
SERVER-BASED REAL-TIME COMMUNICATION ON
CAN

Thomas Nolte, Mikael Nolin, and Hans Hansson

Mälardalen Real-Time Research Centre
Deptartment of Computer Science and Engineering

Mälardalen University, Västerås, SWEDEN
Email: {thomas.nolte, mikael.nolin, hans.hansson}@mdh.se

Abstract: This paper presents a share-driven scheduling protocol for networks with
real-time properties. The protocol provides fairness and bandwidth isolation among
predictable as well as unpredictable streams of messages on the network. The need for
this kind of scheduled real-time communication network is high in applications that
have requirements on flexibility, both during development for assigning communication
bandwidth to different applications, and during run-time to facilitate dynamic addition
and removal of system components.
The share-driven scheduling protocol is illustrated by applying it to the popular Controller
Area Network (CAN). Two versions of the protocol are presented together with their
associated timing analysis.

Keywords: fieldbus networks, real-time, scheduling, CAN, controller area network

1. INTRODUCTION

In optimising the design of a real-time communica-
tions system it is important to both guarantee the
timeliness of periodic messages and to minimize the
interference from periodic traffic on the transmission
of aperiodic messages. Therefore, the usage of server-
based scheduling techniques is proposed to handle
streams of both periodic and aperiodic traffic. The
servers proposed in this paper are using the Earli-
est Deadline First (EDF) scheduling strategy, since
EDF allows optimal resource utilisation. Examples of
such server-based scheduling techniques are the Total
Bandwidth Server (TBS) (Spuri and Buttazzo, 1994;
Spuri et al., 1995), and the Constant Bandwidth Server
(CBS) (Abeni, 1998).

In this paper, server-based scheduling is applied to
the Controller Area Network (CAN) (CAN, 1993),
which is one of the more common communication
networks used today in the automotive industry as
well as in several other application domains that have

real-time requirements. CAN is implementing fixed-
priority scheduling using a bit-wise arbitration mech-
anism in the Medium Access Control (MAC) layer.
This mechanism avoids collisions in a deterministic
way and is amenable to timing analysis (Tindell et
al., 1995).

Using server-based scheduling techniques for CAN,
fairness among users of the network is guaranteed
(e.g., “misbehaving” aperiodic processes cannot aver-
sively interfere with well-behaved processes). This
is desirable in, e.g., an open architecture where the
adding and removing of network users is controlled
by an online admission control. In contrast with other
proposals for CAN scheduling, aperiodic messages
are not sent “in the background” of periodic mes-
sages or in separate time-slots (Pedreiras and Almeida,
2000). Instead, aperiodic and periodic messages are
jointly scheduled using servers. This substantially fa-
cilitates meeting response-time requirements, both for
aperiodic and periodic messages.

Share-driven communication on CAN is presented
previously (Nolte et al., 2003). The main contributions
of this paper are:

• A worst-case response-time analysis for the pre-
viously proposed protocol, bounding the maxi-
mum delay for a server to send a message.

• An improvement of the previously proposed pro-
tocol that, under many network configurations,
can give lower worst-case response-times.

• A worst-case response-time analysis for the im-
proved protocol.

• A comparison of the worst-case response-times
of the two protocols.

The paper is organized as follows: Section 2 presents
related work. In Section 3, server-based CAN is pre-
sented together with its corresponding timing analysis,
and in Section 4 the modified mechanism is presented
together with its corresponding timing analysis. Fi-
nally, conclusions are presented in Section 5.

2. BACKGROUND AND RELATED WORK

In this section, CAN and previously proposed CAN
scheduling methods are presented.

2.1 The Controller Area Network

The Controller Area Network (CAN) (CAN, 1993)
is a broadcast bus designed to operate at speeds of
up to 1Mbps. CAN is extensively used in automotive
systems, as well as in other applications.

