
Guiding Assurance of Architectural Design
Patterns for Critical Applications

Irfan Sljivo1, Garazi Juez Uriagereka2, Stefano Puri3, and Barbara Gallina1

1 Mälardalen University, Väster̊as, Sweden
{irfan.sljivo,barbara.gallina}@mdh.se

2 ICT Division, TECNALIA, Derio, Spain garazi.juez@tecnalia.com
3 Intecs, SpA, Pisa, Italy stefano.puri@intecs.it

Abstract. Development of critical systems nowadays is hardly achiev-
able without reuse of previous knowledge. Design patterns have an im-
portant role in the design of such systems as they define and document
common solutions to recurring design problems. However, critical sys-
tems such as those that are safety or security related, often require spe-
cific assurances that the system is adequate to operate in a given envi-
ronment. Just as with any other reused knowledge in such systems, the
reuse via application of design patterns needs to be assured every time.
In this paper, we present a methodology for assuring the application of
design patterns in critical domains. In particular, we enrich the design
patterns template to support their further assurance. We define the as-
pects that should be tackled during the assurance of a design pattern
application. We use the information specified in the design pattern tem-
plate to guide the automated instantiation of the argumentation for each
design pattern application in the system. We provide tool-support for our
methodology in the context of the AMASS tool-platform and evaluate it
in an automotive case study.

1 Introduction

Many critical systems nowadays have become so complex that they are rarely
built from scratch. Instead, pre-developed components as well as the knowledge
about addressing particular problems are reused from previous experience. De-
sign patterns were proposed to establish a common solution to recurring design
problems occurring in communities and buildings [1] as well as in software and
systems design [2]. Design patterns facilitate the system architect’s work when
facing commonly recurring design problems. However, when design patterns are
used in critical systems that require specific assurances regarding adequateness
to operate in a given environment, the application of a particular design pattern
needs to be accompanied by evidence supporting its usage. That evidence is
often referred within an assurance case argument, which connects the evidence
with the to-be-met system-related requirements (claims) [3]. While some of the
evidence supporting a design pattern could be reusable together with the pat-
tern, there are certain aspects of assurance of a design pattern that are specific



2 Irfan Sljivo, Garazi Juez Uriagereka, Stefano Puri, and Barbara Gallina

to a particular system and cannot be simply reused. Assurance over the use of
a design pattern in a particular system needs to take into account whether the
pattern is applicable, or whether it is the right choice, to solve the particular
problem for which it is used in that system. Furthermore, even if the pattern is
the right choice to solve a particular problem, the question whether the pattern
is correctly applied still remains.

Contract-based design aims to support reuse and independent development of
components by using contractual specifications to check the compatibility of the
independently developed parts [4]. A contract is defined as a pair of assertions
(i.e., assumptions) and guarantees (i.e., properties) such that the guarantees hold
only if the assumptions also hold. Formal and semi-formal contracts facilitate
automated analysis, while informal contracts are useful for manual reviews of
component compatibility. We see contracts in general as very useful for reuse of
design patterns. Having a contract, regardless of the level of formality, associated
to a specific architectural pattern allows reuse of some of the associated assurance
information and, even more importantly, it can support automated generation of
some of the system-specific assurance argument fragments related to the design
pattern.

In this paper, we present our methodology for assurance of design patterns
using contracts. In particular, we propose an extended design pattern template to
include the contract’s assumptions and guarantees regarding the design pattern,
as well as additional information that is needed for the assurance of the use of the
design pattern in a critical system such as a car or an aircraft. We provide tool
support for defining, storing and applying design patterns with the associated
template that currently includes specification of informal contracts. Building
on top of the information from the extended design pattern template and on
top of previous work regarding generation of arguments from contract-based
specification [5], we present an assurance argument pattern to guide the design
pattern assurance. The argument pattern highlights the different aspects relevant
for assuring the usage of a design pattern in a critical system. We present the tool-
support for the methodology in the AMASS platform, which we use to evaluate
the proposed methodology in an automotive case study considering both safety
and security related design patterns.

