology. Instead, the
defined set of design artifacts may be developed using
company specific processes.

Please note that the EAST ADL is work in progress.
The approach may thus be adjusted before the project
finalization in 2004.

4.1 Structure

The EAST ADL is structured into 7 layers, see Figure
5. The motivation for this layered structure is that the
abstraction layers may evolve independently of each other
with only a loose coupling through requirements entities
and associations. In certain cases, entire abstraction layers
may be omitted from a model, for example when legacy
systems are re-modeled.

The EAST ADL abstraction layers from top to bottom
are the following:
• Vehicle View describing user visible features such as

anti-lock braking or windscreen wipers.
• Functional Analysis Architecture capturing the

behavior and algorithms of the Vehicle View
functions. There is an n-to-m mapping between
Vehicle View entities and Functional Analysis
Architecture entities, i.e. one or several functions
may realize one or several features.

• Functional Design Architecture representing a
decomposition of functionality in the Functional
Analysis Architecture to meet constraints regarding
allocation, efficiency, re-use, supplier concerns, etc.

Local Control
(Simulink)

Global Control
Mode-logic (Stateflow) and Actuator Coordination (Simulink)

Local Control
(Simulink)

...
Actuator

(incl. local sensors)
Actuator

(incl. local sensors)

HMI
(steering wheel, pedals, mode control)

Figure 3. Functional view of the application.

C-code generation
with Targetlink from
Simulink/Stateflow

TTCAN
chip

TTCAN network

TTCAN Radio I/O: Sensors, actuators I/O drivers

RTOS and
framework

Rubus RTOS
(modes,tasks,IPC)

Generation of IPC
and task structure
with Rubus VS

Clock-
tick

Figure 4. Software view for one computer node
illustrating the tools used and how functionality
is integrated in the tasking structure.

Again, there is an n-to-m mapping between entities
on Functional Design Architecture and Functional
Analysis Architecture.

• Function Instance Model where the class
representation of the Functional Design Architecture
has been instantiated to a flat software structure
suitable for allocation. The function Instance model
contains the leaf functions of the Functional Design
Architecture. The Function Instance Model could
thus be auto-generated in many cases.

In parallel to the application functionality, the
execution environment is modeled from three views:
• The Hardware Architecture contains ECUs,

communication links, sensors and actuators and their
connections.

• The Platform Model models the operating system or
Middleware API and the services provided.

• The Allocation Model contains the tasks and frames
that carry application code and –communication as
well as the configuration information needed for the
mapping of the application software to hardware.

Figure 5 illustrates the relations between layers.

4.2 Requirements, Behavior and V&V

Besides the structural decomposition, which is typical
for any software development/modeling approach, the
EAST ADL also has support for modeling cross-cutting
concerns (i.e. concerns that are independent, or existing
on a multitude, of different abstraction levels) like
requirements, behavioral descriptions and validation &
verification activities.

Requirements can be modeled either as textual

descriptions or using formal descriptions. Requirements
are not isolated in a view of their own, instead

requirements can be attached to any ADL object. For
instance, in the Vehicle View it may be natural to express
end-user visible requirements on the functions specified
in that view. Whereas in the function instance model,
detailed requirements on, e.g., timing behavior such as
signal delays can be naturally expressed. The
requirements in EAST ADL are extension to the
requirements package in SysML [4]. Requirements can
have traceable dependencies amongst each other and can
be decomposed into sub-requirements. The EAST ADL
also has mechanism to handle variants and dependencies
between variants. This can be used, e.g., to specify
dependencies such that an automatic gearbox can only
exist together with a certain set of engines.

In EAST ADL several types of behaviors can be
modeled. For instance, behavior modeled in external tools
like Simulink [9], Statemate [10] or Ascet-MD [11] can
be attached to EAST ADL objects. This supports
modeling, analysis and code synthesis of behavior in the
way that it is currently used within the automotive
industry. Also, UML 2.0 can be used to describe the
behavior of an object. In this case, UML-statecharts can
be used. From behavioral models code can be
automatically generated. In addition, C code can be
associated as a behavior description; in this case,
however, no analysis of the behavior can be made, only
mapping of the code to the ADL object is performed. The
EAST ADL separates the concept of "specifying
behavior" and "implementation behavior" in the sense
that a software function can have a simple (incomplete)
model as its specifying behavior, whereas the functions
implementation behavior specifies its actual (and
complete) behavior.

The final cross-cutting issue handled by the EAST
ADL is validation & verification (V&V). The ADL has
entities to specify what V&V methods should be used for
different ADL objects. Also, the results of the V&V
activities are stored within the ADL. This facilitates a
holistic approach to system development, where
requirements, system description and V&V are integrated
in one language. Hence, it is easy to make sure that all
requirements have been verified and what objects need to
be accounted for when performing a particular
verification task. The ADL also has entities to support
automatic verification of key-properties. For instance,
special requirements entities exists to allow expression of
timing requirements, and attributes on software functions
allow specification of timing behavior. Together, these
requirements and attributes can be used to perform an
automatic timing (schedulability) analysis. Also, for
instance, using behavior specifications of objects,
automatic verification of system behavior or system
properties (such as absence of dangerous states) can be
made. The EAST ADL does not specify which V&V
activities that are to be automated, nor does it provide

Vehicle View

Functional Analysis
Architecture

Functional Design
Architecture

Allocation
Model

Hardware
Architecture

Platform
Model

Function Instance
Model

So
ftw

ar
e

D
ev

el
op

m
en

t

E
le

ct
ro

ni
c

P
la

tfo
rm

Mapping

Figure 5. The layers of the EAST ADL

tools or methods for such automatic V&V. The ADL only
provides the necessary information to perform V&V
activities; how this information is used within an
organization is unspecified.

5. The FAR Vehicle Model

The EAST ADL was applied to the software and
electronics architecture of the FAR vehicle in order to
explore the different concepts of the language. Explaining
the models using a middle out approach, we start by
describing the Functional Design Architecture, FDA.
Figure 6 shows the overall structure of the FDA. The

software structure of the FAR vehicle is shown here. Four
CompositeSoftwareFunctions (hierarchical building
blocks of the FDA) perform the local control of steer,
brake and propulsion. These are instances of the same
wheel controller. The global control is done by several
CompositeSoftwareFunctions, such as ModeSelector,
Feedback, CruiseControl, etc. The HMI interpret driver
commands and feedback and distribute setpoint values to
the control system.

