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Abstract—Fueled by an increasing demand for computational
power and high data-rate low-latency on-board communication,
the automotive electrical and electronic architectures are evolving
from distributed to consolidated domain and centralised architec-
tures. Future electrical and electronic automotive architectures
are envisioned to leverage heterogeneous computing platforms,
where several different processing units will be embedded within
electronic control units. These powerful control units are ex-
pected to be connected by high-bandwidth and low-latency on-
board backbone networks. This paper draws on the industrial
collaboration with the Swedish automotive industry for tackling
the challenges associated to the model-based development of
predictable embedded software for contemporary and evolving
automotive E/E architectures.
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I. INTRODUCTION

In the past decades, automotive software has been evolving
at a staggering pace [22]. Advanced Driver Assistance Sys-
tems (ADAS) and other advanced features in contemporary
and upcoming automotive software require high levels of
computational power and high data-rate low-latency on-board
communication that is well beyond the capacity of traditional
single-core Electronic Control Units (ECUs) and on-board
buses/networks respectively. One important consequence of
this trend is that traditional distributed Electrical/Electronic
(E/E) architectures are giving way to consolidated domain and
centralised E/E architectures [1] [2]. The progression and evo-
lution of the automotive E/E architectures is depicted in Fig. 1.
While consolidated domain E/E architectures are realised
by employing multi-core processors, centralised automotive
E/E architectures are envisioned to leverage heterogeneous
computing platforms, e.g., containing Central Processing Units
(CPUs), Graphical Processing Units (GPUs) and Field Pro-
grammable Gate Arrays (FPGAs), which are connected by
high-bandwidth and low-latency on-board backbone networks
such as Time Sensitive Networking (TSN) [22].

The introduction of heterogeneous computing platforms has
opened up several challenges including modelling of hetero-
geneous hardware architectures, modelling of software archi-
tecture, software to hardware allocation and ensuring quality,
scheduling, timing and performance analysis of the software
architectures, just to mention a few [8]. For instance, the
support for modelling heterogeneous hardware architectures
is a challenging task mainly because of the requirement of
data and memory management in a predictable way as well
as the requirement of satisfying real-time constraints at the

design time [8]. The state-of-the-art model-based software
development methodologies for automotive embedded systems
are unable to address all these challenges, as depicted in
Fig. 1. One crucial step for shifting the current model-based

Fig. 1: Evolution of automotive E/E architectures and
supporting model-based development methodologies.

software development methodologies into the new of domain
and centralised E/E architectures, is to provide modelling
languages with support for describing the software architec-
ture, the heterogeneous execution platforms and the software
to hardware allocation. Note that many automotive software
functions are time critical, i.e., they are required to provide
logically correct responses at right times that conform to the
specified timing constraints. Hence, the modelling for future
automotive E/E architectures should be supported by timing
analysis engines [10], [27], [29] and predictable run-time
environments [3], [8], [24].

This paper draws on the industrial collaboration with the
Swedish automotive industry for reporting on the advance-
ment of model-based methodologies for the development of
automotive software with respect to the evolution of auto-
motive E/E architectures. In particular, this paper discusses
on-going works with respect to architecture design (hardware
and software co-design), support for timing analysis of the
software architectures and provision of predictable run-time
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environment for distributed and domain E/E architectures.
What is more, this paper describes a pragmatic vision on how
to tackle the challenges of hardware and software co-design
for centralised E/E architectures.

The rest of the paper is organised as follows. Section II
describes a comparison between existing related approaches
documented in the literature and our solution. Section III
presents an industrial approach to support model-based soft-
ware development on distributed automotive E/E architec-
tures. Moreover, it discusses the partially available support
for model-based software development on domain automotive
E/E architectures. This section also discusses future plans
for the software development on centralised automotive E/E
architectures. Finally Section IV concludes the paper and
discusses the future work.

II. RELATED WORK

In recent years, automotive software has been on the
forefront of many software engineering advances including
model-based development methodologies and real-time tech-
niques [22]. This section presents the related research on mod-
elling languages and approaches that are supported by end-to-
end timing analysis and timing predictable run-time environ-
ments for distributed and domain automotive E/E architectures.
Note that timing predictability is a well-known term in time-
critical systems domain, where it is defined as a system-level
property. A system is considered timing predictable under a
set of assumptions if it is possible to demonstrate or prove at
the design time that all timing requirements specified on the
system are satisfied and that the system will certainly meet its
timing when executed [17], [20], [25], [33], [34].