The rest of this paper is organised as follows: in Section 2, we present the
essential background information. In Section 3.1, we present our design pattern
assurance methodology. In Section 4, we present an application of the proposed
methodology onto an automotive case study. In Section 5, we present the related
work. Finally, in Section 6, we draw our conclusions and outline future work.

2 Background

2.1 Assurance Case Argument Representation

An assurance case is defined as “a collection of auditable claims, arguments,
and evidence created to support the contention that a defined system/service



Guiding Assurance of Architectural Design Patterns for Critical Applications 3

will satisfy its assurance requirements.” [3]. A claim is defined as “a proposition
being asserted by the author or utterer that is a true or false statement” [3], while
an argument is defined as “a body of information presented with the intention
to establish one or more claims through the presentation of related supporting
claims, evidence, and contextual information” [3].

The assurance case argument can be documented in different ways ranging
from free text to (semi-)formal textual or graphical notations. In this work we use
Goal Structuring Notation (GSN) [6] to represent the assurance case argument.
GSN is a graphical argumentation notation, which can be used to document dif-
ferent types of arguments. The principal elements of GSN are shown in Fig. 1.
The main purpose of GSN is to show how goals (claims about the system),
are broken down into subgoals and supported by solutions (the gathered ev-
idence used to back up the claims). The argument elements can be connected
with one of the two relationships: supportedBy and inContextOf. The support-
edBy relationship is used to connect goals and strategies with other subgoals,
strategies and solutions, while the inContextOf relationship is used to connect
the goals and strategies with supporting elements such as contexts, justifica-
tions and assumptions. The modelling capabilities of GSN have been extended
with structural and entity abstraction to support representation of patterns of
reusable reasoning [6]. The right side in Fig. 1 presents some of the elements of
the extended GSN. For structural abstraction the supportedBy relationship is
extended by introducing multiplicity and optionality relationships. The multi-
plicity relationship indicates zero to many relationship between two elements,
where n represents the cardinality of the connection. The optionality relation-
ship indicates a zero or one cardinality connection between two elements.

Goal ID
Goal statement (e.g., 

system is acceptably safe)

Solution ID
Solution 

statement (e.g., 
inspection 

report)

Context ID
Context statement (e.g., acceptably 
safe in this context means no single 

points of failure)

Away Goal
Goal statement supported 

by the referred module

Module reference

Strategy ID
Strategy statement (e.g., 

argument over all 
identified hazards)

Strategy ID
Strategy statement (e.g., 

argument over all 
identified hazards)

Assumption ID
Assumption statement 
(e,g., subsystems are 

independent) A Choice

Undeveloped Element 
(Requires further support)

Uninstantiated Element 
(Abstract entity that needs 
to be instantiated (with 
something concrete))Optionality

Multiplicity

n Undeveloped and 
Uninstantiated ElementinContextOfsupportedBy

Fig. 1. Overview of the GSN elements

2.2 Architectural Design Pattern Representation

As mentioned in Section 1, design patterns are abstract representations for how
to solve recurring design problems. Their main purpose is to help the architects
and designers reuse existing solutions for design problem solving. The tradi-
tional design pattern definition included three aspects: context, problem, and
solution [1]. These three aspects alongside the pattern name, constitute the tra-
ditional pattern representation. This pattern definition structure describes the
basic relationships between the different aspects, e.g., the problem to be solved



4 Irfan Sljivo, Garazi Juez Uriagereka, Stefano Puri, and Barbara Gallina

in a particular context, the solution that successfully solves the problem in the
particular context, and the context itself describing the preconditions that need
to be satisfied for the solution to be successfully applied.