Below, a selection of additional aspects from the FAR
model will be described. We start from the top level with
the vehicle type hierarchy.

5.1 Vehicle Types, Features and requirements

Vehicles generally have a complex variant structure. A
small vehicle type hierarchy was identified for FAR, see
Figure 7. This hierarchy is used to define the feature
content of each vehicle type.

The various requirements on the vehicle are modelled
on several abstraction levels. Figure 8 shows two
examples of functional requirements associated with the
Braking feature. Other examples of requirements are
qualitative requirements like safety and performance or
timing requirements, see Section 5.7.

Figure 7. The VehicleType hierarchy (VV Layer)

<<VehicleType>>SSSS

subtype of ’FARLuxury’

<<VehicleType>>SSSS

subtype of ’FARLuxury’

<<VehicleType>>SSSS

subtype of ’FAR’

<<VehicleType>>SSSS

subtype of ’FAR’

<<VehicleType>>

FARLuxury_Comfort FARLuxury_Classic

FARLuxury

FAR

FARBasic

<<LocalDeviceManager>>
SSSS tttt eeee eeee rrrr SSSS eeee nnnn ssss oooorrrr LLLLDDDD MMMM

IIII

instance of ’SteerSensorLDM’
{Trigger : Time Triggered}

SensorPort : SensorSignal SensorPort : SensorSignal

<<LocalDeviceManager>>
BBBB rrrr aaaa kkkk eeee SSSS eeee nnnn ssss oooorrrr LLLLDDDD MMMM

IIII

instance of ’BrakeSensorLDM’
{Trigger : Time Triggered}

SensorPort : SensorSignalSensorPort : SensorSignal

<<LocalDeviceManager>>
SSSS pppp eeee eeee dddd SSSS eeee nnnn ssss oooorrrr LLLLDDDD MMMM

IIII

instance of ’SpeedSensorLDM’
{Trigger : Time Triggered}

SensorPort : SensorSignalSensorPort : SensorSignal

<<LocalDeviceManager>>
SSSS pppp eeee eeee dddd AAAAmmmm pppp LLLLDDDD MMMM

IIII

instance of ’SpeedAmpLDM’
{Trigger : Time Triggered}

SpeedRequest : SpeedSignalSpeedPort : Speed

<<LocalDeviceManager>>
SSSS tttt eeee eeee rrrr SSSS eeee rrrr vvvvooooLLLLDDDD MMMM

IIII

instance of ’SteerServoLDM’
{Trigger : Time Triggered}

SteerRequest : SteerSignal

SteerPort : Steer

<<LocalDeviceManager>>
BBBB rrrr aaaa kkkk eeee SSSS eeee rrrr vvvvooooLLLLDDDD MMMM

IIII

instance of ’BrakeServoLDM’
{Trigger : Time Triggered}

BrakePort : Brake BrakeRequest : BrakeSignal

<<LocalDeviceManager>>
SSSS tttt eeee eeee rrrr SSSS eeee nnnn ssss oooorrrr LLLLDDDD MMMM

IIII

instance of ’SteerSensorLDM’
{Trigger : Time Triggered}

SensorPort : SensorSignal SensorPort : SensorSignal

<<LocalDeviceManager>>
BBBB rrrr aaaa kkkk eeee SSSS eeee nnnn ssss oooorrrr LLLLDDDD MMMM

IIII

instance of ’BrakeSensorLDM’
{Trigger : Time Triggered}

SensorPort : SensorSignalSensorPort : SensorSignal

<<LocalDeviceManager>>
SSSS pppp eeee eeee dddd SSSS eeee nnnn ssss oooorrrr LLLLDDDD MMMM

IIII

instance of ’SpeedSensorLDM’
{Trigger : Time Triggered}

SensorPort : SensorSignalSensorPort : SensorSignal

<<LocalDeviceManager>>
SSSS pppp eeee eeee dddd AAAAmmmm pppp LLLLDDDD MMMM

IIII

instance of ’SpeedAmpLDM’
{Trigger : Time Triggered}

SpeedRequest : SpeedSignalSpeedPort : Speed

<<LocalDeviceManager>>
SSSS tttt eeee eeee rrrr SSSS eeee rrrr vvvvooooLLLLDDDD MMMM

IIII

instance of ’SteerServoLDM’
{Trigger : Time Triggered}

SteerPort : Steer SteerRequest : SteerSignal

<<LocalDeviceManager>>
BBBB rrrr aaaa kkkk eeee SSSS eeee rrrr vvvvooooLLLLDDDD MMMM

IIII

instance of ’BrakeServoLDM’
{Trigger : Time Triggered}

BrakePort : Brake BrakeRequest : BrakeSignal

<<LocalDeviceManager>>
SSSS pppp eeee eeee dddd SSSS eeee nnnn ssss oooorrrr LLLLDDDD MMMM

IIII

instance of ’SpeedSensorLDM’
{Trigger : Time Triggered}

SensorPort : SensorSignalSensorPort : SensorSignal

<<LocalDeviceManager>>
BBBB rrrr aaaa kkkk eeee SSSS eeee nnnn ssss oooorrrr LLLLDDDD MMMM

IIII

instance of ’BrakeSensorLDM’
{Trigger : Time Triggered}

SensorPort : SensorSignalSensorPort : SensorSignal

<<LocalDeviceManager>>
SSSS tttt eeee eeee rrrr SSSS eeee nnnn ssss oooorrrr LLLLDDDD MMMM

IIII

instance of ’SteerSensorLDM’
{Trigger : Time Triggered}

SensorPort : SensorSignal SensorPort : SensorSignal

<<LocalDeviceManager>>
SSSS pppp eeee eeee dddd SSSS eeee nnnn ssss oooorrrr LLLLDDDD MMMM

IIII

instance of ’SpeedSensorLDM’
{Trigger : Time Triggered}

SensorPort : SensorSignalSensorPort : SensorSignal

<<LocalDeviceManager>>
BBBB rrrr aaaa kkkk eeee SSSS eeee nnnn ssss oooorrrr LLLLDDDD MMMM

IIII

instance of ’BrakeSensorLDM’
{Trigger : Time Triggered}

SensorPort : SensorSignalSensorPort : SensorSignal

<<LocalDeviceManager>>
SSSS tttt eeee eeee rrrr SSSS eeee nnnn ssss oooorrrr LLLLDDDD MMMM