CAN is a collision-avoidance broadcast bus, which
uses deterministic collision resolution to control ac-
cess to the bus (so called CSMA/CA). The frame iden-
tifier is required to be unique, in the sense that two si-
multaneously active frames originating from different
sources must have distinct identifiers. Besides iden-
tifying the frame, the identifier serves two purposes:
(1) assigning a priority to the frame, and (2) enabling
receivers to filter frames.

CAN guarantees that the highest priority active frame
will be transmitted. Hence, CAN behaves like a
priority-based queue.

2.2 Scheduling on CAN

Several different types of scheduling methods exists
for CAN, where FPS scheduling is the most natural
scheduling method since it is supported by the CAN
protocol. Response-time tests for determining the
schedulability of CAN frames under FPS have been
presented (Tindell et al., 1995). This analysis is based
on the standard fixed-priority response-time analy-
sis for CPU scheduling (Audsley et al., 1993). TT-
CAN (TT-CAN, 2000) provides time-driven schedul-
ing for CAN, and Flexible Time-Triggered CAN
(FTT-CAN) (Almeida et al., 1999) supports priority-
driven scheduling in combination with time-driven
scheduling. FTT-CAN is presented in more detail be-
low. The share-driven approach has for CAN been

introduced earlier (Nolte et al., 2003). Later, in section
3 and 4, server-based scheduling of CAN is presented
in detail.

2.2.1. Flexible Time-Triggered Scheduling To com-
bine event-triggered traffic with time-triggered traffic
in CAN, FTT-CAN (Flexible Time-Triggered commu-
nication on CAN) is proposed (Almeida et al., 1999;
Pedreiras and Almeida, 2000). In FTT-CAN, time is
partitioned into Elementary Cycles (ECs) which are
initiated by a special message, the Trigger Message
(TM). This message contains the schedule for the
synchronous traffic that shall be sent within this EC.
The schedule is calculated and sent by a master node.
FTT-CAN supports both periodic and aperiodic traffic
by dividing the EC in two parts. In the first part, the
asynchronous window, a (possibly empty) set of aperi-
odic messages are sent using CAN’s native arbitration
mechanism. In the second part, the synchronous win-
dow, traffic is sent according to the schedule delivered
in the TM.

2.2.2. EDF Scheduling Several suggestions for
scheduling CAN using EDF have been presented
(Livani et al., 1998; Natale, 2000; Zuberi and Shin,
1995). These solutions are all based on manipulating
the identifier of the CAN frame to reflect the deadline
of the frame, and thus they reduce the number of
possible identifiers to be used by the system design-
ers. Restricting the use of identifiers is often not an
attractive alternative, since it interferes with other de-
sign activities, and is even sometimes in conflict with
adopted standards and recommendations (CiA, 1996;
J1938, 1998). FTT-CAN can also schedule messages
according to EDF, using the synchronous window.

3. SERVER-BASED SCHEDULING ON CAN

In order to provide guaranteed network bandwidth for
both synchronous and asynchronous real-time mes-
sages in CAN, server-based scheduling techniques
provide a solution.

Server-based scheduling of CAN has been presented
earlier (Nolte and Lin, 2002; Nolte et al., 2003). How-
ever, in this paper response-time analysis is presented
for (Nolte et al., 2003) together with modifications
that, for some system configurations, limits the worst-
case response-time while retaining fairness. Further-
more, equations that bound the worst-case response-
time for each server are presented.

Using servers, the whole network will be scheduled
as a single resource, providing bandwidth isolation as
well as fairness among the users of the servers. How-
ever, in order to make server-scheduling decisions, the
scheduler must have information on when messages
are arriving at the different nodes in the system, so
that it can assign them a deadline based on the server
policy in use. This information should not be sent to
the scheduler using message passing, since this would
further reduce the already low bandwidth offered by

CAN. The method, presented below, will provide a
solution to this.

3.1 Server Scheduling (N-Servers)

In real-time scheduling, a server is a conceptual en-
tity that controls the access to some shared resource.
Sometimes multiple servers are associated with a
single resource. For instance, in this paper multiple
servers are mediating access to a single CAN bus.