EAST-ADL is an architecture description language for the
specification of automotive E/E architectures. It uses a multi-
layer approach, where each layer describes the automotive
architecture at a different abstraction level and from a dif-
ferent perspective [7]. At higher layers, EAST-ADL does not
allow to explicitly model execution platforms being multi-
core or heterogeneous. This means, that EAST-ADL supports
modelling of software architectures for distributed automotive
E/E architectures but for domain and centralised automotive
E/E architectures. There are several works that allow timing
analysis of software architectures that are modelled with
EAST-ADL for distributed automotive E/E architectures [12],
[13], [29]. However, there is no support for EAST-ADL to
perform timing analysis to verify timing predictability of the
software architectures on domain and centralised automotive
E/E architectures. The EAST-ADL development methodology
proposes to use domain-specific modelling languages (DSL)
at the lower levels of abstraction, notably AUTOSAR [4],
Rubus Component Model (RCM) [18], [24], and so forth.
As a consequence, the work described in this paper can be
considered as complementary to EAST-ADL.

AUTOSAR was created as an industrial initiative to provide
a standardised software architecture at the implementation
layer of the EAST-ADL methodology. AUTOSAR distin-
guishes among three software layers namely Application,
Runtime Environment and Basic Software. In its last def-
inition, AUTOSAR provides limited support for automotive
software on multi-core platforms while it provides no-support
for automotive software on heterogeneous platforms. This
means that AUTOSAR supports modelling of software archi-
tectures and run-time environments for distributed and domain
automotive E/E architectures but not for centralised automotive
E/E architectures.

Based on AUTOSAR, APP4MC [5] is an open source plat-
form for engineering embedded multi- and many-core software
systems. This platform is mainly used within the automotive
domain and relies on the AMALTHEA datamodels which
provide support for modelling, e.g., hardware, software, map-
ping, stimuli, events, among others. AMALTHEA datamodels
allow to describe both multi-core and heterogeneous platforms.
Compared to the modelling approach leveraged in this paper,
the AMALTHEA approach employs an extensive and explicit
modelling of the execution platform (in terms of processing
units, caches, memories, etc) and of all the components of the
automotive system including, e.g., operating system.

Similar to APP4MC, Distributed Real-time Architecture for
Mixed criticality Systems (DREAMS) [6] is an European
project which aims at developing a cross-domain architecture
and design tools for networked complex systems supporting
application subsystems with different criticality. DREAMS
delivers metamodels implementing different views including,
e.g., logical, physical and temporal.

Several works are based on the use of general-purpose lan-
guages such as UML as alternatives to automotive-specific lan-
guages. CHESS and GASPARD are examples of UML-based
languages. The former allows to model complex component-
based embedded systems in terms of their platform(s) and
relevant properties, such as timing [15]. GASPARD is mostly
used for the design of parallel embedded systems [16].

AADL [30] is an architecture description language con-
ceived for the avionics domain, but it has been increasingly
used for modelling embedded systems in general.

In crux, the state-of-the-art modelling approaches, timing
analysis techniques and run-time environments provide a good,
limited and no support for distributed, domain and centralised
automotive E/E architectures respectively.

III. MODEL-BASED DEVELOPMENT OF AUTOMOTIVE
SOFTWARE

In this section, we discuss the advancement of model-based
methodologies for the development of automotive software
with respect to the evolution of automotive E/E architectures
shown in Fig. 1. In doing so, we draw on the industrial
collaboration with Arcticus Systems1, a Swedish tool provider
for international companies in the automotive industry such
as Volvo Construction Equipment2, BAE Systems3, just to
mention a few. During the last decades, the research col-
laboration between Arcticus Systems and Mälardalen Uni-
versity led to the definition of a model-based development
methodology which is embodied in the Rubus Integrated
Component model development Environment (Rubus-ICE).
Rubus-ICE is based around the Rubus Component Model
(RCM) which is a modelling language for distributed real-
time embedded systems [14]. The methodology embodied in
Rubus-ICE consists of four major phases: modelling, timing
analysis, synthesis and deployment as shown in Fig. 1. As all
the phases are carried out within Rubus-ICE, this methodology
avoids explicit interoperability management and reduces time
and cost overheads.

1https://www.arcticus-systems.com/
2https://www.volvoce.com/
3https://www.baesystems.com/en/our-companies/our-businesses/platforms-

and-services/locations/sweden
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Fig. 2: Example of software development for real-time embedded systems on various Automotive E/E architectures using
Rubus-ICE.

A. Model-based development of automotive software on dis-
tributed automotive E/E architectures

Rubus-ICE provides a full-fledged model-based methodol-
ogy for the development of automotive software on distributed
E/E architectures. The development support includes mod-
elling of the automotive software architectures and timing
information (timing properties, requirements and constraints),
end-to-end timing analysis of the software architectures, au-
tomatic generation of timing verified code from the software
architectures, deployment and execution on predictable run-
time environment. Fig. 2 shows a screenshot of an example
of a real-time system modelled and analysed on a distributed
automotive E/E architecture.