IIII

instance of ’SteerSensorLDM’
{Trigger : Time Triggered}

SensorPort : SensorSignal SensorPort : SensorSignal

<<CompositeSoftwareFunction>>
CCCC rrrr uuuu iiii ssss eeee CCCC oooonnnn tttt rrrr oooo llll llll eeee rrrr

RRRR

reference of ’CruiseController’

A : Enable

B : Actual speed

C : Reference speed CCSpeedPort : CCSpeedRef

D : setDistance CCBrakePort : CCBrakeRef

E : Lock mode

F : ActDistance

<<LocalDeviceManager>>
DDDD iiii ssss pppp llll aaaa yyyy

IIII

instance of ’Display’
{Trigger : Time Triggered}

LDMPort : DisplaySignalLDMPort : DisplaySignal

<<CompositeSoftwareFunction>>
SSSS aaaa ffff eeee tttt yyyy FFFF uuuu nnnn cccc tttt iiii oooonnnn

RRRR

reference of ’SafetyFunction’

A : Enable

SFSpeedPort : SFSpeedRef

B : Actual speed

SFSteerPort : SFSteerRef

C : Reference steer

SFBrakePort : SFBrakeRef

D : ActDistance

<<LocalDeviceManager>>
PPPP CCCC

IIII

instance of ’PC’
{Trigger : Time Triggered}

LDMDataPort : DataLog Log DataOutPort : DataLog

<<LocalDeviceManager>>
KKKK eeee yyyy bbbb ooooaaaa rrrr dddd

IIII

instance of ’Keyboard’
{Trigger : Time Triggered}

LDMPort : KeyboardData LDMModeInPort : Mode

<<LocalDeviceManager>>
SSSS tttt eeee eeee rrrr iiii nnnn gggg DDDD eeee vvvviiii cccc eeee

IIII

instance of ’SteeringDevice’
{Trigger : Time Triggered}

RefValuePort : RefValue

LDMPort : SteerDeviceData

EmStop : Emergency Stop

<<LocalDeviceManager>>
LLLLaaaa ssss eeee rrrr DDDD iiii ssss tttt aaaa nnnn cccc eeee

IIII

instance of ’LaserDistance’
{Trigger : Time Triggered}

LDMPort : DistanceLDMPort : DistanceAct

<<LocalDeviceManager>>
SSSS pppp eeee eeee dddd AAAAmmmm pppp LLLLDDDD MMMM

IIII

instance of ’SpeedAmpLDM’
{Trigger : Time Triggered}

SpeedRequest : SpeedSignalSpeedPort : Speed

<<LocalDeviceManager>>
SSSS tttt eeee eeee rrrr SSSS eeee rrrr vvvvooooLLLLDDDD MMMM

IIII

instance of ’SteerServoLDM’
{Trigger : Time Triggered}

SteerPort : Steer SteerRequest : SteerSignal

<<LocalDeviceManager>>
BBBB rrrr aaaa kkkk eeee SSSS eeee rrrr vvvvooooLLLLDDDD MMMM

IIII

instance of ’BrakeServoLDM’
{Trigger : Time Triggered}

BrakePort : Brake BrakeRequest : BrakeSignal

<<LocalDeviceManager>>
SSSS pppp eeee eeee dddd AAAAmmmm pppp LLLLDDDD MMMM

IIII

instance of ’SpeedAmpLDM’
{Trigger : Time Triggered}

SpeedRequest : SpeedSignalSpeedPort : Speed

<<LocalDeviceManager>>
SSSS tttt eeee eeee rrrr SSSS eeee rrrr vvvvooooLLLLDDDD MMMM

IIII

instance of ’SteerServoLDM’
{Trigger : Time Triggered}

SteerPort : Steer SteerRequest : SteerSignal

<<LocalDeviceManager>>
BBBB rrrr aaaa kkkk eeee SSSS eeee rrrr vvvvooooLLLLDDDD MMMM

IIII

instance of ’BrakeServoLDM’
{Trigger : Time Triggered}

BrakePort : Brake BrakeRequest : BrakeSignal

<<CompositeSoftwareFunction>>
NNNN oooorrrr mmmm aaaa llll MMMM oooodddd eeee

A : Enable

SteerOutPort : Reference Steer

SteerInPort : Reference Steer

SpeedOutPort : Reference Speed

BrakeOutPort : Brake Reference

SpeedInPort : Reference Speed

BrakeInPort : Brake Reference

<<ElementarySoftwareFunction>>
SSSS iiiigggg nnnn aaaa llll SSSS eeee llll eeee cccc tttt iiii oooonnnn

{ESWFPeriod : 20}

SteerSelectPort : Reference Steer

RefValuePort : VehicleMotionRefSpeedSelectPort : Reference Speed

BrakeSelectPort : Brake Reference

<<ElementarySoftwareFunction>>
VVVV eeee hhhh iiii cccc llll eeee MMMM oooodddd eeee CCCC oooonnnn tttt rrrr oooo llll

ModeEnablePort : Enable

C : Emergency Stop

B : ModeSelect

Port : Mode

A : Fail Indicator

<<CompositeSoftwareFunction>>
OOOO uuuu tttt pppp uuuu tttt DDDD iiii ssss tttt rrrr iiii bbbb uuuu tttt iiii oooonnnn

WheelDataPort : Wheel Data FL

: Mode

RefValuePort : VehicleMotionRef

ActSpeedPort : Actual Speed

WheelDataPort : Wheel DataRL

WheelDataPort : Wheel Data FR

Wheel DataPort : Wheel DataRR

<<CompositeSoftwareFunction>>
HHHH MMMM IIII CCCC oooonnnn tttt rrrr oooo llll

StopPort : Emergency Stop

KeypadDataPortIn : KeypadData

ModePort : UserModeChoice

DistPort : setDistance

AccModePort : Lock Mode

RefValuePortIn : VehicleRefValues

HMISteerPort : ReferenceSteer

StopPortIn : EmergencyStop

HMISpeedPort : ReferenceSpeed

HMIDisplayPort : DisplaySignal

HMIBrakePort : Reference Brake

Log DataOutPort : DataLog

LogDataInPort : DataLog

<<ElementarySoftwareFunction>>
FFFF eeee eeee dddd bbbb aaaa cccc kkkk

Dst : ActDistance

VehicleSteerPort : Actual Steer

Dst : Distance

SpeedPort : RearWheelSpeed

FRWNFeedBack : WheelNodeFeedback

FLWNFeedBack : WheelNodeFeedback

RLWNFeedBack : WheelNodeFeedback

BrakeAct : Actual Brake

Fail : Fail Indicator

RLWNFeedBack : WheelNodeFeedback

LogDataInPort : DataLog

<<CompositeSoftwareFunction>>
FFFF RRRR WWWW hhhh eeee eeee llll CCCC oooonnnn tttt rrrr oooo llll