The server used in this paper is a simplified version
of the Total Bandwidth Server (TBS) (Spuri and But-
tazzo, 1994; Spuri et al., 1995).

3.1.1. Server Characterization Each node on the
CAN bus is assigned one or more network servers
(N-Servers). Each N-Server, s, is characterized by its
period Ts, and it is allowed to send one message
every server period. The message length is allowed
to be of worst-case size. A server is also associated
with a relative deadline Ds = Ts. At any time,
a server may also be associated with an absolute
deadline ds, denoting the next actual deadline for the
server. The server deadlines are used for scheduling
purposes only, and are not to be confused with any
deadline associated with a particular message. (For
instance, the scheduling method presented below will
under certain circumstances miss the server deadline.
However, this does not necessarily make the system
unschedulable.)

3.1.2. Server State The state of a server s is ex-
pressed by its absolute deadline ds and whether the
server is active or idle. The rules for updating the
server state are as follows:

(1) When an idle server receives message n at time
rn it becomes active and the server deadline is
set so that

dn

s = max(rn + Ds, d
n−1

s)

where d0

s = 0.
(2) When an active server sends a message and still

has more messages to send, the server deadline
is updated according to

dn

s = dn−1

s + Ds

(3) When an active server sends a message and has
no more messages to send, the server becomes
idle.

3.2 Medium Access (M-Server)

The native medium access method in CAN is strictly
priority-based. Hence, it is not very useful when
scheduling the network with servers. Instead a mas-
ter server (M-Server) is introduced, which is a piece
of software executing on one of the network nodes.
Scheduling the CAN bus using a dedicated “master”
has been previously proposed (Almeida et al., 1999;
Pedreiras and Almeida, 2000). In this paper, the M-
Server has two main responsibilities:

(1) Keep track of the state of each N-Server.

(2) Allocate bandwidth to N-Servers.

The first responsibility is handled by guessing whether
or not N-Servers have messages to send. The initial
guess is to assume that each N-Server has a message
to send (i.e., initially each N-Server s is assigned a
deadline ds = Ds). How to handle erroneous guesses
is shown later.

The N-Servers’ complete state is contained within the
M-Server. Hence, the code in the other nodes does not
maintain N-Server states. The code in the nodes only
has to keep track of when bandwidth is allocated to
them (as communicated by the M-Server).

The M-Server divides time into Elementary Cycles
(ECs), similar to the FTT-CAN approach presented
in Section 2.2.1. TEC denotes the nominal length of
an EC. Moreover, TEC is the temporal resolution of
the resource scheduled by the servers, in the sense
that N-Servers can not have their periods shorter than
TEC . When scheduling a new EC, the M-Server will
(using the EDF principle based on the N-Servers’
deadline) select the N-Servers that are allowed to
send messages in the EC. Next, the M-Server sends a
Trigger Message (TM). The TM contains information
on which N-Servers that are allowed to send one
message during the EC. Upon reception of a TM, the
N-Servers allowed to send a message will enqueue a
message in their CAN controllers. The messages of
the EC will then be sent using CAN’s native priority
access protocol. Due to the arbitration mechanism, it
is unknown when inside an EC a specific message
is sent. Hence, the bound on the delay of message
transmissions will be a multiple of the length of an
EC.

Once the TM has been sent, the M-Server has to
determine when the bus is idle again, so the start of
a new EC can be initiated. The M-Server does this
by sending a stop 1 message (STOP) with the lowest
possible priority. After sending the STOP message to
the CAN controller, the M-Server reads all messages
sent on the bus. When it reads the STOP message it
knows that all N-Servers have sent their messages 2 .

After reading the STOP message the EC is over and
the M-Server has two tasks to complete before starting
the next EC:

(1) Update the state of the N-Servers scheduled dur-
ing the EC.

