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Abstract—Time sensitive networking (TSN) is gaining atten-
tion in industrial automation networks since it brings essential
real-time capabilities to the Ethernet layer. Safety-critical real-
time applications based on TSN require both timeliness as
well as fault-tolerance guarantees. The TSN standard 802.1CB
introduces seamless redundancy mechanisms for time-sensitive
data whereby each data frame is sequenced and duplicated
across a redundant link to prevent single points of failure
(most commonly, link failures). However, a major shortcoming
of 802.1CB is the lack of fault detection mechanisms which can
result in unnecessary replications even under good link conditions
- clearly inefficient in terms of bandwidth use. This paper pro-
poses a machine learning-based intelligent configuration synthesis
mechanism that enhances bandwidth utilization by replicating
frames only when a link has a higher propensity for failure.

Index Terms—Time sensitive networking, network configura-
tion, machine learning, safety-critical systems, fault-tolerance,
redundancy, fault-detection

I. INTRODUCTION

Safety-critical systems in industrial automation need real-
time guarantees from the Ethernet layer to deliver control data
within a bounded time [1]. Consequently, network design for
such systems has traditionally been conservative in the sense
that requirements are developed with meticulous detail and
the worst case network traffic is included in design prior to
deployment. This provides operational guarantees by means
of safety certification issued by agencies in accordance with
applicable standards.

In addition to real-time guarantees such as bounded worst-
case delays and jitter [2], redundancy measures must be incor-
porated in the network design to ensure that time-sensitive data
meet their real-time requirements in spite of faulty network
conditions. This fundamental goal has driven the design and
development of networking systems for safety-critical appli-
cations. Among the foremost of such design paradigms is the
Time-triggered (TT) network paradigm [3] which promises
that time-critical control frames are delivered with bounded
delays. Such a design paradigm has proven to be effective in
a multitude of domains such as avionics, industrial automa-
tion and automotive all of which have stringent demands of
determinism [4].

More recently, Time Sensitive Networking (TSN) has
emerged as a front-runner and a competing technology to the
well established field-bus standard that have been the staple
of industrial and automotive networking [5]. TSN is a set
of standards that provide real-time guarantees over standard

Ethernet. Hence, current IEEE 802.1Q standards [6] come
integrated with TSN so that vendors can directly provide
properties such as timeliness, fault-tolerance, reliability and
availability to their networking products.

From a network layer perspective, in particular, it implies
the co-existence of mixed traffic classes (standard best-effort
Ethernet traffic alongside time-sensitive safety-critical control
traffic). Additionally, thanks to the lowering cost of sensors
and cameras, industrial automation and automotive applica-
tions (e.g., ADAS) are becoming bandwidth hungry. Such
demands on the dual requirements of high bandwidth for
multimedia data and deterministic, fault-tolerant delivery of
safety-critical data can only be supported by a networking
technology such as TSN Ethernet that can guarantee high re-
liability, fault-tolerance, and availability. Futuristic automotive
and industrial network applications such as ADAS and smart
factories envisage both best effort data traffic as well as time
sensitive control traffic on the same network. Additionally, the
widespread use of existing Ethernet technology is a strong
driver to motivate the need for enhancing standard Switched
Ethernet with TSN capabilities. From a safety perspective (at
the network layer), introduction of such mechanisms requires
traffic isolation as well as seamless redundancy. The TSN stan-
dard consists of a number of (sub)standards, some of which
are - Timing and Synchronization for Time-Sensitive Appli-
cations (802.1ASrev), Stream Reservation Protocol (SRP)
Enhancements and Performance Improvements (802.1Qcc),
Enhancements for Scheduled Traffic (802.1Qbv) and Frame
Replication and Elimination for Reliability (802.1CB).In this
paper, we focus on provisions for seamless redundancy within
TSN defined by 802.1CB standard. The working principle
of 802.1CB is that a set of FRER or Frame Replication
and Elimination for Reliability functions are instantiated on
ports of switches and nodes. These functions replicate each
time-sensitive frame belonging to a stream (see Section II) at
various points (more precisely, on ports) in the network and
eliminate the replicates at the receiver node to the extent that
the higher layer protocols do not have any knowledge of this
process thereby appearing seamless to the application.