SSSS

subtype of ’WheelControl’

WheelBrakePort : Brake

BrakeSensorPort : FeedbackSignal

WheelSpeedPort : Scaled SpeedRefVal : WheelControlRefVal

SpeedSensorPort :

WheelSteerPort : WheelSteer

SteerSensorPort : SteerSensorReading

FRFeedBackPort : WheelFeedback

<<CompositeSoftwareFunction>>
WWWW hhhh eeee eeee llll CCCC oooonnnn tttt rrrr oooo llll

SSSS

subtype of ’WheelControl’

WheelBrakePort : Brake

BrakeSensorPort : FeedbackSignal

WheelSpeedPort : Scaled SpeedRefVal : WheelControlRefVal

SpeedSensorPort :

WheelSteerPort : WheelSteer

FRFeedBackPort : WheelFeedback

SteerSensorPort : SteerSensorReading

<<CompositeSoftwareFunction>>
RRRR LLLLWWWW hhhh eeee eeee llll CCCC oooonnnn tttt rrrr oooo llll

SSSS

subtype of ’WheelControl’

WheelBrakePort : Brake

WheelSpeedPort : Scaled Speed

RefVal : WheelControlRefVal WheelSteerPort : WheelSteer

FRFeedBackPort : WheelFeedback BrakeSensorPort : FeedbackSignal

SpeedSensorPort :

SteerSensorPort : SteerSensorReading

<<CompositeSoftwareFunction>>
FFFF LLLLWWWW hhhh eeee eeee llll CCCC oooonnnn tttt rrrr oooo llll

SSSS

subtype of ’WheelControl’

WheelBrakePort : Brake

BrakeSensorPort : FeedbackSignal

WheelSpeedPort : Scaled SpeedRefVal : WheelControlRefVal

SpeedSensorPort :

WheelSteerPort : WheelSteer

FRFeedBackPort : WheelFeedback

SteerSensorPort : SteerSensorReading

<<HAFRef>>
FFFF LLLLSSSS tttt eeee eeee rrrr SSSS eeee nnnn ssss oooorrrr HHHH AAAAFFFF

RRRR

reference of ’FLSteerSensorHAF’

HAFPort : SteerAct

<<HAFRef>>
RRRR LLLLBBBB rrrr aaaa kkkk eeee AAAAcccc tttt uuuu aaaa tttt oooorrrr HHHH AAAAFFFF

RRRR

reference of ’RLBrakeActuatorHAF’

HAFPort : BrakeRequest

<<HAFRef>>
FFFF RRRR BBBB rrrr aaaa kkkk eeee AAAAcccc tttt uuuu aaaa tttt oooorrrr HHHH AAAAFFFF

RRRR

reference of ’FRBrakeActuatorHAF’

HAFPort : BrakeRequest

<<HAFRef>>
RRRR RRRR SSSS tttt eeee eeee rrrr SSSS eeee nnnn ssss oooorrrr HHHH AAAAFFFF

RRRR

reference of ’RRSteerSensorHAF’

HAFPort : SteerAct

<<HAFRef>>
RRRR RRRR SSSS pppp eeee eeee dddd AAAAcccc tttt uuuu aaaa tttt oooorrrr HHHH AAAAFFFF

RRRR

reference of ’RRSpeedActuatorHAF’

HAFPort : SpeedRequest

<<HAFRef>>
RRRR RRRR SSSS pppp eeee eeee dddd SSSS eeee nnnn ssss oooorrrr HHHH AAAAFFFF

RRRR

reference of ’RRSpeedSensorHAF’

HAFPort : SpeedAct

<<HAFRef>>
RRRR LLLLSSSS pppp eeee eeee dddd SSSS eeee nnnn ssss oooorrrr HHHH AAAAFFFF

RRRR

reference of ’RLSpeedSensorHAF’

HAFPort : SpeedAct

<<HAFRef>>
RRRR RRRR BBBB rrrr aaaa kkkk eeee AAAAcccc tttt uuuu aaaa tttt oooorrrr HHHH AAAAFFFF

RRRR

reference of ’RRBrakeActuatorHAF’

HAFPort : BrakeRequest

<<HAFRef>>
RRRR LLLLSSSS tttt eeee eeee rrrr SSSS eeee nnnn ssss oooorrrr HHHH AAAAFFFF

RRRR

reference of ’RLSteerSensorHAF’

HAFPort : SteerAct

<<HAFRef>>
RRRR LLLLBBBB rrrr aaaa kkkk eeee SSSS eeee nnnn ssss oooorrrr HHHH AAAAFFFF

RRRR

reference of ’RLBrakeSensorHAF’

HAFPort : BrakeAct

<<HAFRef>>
FFFF LLLLBBBB rrrr aaaa kkkk eeee SSSS eeee nnnn ssss oooorrrr HHHH AAAAFFFF

RRRR

reference of ’FLBrakeSensorHAF’

HAFPort : BrakeAct

<<HAFRef>>
FFFF LLLLSSSS tttt eeee eeee rrrr AAAAcccc tttt uuuu aaaa tttt oooorrrr HHHH AAAAFFFF

RRRR

reference of ’FLSteerActuatorHAF’

HAFPort : SteerRequest

<<HAFRef>>
RRRR LLLLSSSS tttt eeee eeee rrrr AAAAcccc tttt uuuu aaaa tttt oooorrrr HHHH AAAAFFFF

RRRR

reference of ’RLSteerActuatorHAF’

HAFPort : SteerRequest

<<HAFRef>>
FFFF LLLLBBBB rrrr aaaa kkkk eeee AAAAcccc tttt uuuu aaaa tttt oooorrrr HHHH AAAAFFFF

RRRR

reference of ’FLBrakeActuatorHAF’

HAFPort : BrakeRequest

<<HAFRef>>
FFFF RRRR SSSS pppp eeee eeee dddd SSSS eeee nnnn ssss oooorrrr HHHH AAAAFFFF