1 A small delay before sending STOP is required. This message is
not allowed to be sent before the other nodes have both processed
the TM (in order to find out whether they are allowed to send or
not), and (if they are allowed to send) enqueued the corresponding
message.
2 Another way of determining when the EC is finished would be
that the CAN controller itself is able to determine when the bus
becomes idle. If this is possible, there is no need for the STOP
message. However, using a STOP message is suitable with standard
CAN controllers.

(2) Decide how to reclaim the unused bandwidth (if
any) during the EC.

The following two sections describe how these tasks
are solved.

3.2.1. Updating N-Server States By observing the
actual transmissions during an EC it is possible for
the M-Server to verify whether or not its guess that
N-Servers had messages to send was correct, and to
update the N-Servers’ state accordingly. For each N-
Server that was allocated a message in the EC two
cases exists:

(1) The N-Server sent a message. In this case the
guess was correct and the M-Servers next guess
is that the N-Server has more messages to send.
Hence, the N-Server’s state us updated according
to rule 2 in Section 3.1.2.

(2) The N-Server did not send a message. In this case
the guess was incorrect since the N-Server was
idle. The new guess is that a message now has
arrived to the N-Server, and the N-Server state is
set according to rule 1 in Section 3.1.2.

3.2.2. Reclaiming Unused Bandwidth It is likely
that not all bandwidth allocated to the EC has been
completely used. There are three sources for unused
bandwidth (slack):

(1) An N-Server that was allowed to send a message
during the EC did not have any message to send.

(2) One or more messages that were sent was shorter
than the assumed worst-case length of a CAN
message.

(3) The bit-stuffing that took place was less than the
worst-case scenario.

To not reclaim the unused bandwidth would make
the M-Server’s guessing approach of always assuming
that N-Servers have messages to send extremely inef-
ficient. Hence, a mechanism to reclaim this bandwidth
is needed.

In the case that the EC ends early (i.e., due to unused
bandwidth) the M-Server reclaims the unused band-
width by reading the STOP message and immediately
initiating the next EC to make sure that no bandwidth
is lost.

3.3 Timing Analysis

One property of the above method is that the proto-
col overhead increases when the network utilisation is
low. When the network is not fully utilised, the M-
Server will send more TM and STOP message than
it would during full network utilisation. This is illus-
trated in Fig.1, where Fig.1(a) shows a fully utilised
network where all servers that were allowed to send
a message did so. Fig.1(b) shows what happens if not
all servers send messages. Note the increase of TM
and STOP messages. In fact, the proposed method
will always consume all bandwidth of the network,
regardless of the number of server messages actually
sent.

T S T S T
t

T S T S T
t

Normal length EC

Shorter EC due to erroneous guesses

T STM STOP Server message

S T

(a)

(b)

Fig. 1. Erroneous guesses increases the protocol over-
head.

This increase in overhead when no N-Server messages
are sent makes the analysis more complicated than in
the original TBS, and the worst-case analysis of TBS
cannot be reused.

As the scheduling mechanism used in this paper is
based on EDF, looking at an N-Server x, the server
might have to wait for other servers to be sched-
uled before it will be scheduled. Since the scheduling
is completely based on guessed server-deadlines, x

might be the only server in the system having mes-
sages to send, yet x may have to wait for all other
servers to be scheduled due to their earlier deadlines.
In order to derive an upper bound on the worst possi-
ble delay x can experience (setting time to 0 when a
message arrives to x and its deadline is set to Dx) the
other N-Servers in the system are put into two sets:

• A – all servers with periods shorter than x’s:

A = {s : Ds < Dx}

• B – all servers with periods equal to or longer
than x’s:

B = {s : s 6= x ∧ Ds ≥ Dx}

If the number of servers in A (denoted by |A|) is
greater than the number of messages fitting in one EC,
x may potentially not be scheduled for the duration
of its deadline. For instance, if servers in A have
no messages to send they will still be scheduled for
message transmission for each EC until their deadline
becomes greater than Dx.