Besides this traditional design pattern definition with the basic four elements
(name, context, problem, and solution), many other design patter definition tem-
plates have been proposed [7]. Some representations include information such as
alternative names, related or similar patterns, motivations for using the pattern,
its intent, etc. Besides the traditional parts of the design pattern definition, in
this work we consider also information regarding the other known names of the
pattern, its consequences, and implementations.

2.3 The AMASS OpenCert Platform

AMASS (Architecture-driven, Multi-concern and Seamless Assurance and Cer-
tification of Cyber-Physical Systems) [8] has created and consolidated the first
de-facto European-wide open tool platform, ecosystem, and self-sustainable com-
munity for assurance and certification of Cyber-Physical Systems.

One of the main characteristics of the AMASS platform is its focus on
seamless interoperability between assurance and engineering tasks of the system
development. To achieve this, the AMASS tool platform [9] is created as an
integration of different existing tools . The four core tools that constitute the
AMASS tool platform are:

– OpenCert4 for assurance case modelling and other certification-related ac-
tivities such as evidence management and standards compliance checking.

– The CHESS toolset5 for system modelling with support for model-driven
component and contract-based development of high-integrity systems. The
toolset is based upon the open source Papyrus UML editor6.

– EPF Composer7, recently migrated to Eclipse Neon 4.6.3 [10], for system
and software process engineering including compliance management.

– The BVR tool8 for variability management.

Besides the core tools, the AMASS tool platform is integrated with over 20
external tools. In this paper we focus on OpenCert and CHESS. On the one
hand, the CHESS model-based methodology and toolset provide support for all
phases of (sub)system design: from requirements definition, architecture mod-
elling to software design and its deployment to hardware. Analysis, in particular
dependability and performance, is also supported. On the other hand, OpenCert
is an assurance and certification tool environment with a safety argumentation
modelling editor compliant with the standardised Structured Assurance Case
Metamodel (SACM) [3].

4 https://www.polarsys.org/opencert/ (accessed June 1, 2019)
5 https://www.polarsys.org/chess/ (accessed June 1, 2019)
6 https://www.eclipse.org/papyrus/ (accessed June 1, 2019)
7 https://www.eclipse.org/epf/ (accessed June 1, 2019)
8 https://github.com/SINTEF-9012/bvr (accessed June 1, 2019)



Guiding Assurance of Architectural Design Patterns for Critical Applications 5

3 Tool-Supported Architectural Design Pattern
Assurance

The aim of this section is to present our methodology for assurance of design
patterns with its essential building blocks, and realisation of the methodology
in the AMASS platform.

3.1 Architectural Design Pattern Assurance Methodology

As discussed in Section 1, the main challenge with reuse using design patterns in
critical applications is that applying design patterns brings in solutions designed
outside of the context of the particular system. Consequently, the solution, de-
vised elsewhere, needs to be assured as adequate for the particular critical system
where it is being reused. This process of reuse and assurance of the to-bereused
information is divided between steps performed outside of the context of a par-
ticular system, and those steps that have to be completed once the information
is reused in the context of the particular system. With that division in mind, we
define our methodology in the following steps:

– Out of context of a particular system:
• Design pattern specification: This step is system independent and its aim

is to capture the reusable knowledge in the design pattern template. The
specified architectural patterns are stored in an architectural patterns
library.

• Arguments pattern specification: Just as with the design patterns, this
step is system independent and aims to reuse the assurance strategies
across systems that require an assurance case. Different argument pat-
terns are specified for different architectural design techniques. In the
case of design pattern assurance, we may specify multiple argumenta-
tion patterns for assurance of different design patterns. Such argument
patterns are stored in an argument patterns library.

– In context of a particular system:
• System modelling, which includes modelling of system components.
• Design pattern selection based on matching the pattern contracts with

the system requirements. The pattern is selected from the library and
applied to a particular component in the system model.