RRRR

reference of ’FRSpeedSensorHAF’

HAFPort : SpeedAct

<<HAFRef>>
FFFF RRRR SSSS pppp eeee eeee dddd AAAAcccc tttt uuuu aaaa tttt oooorrrr HHHH AAAAFFFF

RRRR

reference of ’FRSpeedActuatorHAF’

HAFPort : SpeedRequest

<<HAFRef>>
RRRR LLLLSSSS pppp eeee eeee dddd AAAAcccc tttt uuuu aaaa tttt oooorrrr HHHH AAAAFFFF

RRRR

reference of ’RLSpeedActuatorHAF’

HAFPort : SpeedRequest

<<HAFRef>>
FFFF RRRR SSSS tttt eeee eeee rrrr SSSS eeee nnnn ssss oooorrrr HHHH AAAAFFFF

RRRR

reference of ’FRSteerSensorHAF’

HAFPort : SteerAct

<<HAFRef>>
FFFF LLLLSSSS pppp eeee eeee dddd SSSS eeee nnnn ssss oooorrrr HHHH AAAAFFFF

RRRR

reference of ’FLSpeedSensorHAF’

HAFPort : SpeedAct

<<HAFRef>>
PPPP CCCC HHHH AAAAFFFF

RRRR

reference of ’PCHAF’

HAFPort : DataLog

<<HAFRef>>
FFFF RRRR SSSS tttt eeee eeee rrrr AAAAcccc tttt uuuu aaaa tttt oooorrrr HHHH AAAAFFFF

RRRR

reference of ’FRSteerActuatorHAF’

HAFPort : SteerRequest

<<HAFRef>>
FFFF RRRR BBBB rrrr aaaa kkkk eeee SSSS eeee nnnn ssss oooorrrr HHHH AAAAFFFF

RRRR

reference of ’FRBrakeSensorHAF’

HAFPort : BrakeAct

<<HAFRef>>
RRRR RRRR BBBB rrrr aaaa kkkk eeee SSSS eeee nnnn ssss oooorrrr HHHH AAAAFFFF

RRRR

reference of ’RRBrakeSensorHAF’

HAFPort : BrakeAct

<<HAFRef>>
RRRR RRRR SSSS tttt eeee eeee rrrr AAAAcccc tttt uuuu aaaa tttt oooorrrr HHHH AAAAFFFF

RRRR

reference of ’RRSteerActuatorHAF’

HAFPort : SteerRequest

<<HAFRef>>
KKKK eeee yyyy pppp aaaa dddd HHHH AAAAFFFF

RRRR

reference of ’KeypadHAF’

HAFPort : KeyboardData

<<HAFRef>>
SSSS tttt eeee eeee rrrr DDDD eeee vvvviiii cccc eeee HHHH AAAAFFFF

RRRR

reference of ’SteerDeviceHAF’

HAFPort : SteerDeviceData

<<HAFRef>>
DDDD iiiipppp llll aaaa yyyy HHHH AAAAFFFF

RRRR

reference of ’DiplayHAF’

HAFPort : Distance

<<HAFRef>>
FFFF LLLLSSSS pppp eeee eeee dddd AAAAcccc tttt uuuu aaaa tttt oooorrrr HHHH AAAAFFFF

RRRR

reference of ’FLSpeedActuatorHAF’

HAFPort : SpeedRequestHMI

GlobalControl

WheelControl 4x

Figure 6. The Functional Design Architecture.

Figure 8. Functional requirements on braking

<<FunctionalRequirement>>

description :All wheels must have individually controlled brakes

<<FunctionalRequirement>>

description :Brakes must be properly scaled, compared to a regular vehicle

<<EFeature>>

<<DesignConstraint>>

{DesignConstraintType : Cost}

description : use and maintenace cheap

<<DesignConstraint>>

{DesignConstraintType : Physical}

description : disc diameter according to vehicle length

specifiedBy

specifiedBy

constrains

constrains

Brake Control System

Disc Brake Design Constraint CostConstraint

Functional Requirement

Functional Requirement

5.2 Variability

A vehicle project in EAST ADL has a number of
features. Which features that are included can be chosen
based on the vehicle type. For example, two kinds of
cruise controller can be used, simple CC or Autonomous
CC, see Figure 9.

The CruiseController entity is a variation point that is
replaced by one of its variants Simple CC and ACC.
Which variant is chosen is decided by the
SelectonCriterion expression. This is an OCL expression,
but simplified here for readability.

The hardware and software entities that implement the
electronic features will also vary, and the same variability
concept is applied here, see Figure 10.

5.3 Legacy Tools and Code

The FAR system is developed using existing tools like
Simulink/Stateflow and Targetlink. In order to link the
EAST ADL model to the legacy tools, the
ElementarySoftwareFunctions (the atomic building

blocks of the FDA) of the model have references to these,
see Figure 11. The interfaces defined in the model are met
by the code and external model. The model structure is
thus the master description tying together the various
tools in use.

5.4 Device Interfacing

The link to sensors and actuators go through the
LocalDeviceManagers which take care of the functional
interfaces. Low level aspects like setting up A/D
converters and accessing the right I/O pins are handled by
HardwareAbstractionFunctions, HAFs. The HAF is in
turn associated with a peripheral, a hardware entity
representing the A/D converter or I/O device. Figure 12
shows the involved entities.

<<EFeature>>

{SelectionCriteria : VehicleType = FARLuxury}

<<EFeature>>

{SelectionCriteria : VehicleType = FARBasic}

<<EFeature>>
Cruise Control System

SimpleCruiseController AdaptiveCruiseController

Figure 9. Variability illustrated by the Cruise
Controller

Figure 10. Variability in software: The cruise
functionality in the Functional Design Architecture

<<EFeatureReference>>R

reference of ’ACC’

<<EFeatureReference>>R

reference of ’SimpleCC’

<<CompositeSoftwareFunction>>

A : Enable

CCSpeedPort : CCSpeedRef

B : Actual speed

CCBrakePort : CCBrakeRef

C : Reference speed

D : setDistance

F : ActDistance

E : Lock mode

<<CompositeSoftwareFunction>>

A : Enable

CCSpeedPort : CCSpeedRef

B : Actual speed

CCBrakePort : CCBrakeRef

C : Reference speed

D : setDistance

F : ActDistance

E : Lock mode

<<CompositeSoftwareFunction>>

A : Enable

CCSpeedPort : CCSpeedRef

B : Actual speed

CCBrakePort : CCBrakeRef

C : Reference speed

selectsselects

Cruise Controller

Simple CC

Adaptive Cruise Controller

ACC

Simple Cruise Controller

Figure 11. Link to legacy tools (FDA layer)

<<Code>>

compliance : Misra
path : ACCDistanceControl.C

<<ExternalBehaviour>>

path : FARAcc.mdl/DistanceControl
representation : SIMULINK

<<ElementarySoftwareFunction>>

CCSpeedPort : CCSpeedRef

CCBrakePort : CCBrakeRef

F : ActDistance

D : setDistance

E : Lock mode

Distance Control

Code External Behaviour

Figure 12. Device interfacing involving software
entities from the FDA and PA as well as
hardware entities.