Hence, N-Server x may not be scheduled until the EC
which overlaps Dx. Since, at this point each of the
other N-Servers (in sets A and B) may have deadlines
arbitrary close to (and before) Dx, x may have to wait
for each of the other servers to send one (1) message.
No server will after time Dx be scheduled twice, since
the first time a server is scheduled (after Dx) its new
deadline will be set to a time greater than Dx. Hence,
the message from server x may in the worst-case be
the |A| + |B| + 1-th message to be sent after Dx.

Thus, an upper bound on the response time for N-
Server x, Rx is:

Rx = Dx +

⌈

|A| + |B| + 1

NEC

⌉

∗ TEC

where NEC denotes the number of messages in an EC
and TEC the longest time an EC can take (including
sending TM and STOP messages).

4. PROTOCOL FOR LOWER RESPONSE-TIMES

The previously presented protocol has a worst-case
response-time for a server x that has a large part which
is independent of x’s deadline (Dx). This can for many
network configurations (e.g. configurations with many
servers) give unreasonable worst-case response-times.
In this section a modification to the previous protocol
is presented, based on a dynamic priority version of
the Polling Server (PS) (Lehoczky et al., 1997). Using
this new approach, the worst-case response-time of
server x is mostly dependent on the server deadline
Dx (which is equal to the server period Tx).

In the previous protocol, the increased protocol over-
head caused by erroneous guesses mostly penalise
servers with long periods (since servers with short
periods will still receive good service even if they
are causing erroneous guesses). The proposed modifi-
cation will instead penalise the servers which causes
erroneous guesses (i.e. the servers that do not send
messages when they are allocated bandwidth).

4.1 New Rules

In the modified protocol, the M-Server will always
treat an N-Server that has been allocated bandwidth as
if the N-Server actually did send a message (regardless
whether it did send any message). Hence the rules of
Section 3.2.1 will be changed to a single rule:

• Treat the N-Server as if it sent a message. The
next guess is that the N-Server has more mes-
sages to send. Hence it updates the N-Server’s
state according to rule 2 in Section 3.1.2.

In order for an N-Server not to cause more than one
erroneous guess during its period, the M-Server will
apply the following rules when deciding the schedule
for the EC starting at time t:

(1) Only servers that are within one period from
their deadline will be eligible for scheduling.
Formally the following condition must hold for
a server x to be eligible for scheduling:

dx − t ≤ Tx

(2) Among the eligible N-Servers, select N-Servers
in EDF order to be scheduled during the EC.

(3) To make the protocol work-conserving, when
there are not enough eligible N-Servers to fill an
EC, also non-eligible N-Servers are selected in
EDF order to be scheduled during the EC.

4.2 Timing Analysis

In order to provide a worst-case response-time analy-
sis, the first step is to establish that the modified pro-
tocol will behave no worse than if pure EDF schedul-
ing was deployed. Using that result the worst-case
response-time can be derived.

Lemma 1: If all N-Servers that are allocated mes-
sages do send messages, no erroneous guesses will be
made and the protocol will emulate pure EDF (and all
deadline will be met if load is less than 100%).

Proof: When all N-Servers send their allocated mes-
sages they will behave like periodic processes and
according to the scheduling mechanism they will be
scheduled in EDF. The following equation is true if
the system load (including protocol overhead when
all servers send their allocated message) is less than
100% (Nolte et al., 2003):
∑

∀s

(

M

S × Ts

)

≤1−

(

TM + STOP + S × Tsched

S × TEC

)

where s is an N-Server in the system, M is the length
of a message (typically worst-case which is 135 bits),
S is the network speed in bits/second, Ts is the period
of the N-Server. TM and STOP are the sizes of the
TM and the STOP messages in bits, typically 135 and
55 bits, Tsched represents the computational overhead
of updating the N-Server deadlines and encoding the
next TM after receiving the STOP message, and TEC

is the length of the EC.