A. Motivation for fault-detection in TSN

Redundancy is an essential requirement to provide fault
tolerance. Fault detection implies the process wherein a node
or link fault in the network is detected and identified. Without
loss of generality, we restrict ourselves to communication link



faults that can potentially cause link failures. We attempt to
tackle a hitherto under-researched shortcoming - the lack of
fault detection in 802.1CB - by introducing an ML-based
fault detection in order to instantiate FRER functions only
on ports connecting links which have the highest probability
of failure (a natural consequence of having faults). This is
in contrast to the existing mechanism whereby frames are
arbitrarily replicated and eliminated. This can be lead to
inefficient bandwidth use, which is a premium commodity.
Consequently, our approach aims to instantiate these functions
at runtime based on the decisions provided by the ML-based
fault detection. Faults must be detected before a link fails
and redundancy established prior to failure. Furthermore, the
execution of FRER functions must be maintained as long
as the faulty state continues. It is essential to note however,
that the specific ports where FRER functions are instantiated
(arbitrarily) is part of the pre-deployment design phase.

B. Motivation for ML-based fault-detection

A typical TSN network has a vast number of parameters that
must be configured for precise operation. These parameters
can also be used to gather valuable information (either directly
or inferentially) about link conditions. Software-defined net-
working paradigm is being increasingly used in TSN (refer
to Section V) which makes it easy to introduce an ML-
layer over the control plane. Additionally, ML algorithms
have been used in network anomaly detection since the past
decade [7] and are becoming increasingly powerful as well as
accurate. The ML paradigm utilizes existing data to provide
value addition to decision making, and in this specific case, to
enable redundancy features for fault-tolerant behaviour while
efficiently utilizing bandwidth. Furthermore, the complexity of
configuration and scheduling schemes defy a deterministic and
analytical solution to this problem as well as to implement it
in real-time.

To the best of our knowledge, no previous works have
focused on fault detection in TSN using ML-based methods.
In this paper, we present an intelligent configuration synthesis
approach that can enable us to design a process to detect faulty
links and help in deciding when, where and how to replicate
frames to avoid bandwidth wastage.

The remainder of the paper is structured as follows: Section
II describes the system model. Section III introduces the
notion of intelligent configuration synthesis and its motivation
followed by Section IV which discusses the role of machine
learning for fault detection in the specific TSN standard
802.1CB. Section V refers the reader to recent related works
on TSN as well as on machine learning in the networking
domain. Finally, Section VI concludes the paper and outlines
future work in this direction.

II. SYSTEM MODEL

A network is depicted as a directed acyclic graph (DAG),
G = {V, E} with directed edges, E connecting the vertices,
V . A physical link between the vertices vi, vj is denoted
by (vi, vj), (vj , vi) ∈ E where the first vertex in the pair

description defines the source node and the second vertex
defines the destination node. Nodes are either the source
or destination of messages (end systems) or may forward
messages to other nodes (switches). TSN standards define an
entity called stream as a periodic flow of data transmission
(the message) from one talker (the sender node) to one or
more listeners (the receiver nodes) via intermediate nodes
(switches). We denote the set of all streams in the network with
S. Similar to [8][9], we denote the route of a stream, si ∈ S
from talker v1 to listener vn routed through intermediary nodes
v2, v3, ..., vn−1 as Ri = [(v1, v2), ..., (vn−1, vn)].

A stream si ∈ S is defined by the tuple 〈Ci, Ti, Li, Ji〉
denoting the message size in bytes, the period, the maximum
allowed end-to-end latency, and the maximum allowed jitter
of the stream, respectively.