<<ECU>>

<<Processor>> RRProcessor
<<Memory>> Memory
<<Memory>> FLASH

S

S

S
<<Channel>>

channelType : electrical

<<Channel>>

channelType : electrical

<<Channel>>

channelType : electrical

AAAA

<<Channel>>

channelType : electrical

AAAA

<<Channel>>

channelType : electrical

AAAA

<<Processor>>

processorType : MC68340
<<Peripheral>>

<<Peripheral>>

<<Memory>>

size : 128
memoryType : RAM

<<Memory>>

size : 512
memory ype : RAM

FLASH

RRProcessor

Adaptation Board

TTCANChip

Memory

RRWheel_ECU

FeedbackSteerWire

FeedbackBrakeWire

FeedbackSpeedWire

SteerWire ServoWireBrakeWire

<<ECU>>
HHHHMMMMIIII____EEEECCCCUUUU

+RAM_size : 0
+ROM_size : 0
<<Processor>> HMIProcessor

<<Channel>>

channelType : Most

AAAA

SSSStttteeeeeeeerrrr AAAAccccttttuuuuaaaattttoooorrrr

AAAA

BBBBrrrraaaakkkkeeee AAAAccccttttuuuuaaaattttoooorrrr

<<Channel>>
MMMMaaaaiiiinnnnCCCChhhhaaaannnnnnnneeeellll

channelType : TTP

<<ECU>>
RRRRLLLLWWWWhhhheeeeeeeellll____EEEECCCCUUUU

+RAM_size : 0
+ROM_size : 0
<<Processor>> RLProcessor
<<Memory>> Memory
<<Memory>> FLASH

<<ECU>>
RRRRRRRRWWWWhhhheeeeeeeellll____EEEECCCCUUUU

+RAM_size : 0
+ROM_size : 0
<<Processor>> RRProcessor
<<Memory>> Memory
<<Memory>> FLASH

<<ECU>>
FFFFRRRRWWWWhhhheeeeeeeellll____EEEECCCCUUUU

+RAM_size : 0
+ROM_size : 0
<<Processor>> FRProcessor
<<Memory>> Memory
<<Memory>> FLASH

<<ECU>>
FFFFLLLLWWWWhhhheeeeeeeellll____EEEECCCCUUUU

+RAM_size : 0
+ROM_size : 0
<<Processor>> FLProcessor
<<Memory>> FLASH
<<Memory>> Memory

<<ECU>>
CCCCeeeennnnttttrrrraaaallllNNNNooooddddeeee

+RAM_size : 0
+ROM_size : 0
<<Processor>> DyNodeProcessor2
<<Memory>> FLASH
<<Memory>> CentralNodeMemory