• System components refinement via integration of the selected design pat-
terns in the system model. The inherited information from the design
pattern, in particular the design pattern contracts, is used to check if
the design pattern is compatible with the given system environment, i.e.,
whether the design pattern contract assumptions are met, and whether
the corresponding guarantees are sufficient to meet the demands of the
system environment.

• Automated generation of assurance arguments for each design pattern
application. For each design pattern application in the system model,
a corresponding argumentation fragment is generated and used in the



6 Irfan Sljivo, Garazi Juez Uriagereka, Stefano Puri, and Barbara Gallina

assurance case. The argument fragment represents an instantiation of
an argument pattern from the argument patterns library. In case there
are multiple argument patterns specified for design pattern application,
the user should be given the possibility to select which argument pattern
to instantiate.

In the reminder of the section, we present the essential building blocks of
the methodology. In particular, we present the design pattern template enriched
with assurance related information, the assurance argument pattern to guide the
assurance of a particular design pattern in a system, and the tool support for
the presented methodology in the AMASS platform.

Design pattern template As mentioned in Section 2.2, applying a design
pattern in a critical application to solve a particular problem requires certain
assurance to guarantee that the problem has been successfully addressed. This
cannot be easily done with the current means (i.e., templates) for pattern def-
inition. Thus, we propose an extension of design pattern templates to include
design pattern contracts and guide the assurance of the application of design
patterns in particular systems:

– Pattern name: define a name which describes the pattern univocally.
– Other well-known names: this item refers to other names with which the

design pattern can be known in different domains of application or standards.
– Intent/context: define in which context the pattern is used. For example,

define if the pattern is recommended for a specific safety-critical domain.
– Problem: description of the problem addressed by the design pattern.
– Solution/Pattern Structure: the solution to the problem under consid-

eration. Main elements of the patterns are described.
– Consequences: define the implication or consequences of using this pattern.

This section explains both the positive and negative implications of using
the design pattern.

– Implementation: set of conditions that should be taken under considera-
tion when implementing the pattern. Language dependent.

– PatternAssumptions: the design pattern contract assumptions.
– PatternGuarantees: the design pattern contract guarantees.

Using contracts for design patterns [11] offers a way of capturing under which
conditions instantiating a pattern offers the desired specification. The Patter-
nAssumptions and PatternGuarantees make the design pattern contract, which
collects the information regarding the implication of using this pattern. In par-
ticular, the PatternAssumptions represent conditions that should be met for the
correct usage of the design pattern, while the PatternGuarantees represent the
conditions that the correct application of the pattern yields. Unlike in contract-
based design, the design pattern contract in the current implementation is not
specified in a formal or even semi-formal form, but rather as a set of informal
statements that should be manually checked.



Guiding Assurance of Architectural Design Patterns for Critical Applications 7

Fig. 2. High-level assurance argument-pattern for architectural pattern assurance

Assurance of design patterns Each design pattern offers a solution to a
particular problem. The list of the known problems a pattern is addressing is
captured in the design pattern template. After choosing to use a particular design
pattern for potentially solving a specific problem, we need to assure that the
pattern is suitable to address this problem as well as that the pattern has been
correctly applied, according to the information from the design pattern template.
An assurance argument pattern depicting the assurance of the application of an
architectural pattern is presented in Fig. 2. We assure the suitability of a design
pattern to the specific problem either by looking at the problem statement in
the design pattern template and whether our problem matches any of the known
problems the pattern is used for, or if our problem is not in that list, then we need
to argue why is this pattern suitable to address that particular problem. Hence,
we use the choice element in Fig. 2 when supporting the design pattern adequacy
goal. Furthermore, the consequences of using the pattern should be acceptable in
the context of the system. Once the pattern is deemed suitable, we then assure
that the PatternAssumptions are met, and that the PatternGuarantees satisfy
the relevant requirements. For example, introduction of an acceptance voting
pattern influences timing behaviour of the system, hence we should assure that
the PatternGuarantees do not impair the relevant timing requirements. Finally,
we need to assure that the implementation of the pattern is performed correctly,
i.e., that it conforms to the conditions specified in the design pattern template.