Each stream is composed of frames which are the standard
802.1Q Ethernet frames[6]. We denote these by f , character-
ized by its period, length and priority:

∀fsi ∈ F : fsi = {T sifi , len
si
fi
, priosifi} (1)

Consequent to the above model design, we have each link,
Li, i ∈ E , on which frames from multiple streams, si with
varying periods, T sifi flow (from (1)).

A. Fault model

The system model is composed of two principal com-
ponents, the nodes (talkers, listeners and switches) and the
communication links. There are many types of faults that can
affect the transmission and reception of messages within this
system. This paper focuses on transient faults on communica-
tion links (edges) that connect switches to nodes and nodes to
other nodes. It has been observed that in typical automotive
Ethernet networks, the most common faults are transient faults
in the wired communication links that occur at the rate of
102/(h ∗ car) [10]. These could be due to bit flips caused
by electromagnetic interference or other sources. Bit flips can
cause frame loss since the cyclic redundancy check(CRC) at
the receiver detects a corrupted frame and is discarded. The
fault occurrence can follow a statistical probability distribution
function, can be sporadic or even periodic. In this paper, we
do not delve into these particularities.

Below are examples of intermittent faults that can occur on
nodes as well as links.

• A stuck transmitter sending the same sequence numbers
for multiple packets or the same packet in each transmis-
sion cycle;

• A corrupted link sending erroneous sequence numbers or
application payload;

• Transient link failure causing erroneous (corrupted)
frames to be delivered and normal ones after a random
interval which is decided by the probability distribution
of the fault.

A fault, ψi on each communication link, Li is characterized
by a tuple:

∀ψi ∈ Ψ : ψi = {νψi
, Tψi

,Lψi
} (2)



representing the frequency of occurrence of the fault νψi
, the

duration for which the fault occurs Tψi and the identity of the
faulty link Lψi , respectively.

The faults result in packet losses Piloss for each link Li ∈ E
which are observed at the receiver MAC layer by means of
CRC checksum validation. We are interested in the number of
packet losses within a specified observation window, Tobs on
each link.

B. Problem formulation

We are given a networked system of end stations (talkers and
listeners), switches and links. Specific set of streams, si ∈ S
flow across the network with given attributes. The fault model
describes the faults on each link that can result in packet losses.
These are measured for a specified observation window, Tobs
on each link to generate the necessary training data set which is
then used to make decisions as to where the FRER functions
need to be executed to effect the same redundancy benefits
as with an arbitrary scheme but with the added advantage of
bandwidth conservation.

C. Assumptions

1) Intermittent faults occur either randomly or with a given
periodicity that can be defined in the analysis;

2) Only the communication links are assumed to experience
faults; Nodes and switch faults are inconsequential to our
problem i.e., we assume fault-free operation;

3) A ring topology is assumed which in itself is conducive
to fault-tolerance. However, the topology aspects are not
a limiting factor;

4) All streams, si ∈ S are assumed time-sensitive in that
their delivery at the receiver must be guaranteed within
a worst-case delay less than or equal the period as
specified in the tuple 〈Ci, Ti, Li, Ji〉;

5) All frames belonging to a stream have the same size,
period and priorities;

6) The redundant link is assumed to be unaffected by faults.

III. INTELLIGENT CONFIGURATION SYNTHESIS

It is evident by a careful study of the 802.1CB standard
that there exist no fault detection mechanisms in order to detect
when and where a fault occurs. The functions described in the
standard merely replicate and eliminate frames belonging to
streams based on a set of rules formulated prior to deployment
(static) in order to ensure seamless redundancy. This can be
wasteful of bandwidth since the streams that are correctly
transmitted are also replicated with no apparent benefit. Hence,
we motivate the need for an improved method to achieve band-
width savings by adding intelligence on top of the redundancy
mechanisms so that the functions described in the standard are
instantiated only when there is a real and provable need for
replication of critical frames.