Lemma 2: If an N-Server that is allocated a message
does not send a message, no other N-Server will miss
its deadline because of this.

Proof: When an N-Server does not send a message
it has been allocated, the EC will be terminated early
(as can also happen if not all messages are of maxi-
mum length). However, since the N-Server will not be
scheduled again until its next period it cannot cause
more overhead (in terms of TM and STOP messages
being generated). And, since the current EC is ter-
minated early, subsequent messages from other N-
Servers that are to be scheduled in forthcoming ECs
will be server earlier than they would have been if
the N-Server did send its message (and, hence, they
cannot miss their deadlines).

Theorem: The worst-case response-time for N-Server
x is not greater than 2 ∗ Tx + TEC .

Proof: Lemmas 1 and 2 tells us that N-Server x

will be scheduled at least once during its period Tx.
There is however no restriction on when, during Tx,
the server is scheduled. In the worst-case, the distance
between two consecutive occasions of scheduling of x

then becomes 2 ∗ Tx (if the first message is scheduled
immediately in its Tx and the second message is
scheduled as late as possible in its Tx).

The second message will be scheduled no later than
the EC in which its deadline is. However, the order of
transmission within that ECs is unknown. Hence, the
pessimistic assumption is that the message is sched-
uled as the last message in the EC and that the dead-
line is at the start of the EC. This will incur an extra
maximum delay of TEC for the message.

4.3 Comparison of Mechanisms

The main difference between the new mechanism and
the old one is that with the new mechanism a server
with a short period will not have to wait for a time
longer than twice its server period. Using the old
mechanism the maximum time a server could have to
wait for is determined by the number of servers in the
system together with the size of the EC. In that case
a server might have to wait for a period longer than
twice its server period.

If the system consists of a large set of servers with
short server periods, the new mechanism is better,
since the worst-case response-time for these servers
are limited by their periods rather than the total num-
ber of servers, whereas if the system consists of a few
servers with long server period, the old mechanism is
giving lower worst-case response times.

5. CONCLUSIONS

In this paper a new mechanism for scheduling of the
Controller Area Network (CAN) is presented. The
difference between the new mechanism and exist-
ing methods is the usage of server-based scheduling
techniques. Furthermore, the mechanism is based on
Earliest Deadline First (EDF) scheduling to achieve
high utilisation. The approach allows a more flexi-
ble way to utilize the CAN bus compared to other
scheduling approaches such as native CAN and Flex-
ible Time-Triggered communication on CAN (FTT-
CAN). Servers provide fairness among the streams of
messages as well as timely message delivery.

Two different server-based scheduling mechanisms
are presented, suitable for different system configura-
tions. It is also shown how to derive upper bounds for
the response-times for both mechanisms.

The main strength of server-based scheduling for
CAN, compared to other scheduling approaches, is
the good service to streams of aperiodic messages. On
native CAN, streams of aperiodic messages can starve
other streams of messages. In FTT-CAN the situation
is better, since periodic messages can be scheduled
according to EDF using the synchronous window of
FTT-CAN, thus separating periodic streams from ape-
riodic ones, guaranteeing real-time demands of the
latter. However, no fairness can be guaranteed among
the streams of aperiodic messages sharing the asyn-
chronous window of FTT-CAN.

However, each scheduling policy has both good and
bad properties. To give the fastest response-times, na-
tive CAN is the best choice. To cope with fairness
and bandwidth isolation among aperiodic message
streams, the server-based approach is the best choice,
and, to have support for both periodic messages with
low jitter, and aperiodic messages (although no fair-
ness among aperiodic messages), FTT-CAN is the
choice.

ACKNOWLEDGEMENTS

The work presented in this paper was supported by the
Swedish Foundation for Strategic Research (SSF) via
the research programme ARTES, the Swedish Foun-
dation for Knowledge and Competence Development
(KK-stiftelsen), and Mälardalen University.