<<Channel>>
FFFFeeeeeeeeddddbbbbaaaacccckkkkSSSStttteeeeeeeerrrrWWWWiiiirrrreeee

channelType : electrical
SSSS

SSSStttteeeeeeeerrrrPPPPooootttteeeennnnttttiiiioooommmmeeeetttteeeerrrr

SSSS

SSSSppppeeeeeeeeddddEEEEnnnnccccooooddddeeeerrrr

SSSS

BBBBrrrraaaakkkkeeeePPPPooootttteeeennnnttttiiiioooommmmeeeetttteeeerrrr

<<Channel>>
FFFFeeeeeeeeddddbbbbaaaacccckkkkBBBBrrrraaaakkkkeeeeWWWWiiiirrrreeee

channelType : electrical

<<Channel>>
FFFFeeeeeeeeddddbbbbaaaacccckkkkSSSSppppeeeeeeeeddddWWWWiiiirrrreeee

channelType : electrical

<<Channel>>
FFFFeeeeeeeeddddbbbbaaaacccckkkkSSSStttteeeeeeeerrrrWWWWiiiirrrreeee

channelType : electrical

SSSS

SSSStttteeeeeeeerrrrPPPPooootttteeeennnnttttiiiioooommmmeeeetttteeeerrrr

SSSS

SSSSppppeeeeeeeeddddEEEEnnnnccccooooddddeeeerrrr

SSSS

BBBBrrrraaaakkkkeeeePPPPooootttteeeennnnttttiiiioooommmmeeeetttteeeerrrr

<<Channel>>
FFFFeeeeeeeeddddbbbbaaaacccckkkkBBBBrrrraaaakkkkeeeeWWWWiiiirrrreeee

channelType : electrical

<<Channel>>
FFFFeeeeeeeeddddbbbbaaaacccckkkkSSSSppppeeeeeeeeddddWWWWiiiirrrreeee

channelType : electrical

<<Channel>>
FFFFeeeeeeeeddddbbbbaaaacccckkkkSSSStttteeeeeeeerrrrWWWWiiiirrrreeee

channelType : electrical
SSSS

SSSStttteeeeeeeerrrrPPPPooootttteeeennnnttttiiiioooommmmeeeetttteeeerrrr

SSSS

SSSSppppeeeeeeeeddddEEEEnnnnccccooooddddeeeerrrr

SSSS

BBBBrrrraaaakkkkeeeePPPPooootttteeeennnnttttiiiioooommmmeeeetttteeeerrrr

<<Channel>>
FFFFeeeeeeeeddddbbbbaaaacccckkkkBBBBrrrraaaakkkkeeeeWWWWiiiirrrreeee

channelType : electrical

<<Channel>>
FFFFeeeeeeeeddddbbbbaaaacccckkkkSSSSppppeeeeeeeeddddWWWWiiiirrrreeee

channelType : electrical

SSSS

SSSSppppeeeeeeeeddddEEEEnnnnccccooooddddeeeerrrr

SSSS

BBBBrrrraaaakkkkeeeePPPPooootttteeeennnnttttiiiioooommmmeeeetttteeeerrrr

<<Channel>>
FFFFeeeeeeeeddddbbbbaaaacccckkkkBBBBrrrraaaakkkkeeeeWWWWiiiirrrreeee

channelType : electrical

<<Channel>>
FFFFeeeeeeeeddddbbbbaaaacccckkkkSSSSppppeeeeeeeeddddWWWWiiiirrrreeee

channelType : electrical

<<Channel>>
FFFFeeeeeeeeddddbbbbaaaacccckkkkSSSStttteeeeeeeerrrrWWWWiiiirrrreeee

channelType : electrical

<<Channel>>
SSSStttteeeeeeeerrrrWWWWiiiirrrreeee

channelType : electrical

AAAA

SSSStttteeeeeeeerrrr AAAAccccttttuuuuaaaattttoooorrrr

<<Channel>>
BBBBrrrraaaakkkkeeeeWWWWiiiirrrreeee

channelType : electrical

AAAA

BBBBrrrraaaakkkkeeee AAAAccccttttuuuuaaaattttoooorrrr

<<Channel>>
SSSStttteeeeeeeerrrrWWWWiiiirrrreeee

channelType : electrical

AAAA

SSSStttteeeeeeeerrrr AAAAccccttttuuuuaaaattttoooorrrr

<<Channel>>
BBBBrrrraaaakkkkeeeeWWWWiiiirrrreeee

channelType : electrical

AAAA

BBBBrrrraaaakkkkeeee AAAAccccttttuuuuaaaattttoooorrrr

<<Channel>>
RRRRaaaaddddaaaarrrrCCCChhhhaaaannnnnnnneeeellll

channelType : electrical

<<ECU>>
RRRRaaaaddddaaaarrrrNNNNooooddddeeee

+RAM_size : 0
+ROM_size : 0
<<Processor>> RadarNodeProcessor1
<<Memory>> RadarNodeMemory
<<Memory>> FLASH

<<Channel>>
SSSStttteeeeeeeerrrrWWWWiiiirrrreeee

channelType : electrical

AAAA

SSSStttteeeeeeeerrrr AAAAccccttttuuuuaaaattttoooorrrr

<<Channel>>
BBBBrrrraaaakkkkeeeeWWWWiiiirrrreeee

channelType : electrical

AAAA

BBBBrrrraaaakkkkeeee AAAAccccttttuuuuaaaattttoooorrrr

<<Channel>>
CCCChhhhaaaannnnnnnneeeellll

channelType : electrical

<<Channel>>
CCCChhhhaaaannnnnnnneeeellll

channelType : electrical

SSSS

SSSStttteeeeeeeerrrrPPPPooootttteeeennnnttttiiiioooommmmeeeetttteeeerrrr

<<Channel>>
CCCChhhhaaaannnnnnnneeeellll

channelType : electrical

AAAA

SSSSeeeerrrrvvvvooooAAAAmmmmpppplllliiiiffffiiiieeeerrrr

<<Channel>>
SSSSeeeerrrrvvvvooooWWWWiiiirrrreeee

channelType : electrical

AAAA

SSSSeeeerrrrvvvvooooAAAAmmmmpppplllliiiiffffiiiieeeerrrr

<<Channel>>
SSSSeeeerrrrvvvvooooWWWWiiiirrrreeee

channelType : electrical

AAAA

SSSSeeeerrrrvvvvooooAAAAmmmmpppplllliiiiffffiiiieeeerrrr

<<Channel>>
SSSSeeeerrrrvvvvooooWWWWiiiirrrreeee

channelType : electrical

AAAA

SSSSeeeerrrrvvvvooooAAAAmmmmpppplllliiiiffffiiiieeeerrrr

SSSS

LLLLaaaasssseeeerrrr DDDDiiiissssttttaaaannnncccceeee MMMMeeeetttteeeerrrr

BrakeActuator SteerActuator ServoAmplifier

SpeedEncoder

BrakePotentiomete

SteerPotentiometer

channelType: electrical

<<Channel>>

HA

ECU
NODE

<<HAFRef>>
FLBrakeActuatorHAF

R

reference of ’FLBrakeActuatorHAF’

HAFPort : BrakeRequest

<<LocalDeviceManager>>
Brake ServoLDM

I

instance of ’BrakeServoLDM’{
Trigger : Time Triggered}

BrakePort : Brake BrakeRequest : BrakeSignal

<<HAF>>

HAFPort : BrakeRequest

<<PeripheralRef>>R FLBrakeActuatorHAF

Reference of "Adaptation Board"

AdaptationBoardRef

5.5 Allocation

The software and message allocation is modeled in the
Allocation Model. Figure 13 shows a part of the AM
containing the brake setpoint value frame with four
SignalInstances corresponding to brake values for the
four wheels. The picture also show an OSTask with the
brake control software in the form of FunctionInstances
grouped to a LogicalCluster. The allocated entities all
belong to the function instance model while the allocation
targets are hardware architecture entities.

5.6 Data Types

Two kinds of data types are defined for signals and
parameters in the model: The Design Data Type is the
hardware independent abstract data type that is used to
specify and then verify the design. For example, the
resolution, range and unit can be investigated and verified
by simulation and analysis. To match the chosen
hardware, an implementation data type is defined that
matches the DDT in resolution and range. To match more
than one processor target, two implementation data types
are defined here using the variability concept.

5.7 Timing

Timing aspects are defined both in terms of
requirements and actual design. The FAR vehicle uses a
time triggered bus, and the entire architecture is therefore
periodic and time triggered. The EAST ADL model of
this vehicle specifies timing in terms of a period and
offset (relative to the period). The global time in this
system means that this timing definition can be met in
practice.

Timing requirements can be defined using, e.g. end-to-
end deadlines, see Figure 15.

6. Conclusions

The need to enhance software integration in
automotive software is increasingly evident. Integration
concerns software from different suppliers, across
domains and from previous projects The Enabling
technologies for automotive software integration is
currently emerging from several sources, for example
industry initiatives like AUTOSAR [12] and EU 6th
Framework programmes such as EASIS [13]. Gaining
experience with modeling approaches that tie together all
aspects of electronic systems development is increasingly
important in this context. The application of EAST ADL
to a concept vehicle as presented in this paper is an
example of this.