However, there exists a function in the standard,
the LatentErrorTest, which detects latent errors by
monitoring the number of packets discarded by the

BaseRecoveryFunction. However, this function does not
specify when and where a fault occurs in the network.

Consequently, we see that a purely static approach to
synthesizing a configuration cannot provide efficient resource
utilization. In this paper, we sketch the details of a predictive
error detection mechanism that monitors the network param-
eters at a specified rate (which can be varied) and takes as its
input a subset of these parameters. An Artificial Intelligence
(AI) engine processes these values and predicts the likelihood
of a fault (location and instant of occurrence) even before it
happens.

The outputs of the fault detection mechanism form the
inputs to the configurator that will then re-configure the
network parameters (numerical values to the managed objects)
to reflect the changes that need to be made in light of these
new fault conditions.

A. Fully Centralized Configuration of TSN
Three configuration models are detailed in the 802.1Qcc

standard [11] - the fully distributed model, the centralized net-
work/distributed user model and the fully centralized model.
From a practical perspective, a fully centralized model is
considered since it has complete knowledge of the network
parameters at any given time instant. The principal logical
components of the fully centralized configuration model are
Central user configuration (CUC) and central network config-
uration (CNC) as shown in Fig. 1.

SW1 SW2

ES2

SW3 SW4

ES1

Central User configurator

Central Network Configurator

ES1 ES2

User Network Info

Management Info

Proprietary protocols

Fig. 1. Central configuration of TSN mechanisms [11]

The CUC is the interface between the user (typically
a control engineer who has knowledge about the network
requirements) and the CNC (described below). The CUC
discovers end stations, retrieves end station capabilities and
user requirements, and configures TSN features in end stations.
Therefore clearly, as the name suggests, the CUC deals entirely
with the end stations and user requirements.

The CNC has a complete view of the network topology
and the capabilities of the switches and end-stations. This
knowledge together with user requirements (such as determin-
istic latency and fault-tolerance) from the CUC to generate



a network-wide configuration that must guarantee said per-
formance. The particularities of the standard are beyond the
scope of this paper and hence interested readers are referred
to [11]. The CNC communicates with the switches as well as
extracts parameters using network management protocol such
as RESTCONF [12] or NETCONF [13].

B. Redundancy features of 802.1CB

The primary functionality of 802.1CB is to provide seam-
less redundancy against single points of failure (SPoF) in the
links. An arbitrary topology is shown in Fig. 2. Two streams
are depicted using the red and blue dotted arrows respectively.

SW1 SW2

ES2

SW3 SW4

ES1ES1 ES2

Fig. 2. A ring topology of switches (SW) and end systems (ES).

C. List of seamless redundancy functions

• Stream splitting
• Sequence generating function - SGen
• Stream identification function
• Sequence encode and decode function
• Sequence recovery function - SRec
• Stream forwarding function

Out of these, only two functions - SGen and SRec - are central
to our problem. The SGen function generates ordered sequence
numbers for each frame belonging to a stream that is replicated
across multiple routes while the SRec function eliminates the
duplicate frames identified by the sequence numbers.

IV. ML-BASED FAULT DETECTION FOR 802.1CB

We focus on transient faults induced by the wired com-
munication links. The monitor inspects network traffic using
the following parameters to make inferences about anomalies.
Hence, the problem we tackle here is largely one of anomaly
detection in the networking domain with specific application
to time-sensitive traffic.

A. Link quality measure

A link could be degraded by soft errors due to electromag-
netic interference or other sources which can occur randomly
or periodically. A drop in link quality manifests itself as a
degradation of the transmitted data leading to corrupted frames
and eventually dropped frames (owing to mismatch in cyclic
redundancy check sequence at the receiver). As soon as such
a degradation is detected (inferred from dropped frames at
the receiver port), the fault detection mechanism identifies the
link in question, the precise time of occurrence, the duration of
the link quality drop (reflecting the number of packet losses)

and the frequency of the link degradation (assuming a large
observation window).

duration

Fig. 3. Link quality as inferred from packet losses at the MAC layer.