REFERENCES

Abeni, L. (1998). Server Mechanisms for Multimedia Applications.
Technical Report RETIS TR98-01. Scuola Superiore S. Anna.
Pisa, Italy.

Almeida, L., J. A. Fonseca and P. Fonseca (1999). A Flexible Time-
Triggered Communication System Based on the Controller
Area Network: Experimental Results. In: Proceedings of the
International Conference on Fieldbus Technology (FeT’99).

Audsley, N. C., A. Burns, M. F. Richardson, K. Tindell and A. J.
Wellings (1993). Applying New Scheduling Theory to Static
Priority Pre-emptive Scheduling. Software Engineering Jour-
nal 8(5), 284–292.

CAN (1993). Road Vehicles - Interchange of Digital Information -
Controller Area Network (CAN) for High-Speed Communi-
cation. International Standards Organisation (ISO).

CiA (1996). CANopen Communication Profile for Industrial Sys-
tems, Based on CAL. CiA Draft Standard 301, rev 3.0.

J1938, SAE (1998). Design/Process Checklist for Vehicle Elec-
tronic Systems. SAE Standards.

Lehoczky, J.P., L. Sha and J. Strosnider (1997). Enhanced Aperi-
odic Responsiveness in Hard Real-Time Environments. In:
Proceedings of 8

th IEEE Real-Time Systems Symposium
(RTSS’87). San Jose, California, USA. pp. 261–270.

Livani, M. A., J. Kaiser and W. J. Jia (1998). Scheduling Hard
and Soft Real-Time Communication in the Controller Area
Network (CAN). In: Proceedings of the 23

rd IFAC/IFIP
Workshop on Real-Time Programming. Shantou, ROC.

Natale, M. Di (2000). Scheduling the CAN Bus with Earliest
Deadline Techniques. In: Proceedings of the 21

st IEEE Real-
Time Systems Symposium (RTSS’00). Orlando, Florida, USA.

Nolte, T. and K. J. Lin (2002). Distributed Real-Time System De-
sign using CBS-based End-to-end Scheduling. In: Proceed-
ings of the 9

th IEEE International Conference on Parallel
and Distributed Systems (ICPADS’02). Taipei, Taiwan, ROC.

Nolte, T., M. Sjödin and H. Hansson (2003). Server-Based Schedul-
ing of the CAN Bus. In: Proceedings of the 9

th IEEE Inter-
national Conference on Emerging Technologies and Factory
Automation (ETFA 2003). Calouste Gulbenkian Foundation,
Lisbon, Portugal. pp. 169–176.

Pedreiras, P. and L. Almeida (2000). Combining Event-triggered
and Time-triggered Traffic in FTT-CAN: Analysis of the
Asynchronous Messaging System. In: Proceedings of the 3

rd

IEEE International Workshop on Factory Communication
Systems (WFCS’00). Porto, Portugal. pp. 67–75.

Spuri, M. and G. C. Buttazzo (1994). Efficient Aperiodic Service
under Earliest Deadline Scheduling. In: Proceedings of the
15

th IEEE Real-Time Systems Symposium (RTSS’94).
Spuri, M., G. C. Buttazzo and F. Sensini (1995). Robust Aperiodic

Scheduling under Dynamic Priority Systems. In: Proceedings
of the 16

th IEEE Real-Time Systems Symposium (RTSS’95).
Tindell, K. W., A. Burns and A. J. Wellings (1995). Calculating

Controller Area Network (CAN) Message Response Times.
Control Engineering Practice 3(8), 1163–1169.

TT-CAN (2000). Road Vehicles - Controller Area Network (CAN)
- Part 4: Time-Triggered Communication. International Stan-
dards Organisation (ISO).

Zuberi, K. M. and K. G. Shin (1995). Non-Preemptive Schedul-
ing of Messages on Controller Area Network for Real-Time
Control Applications. In: Proceedings of the 1

st IEEE Real-
Time Technology and Applications Symposium (RTAS’95).
Chicago, IL, USA. pp. 240–249.