<<DDT>>

{DDTUnit : Kmph}
{DDTDataType : Integer}

{DDTDefaultValue : 0}
{Lobound : -30 kmph}
{Upbound : 30 kmph}

{Resolution : 1}
{SignificantDigits : 2}

<<IDTRef>>R

reference of ’SpeedIDT’

<<ConnectorSignal>>

visibility : public
contenttype : IDT

<<IDT>>

{IDTDescription : 0 = Max Back , 4095 = Max front}
{IDTDataType : UNUM16}

{ImplementationMin : 0}
{ImplementationMax : 4095}

{DefaultValue : 2048}
{SelectionCriterion : Star12}

<<IDT>>

{IDTDescription : 0 = Max Back , 4095 = Max front}
{IDTDataType : UNUM16}

{ImplementationMin : 0}
{ImplementationMax : 4095}

{DefaultValue : 2048}
{SelectionCriterion : PowerPC}

<<IDT>>

SpeedIDT

DDT

SpeedRef

SpeedIDT

VariantIDT VariantIDT

Figure 13. Design Data Type with Two
Implementation Data Types

<<MemoryRef>>R

reference of ’CentralNodeMemory’

<<ProcessorRef>>R

reference of ’HMIProcessor’

<<ChannelRef>>R

no reference

<<Frame>>

<<OSTask >>

<<CommunicationBuffer>>

{Size : 2 bytes}

<<OSTask>>

<<ProcessorRef>>R

reference of ’DyNodeProcessor2’
<<OSTask>>

GlobalControlTask

CommunicationBuffer

HMITask

CentralProcessor

CentralNodeMemory

RadioCommunicationChannel
HMIProcessor

UserInputFrame

FeedbackTask

OA

<<LogicalClusterRef>>

OutputDistributionCluster
R<<LogicalClusterRef>>R<<LogicalClusterRef>>R<<LogicalClusterRef>>RRRR

CC NormalVehicleModeControlCluster

Task

<<SignalInstanceRef>>R

reference of 'LockMode'

<<SignalInstanc eRef>>R

reference of ’SpeedRef'
SteerMode DriveMode SpeedRefFunctionMode

SteerRefBrakeRefLockMode

<<SignalInstanceRef>>R

reference

<<SignalInstanceRef>>R

reference of ’SteerRef’

<<SignalInstanceRef>>R

reference of ’BrakeRef’

<<SignalInstanceRef>>R

reference of 'SteerMode'

<<SignalInstanceRef>>R

reference

Frame

Figure 14. Allocation Model

Figure 15. End to end timing requirement

<<LocalDeviceManager>>I

instance of ’BrakeSensorLDM’
{Trigger : Time Triggered}

SensorPort : SensorSignal SensorPort : SensorSignal

<<LocalDeviceManager>>IIII

instance of ’BrakeServoLDM’
{Trigger : Time Triggered}

BrakePort : Brake BrakeRequest : BrakeSigna

<<RateRestriction>>

{LowerBound : 50}
{UpperBound : 60}

{Jitter : 5}

<<EndtoEndDelay>>

{LowerBound : 200 ms}
{UpperBound : 300 ms}

{Probability : 0.95}

<<CompositeSoftwareFunction>>S

subtype of ’WheelControl’

SteerSensorPort : SteerSensorReading

BrakeSensorPort : FeedbackSignal

SpeedSensorPort :

RefVal : WheelControlRefVal

WheelBrakePort : Brake_dutycycle

FRFeedBackPort : WheelFeedback

WheelSpeedPort : Scaled Speed

WheelSteerPort : Steer_dutycycle

until
from

EndtoEnd Delay

BrakeSensorLDM
BrakeServoLDM

RateRestriction
FRWheelControl

This paper has outlined the modeling concepts of
EAST ADL, as applied during the re-modeling of an
existing by-wire model vehicle, FAR. The focus of the
thesis project has been to model the concrete parts of the
system, i.e. software, hardware and the vehicle
configuration. The EAST ADL supports additional
aspects such as requirements, process and verification and
validation aspects. A continuation of this work would
thus be to complete the model in these respects too. Such
extension would illustrate the progress from requirements
to implementation, and the use of requirements
associations to relate entities of different abstraction
layers.

7. References

[1] Embedded Architecture and Software Tools, the EAST-
EEA project. http://www.east-eea.net

[2] Martin Törngren, Niklas Adamsson, Per Johannessen.
Lessons Learned from Model Based Development of a
Distributed Embedded Automotive Control System. To
appear at the SAE World Congress, Detroit 2004. SAE
Paper no: 2004-01-0713

[3] El-khoury Jad, DeJiu Chen and Martin Törngren. A Survey
of Modeling Approaches for Embedded Computer Control
Systems. Technical Report. TRITA - MMK 2003:36, ISSN
1400 –1179, ISRN KTH/MMK/R-03/11-SE. Department of
Machine Design, KTH 2003

[4] OMG: SysML, the Systems Modeling Language.
http://www.sysml.org

[5] AADL, Avionics Architecture Description Language. SAE
standardization, Aerospace Avionic Systems Division, AS-
2C. http://www.sae.org/technicalcommittees/aasd.htm

[6] Arcticus AB: The Rubus Operating System.
http://www.arcticus.se

[7] Ulrich Freund, Orazio Gurrieri, Jochen Küster, Henrik
Lonn, Jörn Migge, Mark-Oliver Reiser, Thomas Wierczoch
and Matthias Weber: An Architecture Description
Language for developing Automotive ECU-Software. To
Appear: INCOSE 2004

[8] The Generic Modeling Environment,
http://www.isis.vanderbilt.edu/Projects/gme/

[9] The Mathworks: Simulink. http://www.mathworks.com/
[10] Statemate. http://www.ilogix.com
[11] ETAS GmbH : ASCET-MD. www.etasgroup.com
[12] AUTOSAR: Automotive Open Systems Architecture.

http://www.autosar.org
[13] EASIS: Electronic Architecture and System Engineering

for Integrated Safety Systems. EU 6th framework project
507690

8. Acknowledgements:

The EAST ADL definition is a joint effort in the
EAST project. We would especially like to acknowledge
Ulrich Freund, Orazio Gurrieri, Jörn Migge, Mark-Oliver
Reiser, and Thomas Wierczoch for their efforts. Thanks
are also due to Vilgot Claesson for feedback on this work.