B. Training data for fault detection

An anomaly in our system model is a condition wherein
the pattern of linkQuality changes too differently (large
variance) from expected patterns. To enable such a pattern to
be recognized in advance, the packet losses are observed over
a large duration (increasing Tobs). This constitutes the training
data collection process.

Link_ID Stream_ID Frame_instance Timestamp LinkQuality PacketLoss

Fig. 4. Parameters for the training data set.

The link, stream and frame parameters in Fig. 4 are readily
obtained from the managed objects in the TSN standard
802.1Qcc. The rest of the parameters of the data set are from
monitoring the MAC layer at the receiver port. We assume a
fixed sampling interval during the entire data collection stage.

C. Data processing

The training data is a collection of packet loss events with
accurate timestamps for each link, stream and frame belonging
to a stream in the network. Depending on the sampling rate and
the value of the observation window Tobs, the dimensionality
of the data set can quickly become unmanageably huge as
is common in almost all network measurement data sets.
Towards this end, we wish to employ principal component
analysis (PCA), a well known procedure for reducing the
dimensionality of the variable space by representing it with
a few orthogonal (uncorrelated) variables that capture most
of its variability. This has been used previously for anomaly
detection in the networking domain [14].

V. RELATED WORK

Over the past decade, interest in TSN and its applicability
to real-time safety-critical systems has been growing both in
academia and industry. A large chunk of research has been de-
voted to generating real-time schedules based on satisfiability
modulo theorems (SMT) [15][8][9][16][2]. Recently, however
as more features have been added to the TSN standards, the
complexity of configuring the network has emerged as a key
driver for academic research. In [17], the authors describe a
configuration agent that generates a feasible schedule based on
information such as traffic patterns. A more recent work by



the authors [18] develops a runtime reconfiguration algorithm
for centralized monitoring of the TSN network. A particular
challenge has been to introduce flexibility in the configuration
process while maintaining guaranteed safety performance. [19]
[20] discuss fault tolerance and safety aspects of TSN as
a key enabler for Fog computing [21]. [22] gives a very
good overview of various challenges for TSN in the industrial
automation context.

TSN networks are increasingly becoming software-defined
[23][24][25] and are indeed compatible with the centralized
configuration model presented in 802.1Qcc[11]. Such a
software paradigm enable ML algorithms like anomaly de-
tection and condition monitoring to be easily deployed to
provide runtime diagnosis - a key element in any decision-
based control process [26]. Industry driven research such as
[27] [28] provide a stimulating discussion on the general topic
of AI-based safety. A relevant paper to the topic of fault
detection and recovery is [29] where the authors discuss an
architecture that integrates multiple and diverse technologies,
as hypervisors, run-time monitoring, redundancy with diver-
sity, predictive fault detection, fault recovery, and predictable
resource management. Seshia et al. [30] discuss verification
of artificial intelligence. The authors explain the challenges of
verifying AI systems using formal methods approach which
have so far worked well with systems with specified behaviour.
a principle aspect of which is system modelling.

VI. CONCLUSION

In this paper, we have provided a feasible path towards
introducing fault detection capabilities into an important TSN
standard, 802.1CB for seamless redundancy. The parameters
needed to create the dataset are available from the standard-
defined managed objects. Additionally, our approach uses
network parameters that can easily be extracted through tools
such as a packet sniffer like wireshark and used in established
anomaly detection algorithms to help detect accurately the
links where faults and failures are most likely to occur.

As future work, a simulation of the proposed scheme will
be undertaken by integrating this with existing TSN-based
simulators implemented in OMNET++ network simulator.
Additionally, an important aspect is to be able to provide
guarantees for the correct operation of such ML-based schema
in traditional safety-critical networked systems through model
checking. We therefore envisage that such a scheme can, after
due verification and validation, be inducted into the standard
as an enhancement.
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