1) Modelling: Rubus-ICE fully supports modelling of soft-
ware architectures on distributed automotive E/E architectures.
Within Rubus-ICE, the automotive software architecture and
its timing properties are modelled with RCM. In RCM, a Soft-
ware Circuit (SWC) is the lowest-level hierarchical element
and it represents the basic component that encapsulates one
or more software functions. For example, the yellow boxes in
Fig. 2, namely Logger, HMI and ACC represent three SWCs.
Two or more SWCs may be encapsulated into a software
assembly (ASM) for constructing the system at different hier-
archical levels. An SWC has the run-to-completion semantics.
In RCM, the interaction between SWCs is expressed in terms
of data and control flow, separately. The SWCs communicate
with each other via data ports. The component model facil-
itates analysis and reuse of components in different contexts
by separating functional code from the infrastructure that im-
plements the execution environment. RCM allows modelling
of single-core processing units by means of node elements as
shown by the model of two Node1 in Fig. 2. The nodes can be
distributed, in which case they are connected by one or more
models of networks. This is the case of the node elements
Node1 and Node2 in Fig. 2 which are connected by the
network element NW1. RCM supports modelling of various
types of in-vehicle networks, including broadcast networks
like Controller Area Network (CAN) [19] and its higher level

protocols [28] and point-to-point networks like Ethernet Audio
Video Bridging (AVB) [9] and TSN [26].

Fig. 3: RCM extensions supporting multi-core platforms.

2) Timing Analysis: RCM allows expressing real-time re-
quirements and properties on the software architecture of
distributed automotive E/E architectures. To this end, the
designer has to express real-time properties of SWCs, such
as worst-case execution times (WCETs), stack usage, etc.
The WCETs of the SWCs can be determined by using
static WCET analysis tools such as SWEET [21]. The plugin
framework in Rubus-ICE supports integration of such tools.
The SWCs that are activated by periodic triggering sources,
e.g., the Logger and ACC components in Fig. 2, are statically
scheduled using the Rubus off-line scheduler. The scheduler
constructs a schedule taking into account the specified real-
time constraints. For event-triggered SWCs, response-time
analysis [32] is performed and the calculated response times
are compared with the specified timing requirements. The
supported analysis, among others, includes distributed end-to-
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end response-time and delay analyses [27] and shared stack
analysis [11].

3) Synthesis: While the software development using Rubus-
ICE is independent of the underlying operating system (OS),
code synthesizers are not. For this reason, Rubus-ICE ac-
companies the Rubus Real-Time OS (RTOS) designed for
predictable execution of the software architecture. The Rubus
RTOS supports both time- and event-triggered execution of
tasks4. It optimises the run-time architecture by using the hy-
brid scheduling combining the static cyclic scheduling and the
fixed-priority preemptive scheduling [23]. The Rubus RTOS
has been ported to several different commercial-off-the-shelf
processors [24].

4) Deployment: Within Rubus-ICE, the deployment phase
involves both software and hardware platforms. The Rubus
RTOS provides for the software platform. Although the soft-
ware platform is OS dependent, it should be noted that the
software architecture and corresponding synthesised code can
be easily adapted and deployed to any RTOS. Similarly, any
processing unit capable of running an RTOS, e.g., IBM’s Pow-
erPC or ARM processor can serve as the hardware platform
for deployment.

B. Model-based development of automotive software on do-
main automotive E/E architectures

Domain E/E architectures employ more powerful multi- and
many-core processing units for replacing the constellation of
single-core units realising distributed E/E architectures. Cur-
rently, Rubus-ICE allows modelling of software architectures
and specification of timing information of automotive software
systems that are deployed on these architectures. For example,
Fig. 2 shows an RCM model of a software architecture of
a real-time system that is deployed on a tri-core node with
multiple partitions per core (Node2). The support for timing
analysis and predictable run-time support for real-time systems
on these architectures is an ongoing work.

1) Modelling: RCM fully supports modelling of software
architectures on domain automotive E/E architectures. In fact,
in our previous work, we extended RCM for modelling au-
tomotive software on multi-core processing units [14]. The
extension included the introduction of new modelling elements
for describing multi-core processing units, software applica-
tions and their criticality levels, and the software to hardware
allocation. Fig. 3 shows the RCM extensions supporting multi-
core platforms. Multi-core processing units are modelled in
terms of node, core and partition elements. For instance,
the node element Node2 in Fig. 2 is modelled as a tri-core
processor comprising the core elements Core 0, Core 1 and
Core 2. In turns, the core element Core 0 has two partition
elements, namely Partition 1 and Partition 2. Within RCM,
partition elements isolate parts of software from each others
in both time and space. Isolation in time means that each
partition gets a reserved share of the core processing time
while isolation in space means that the memory available
to each core is divided among its partitions. The extended
RCM leverages an allocation mechanism which replaces the
use of structural containment relations in favour of more
flexible relationships among software and hardware elements.
In particular, such relationships can only be specified among
node, core, and partition elements and application, mode,
assembly, and SWC elements.

4Tasks are run-time entities, whereas SWCs are equivalent design-time
entities.

2) Timing Analysis: Today Rubus-ICE uses offline schedul-
ing to schedule software architectures on multi-core platforms.
Moreover, resource partitioning techniques are considered for
managing the shared resources such as cache memories and
system bus. Hence, the scheduled software architecture is
correct by construction from timing perspective.

3) Synthesis: Generation of code from the software ar-
chitectures of the applications that are deployed on domain
automotive E/E architectures is an ongoing work.

4) Deployment: The isolation in time and space is sup-
ported by the run-time layer, where the Rubus multi-core
hypervisor uses resource-isolation techniques for arbitration of
intra- and inter-core shared resources. As a result of using iso-
lation techniques, each core and partition becomes (virtually)
independent meaning that they can be seen as a single-core
processor equivalent with dedicated system resources. One
notable advantage of this is that the overall system becomes
simpler to model as there is no need to explicitly model
memories, I/Os and other shared resources in the software
architecture.

C. Model-based development of automotive software on Cen-
tralised automotive E/E architectures

Centralised E/E architectures are envisioned to leverage
heterogeneous hardware comprising of certified traditional
processors and general-purpose high-performance processors
with accelerators. As a result, centralised E/E architecture will
require the integration of heterogeneous software with respect
to, e.g., workloads, activation semantics, data-flow semantics,
real-time requirements and safety requirements [31]. What
is more, they open up to several development challenges
including software architecture and quality, scheduling and
hardware [8].

Currently, RCM supports the specification of heterogeneous
software with respect to real-time properties and requirements,
safety requirements and criticality levels (different Automotive
Safety Integrity Levels (ASILs) A to D according to the
ISO 26262 functional safety standard for road vehicles), ac-
tivation semantics (time triggered, event triggered), data-flow
semantics (synchronous, independent activation, task chains)
and workloads. An on-going work is the extension of RCM
with fine-grained modelling elements for the specification of
heterogeneous hardware. This extension will include elements
such as GPU, FPGA, memory, cache, etc. Support for timing
analysis, synthesis and deployment are future works. To the
best of our knowledge, there is no modelling framework or
methodology that supports all the above mentioned develop-
ment steps (shown in Fig. 2) for centralised automotive E/E
architectures.

IV. CONCLUSION AND FUTURE WORK

This paper presents a component model, a development
methodology and an integrated development environment that
are used in the automotive industry. The tool chain, Rubus-
ICE, supports model- and component-based development of
embedded software fpr evolving automotive Electrical/Elec-
tronic (E/E) architectures. The paper also demonstrated how
current industrial model-based methodologies support mod-
elling, timing-analysis, synthesis and deployment of embedded
software on distributed automotive E/E. architectures. The
paper also discussed on-going works for enriching industrial
model-based methodologies with support for architecture de-
sign (hardware and software co-design), support for end-to-
end timing analysis of the software architectures and provision



5

of predictable run-time environment for embedded software
on automotive domain and centralised E/E architectures. We
identify that a full-fledged model-based software development
methodology, development environment and run-time support
for predictable automotive software on domain and centralised
automotive E/E architectures is still missing. One line of future
work encompasses provisioning of timing analysis, synthesis
and deployment of embedded software on domain automotive
E/E architectures. Another line of future work includes the
definition of a reference architecture for heterogeneous plat-
forms employed in the realisation of centralised automotive
E/E architectures.
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Technology-preserving transition from single-core to multi-core in mod-
elling vehicular systems. In: Springer (ed.) 13th European Conference
on Modelling Foundations and Applications. ((2017)), http://www.es.
mdh.se/publications/4750-

[15] Cicchetti, A., Ciccozzi, F., Mazzini, S., Puri, S., Panunzio, M., Zovi, A.,
Vardanega, T.: Chess: a model-driven engineering tool environment for
aiding the development of complex industrial systems. In: Proceedings
of the 27th IEEE/ACM International Conference on Automated Software
Engineering. pp. 362–365. ACM ((2012))
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