8 Irfan Sljivo, Garazi Juez Uriagereka, Stefano Puri, and Barbara Gallina

	
System	

	Architecture	

Argument	
Patterns	
Library	

	
Assurance	

Case	

Architectural	
Patterns	
Library	

reads		
pattens	

applies	pattern	

reads	

reads	

instantiates	
argument	pattern	

Generate		
Argumentation	

		
		

		

Apply	Architectural		
Pattern	

Define	Architectural		
Pattern	

Fig. 3. Realisation of our methodology for design pattern application and assurance
within the AMASS platform

The structure of the argument pattern complies with the ISO/IEC 15026
standard [12], which specifies the minimum requirements for the structure and
contents of an assurance case. According to ISO/IEC 15026, the essence of an
assurance caseis to capture the uncertainties regarding truth or falsehood of the
claims we assure. Led by the same thought, the purpose of the argument pattern
for assurance of the application of an architectural pattern is to highlight all the
uncertainties involved in the application of the architectural pattern.

3.2 Tool Support in the AMASS platform

We have extended the AMASS platform to support the specification of design
pattern templates and their application. Furthermore, we have automated the
instantiation of the assurance argument-pattern presented in Fig. 2 from the in-
formation stored in the applied design pattern in the given system model. Fig. 3
depicts our methodology within the AMASS platform. In the out-of-context
setting, design pattern specification is performed using CHESS and arguments
pattern specification using OpenCert. In the in-context setting, CHESS is used
for system modelling and design pattern instantiation. The component inher-
its the design pattern information through the PatternApplication relationship.
Currently, we have extended CHESS to support only specification of informal
design pattern contracts, so its contract-checking features cannot be used for de-
sign patterns, but design pattern contracts should be manually checked. Finally,
automated generation of assurance arguments for each design pattern applica-
tion is performed from the CHESS system model to the selected assurance case
in OpenCert. In the reminder of the section we briefly present the tool support
in some more detail.



Guiding Assurance of Architectural Design Patterns for Critical Applications 9

Design pattern application and template specification: Patterns are
modelled as a special kind of UML Collaboration [13], i.e. as a classifier owning a
set of abstract collaborating entities called roles (CollaborationRoles); each role
can have input and output ports and roles can be connected together via their
ports. In particular, the Pattern stereotype extending the Collaboration UML
base entity with the set of attributes foreseen by our pattern template has been
defined.

In the CHESS environment, by using the Papyrus facilities, patterns can be
defined in dedicated model libraries and then imported in a given model, for
their application. The application of the pattern in a given model is performed
by using the UML CollaborationUse construct; through the CollaborationUse
it is possible to detail how the pattern described by a Collaboration is applied
in a given context classifier (i.e. a system component), in particular by binding
entities available in that context (i.e. sub-components, ports and connections)
to the abstract entities defined for that particular pattern.

Without a specific tool support, the specification of the entire set of bind-
ings required to properly model the instantiation of a collaboration/pattern in
a given context can be an error-prone and hard task to be performed by the
system architect. To solve this problem, in CHESS we implemented a dedicated
wizard to easily allow the selection of the pattern to be instantiated in the con-
text of a given system component and the specification of the mapping between
the pattern roles/ports/connections and the actual entities available in the cur-
rent model. The wizard allows to leave pattern related entities unbounded: in
this case, pattern entities not mapped to system model entities are automati-
cally created in the target model as new entities owned by the selected system
component.

The pattern instantiation is stored in the target model, together with the
information about the roles bindings; in this way it is always possible to query
the model about the list of patterns that have been applied and validate each
patterns instantiation by verifying the existence of the role bindings. Moreover,
system components playing patterns roles are automatically stereotyped/tagged
as PatternRole; a PatternRole comes with the information about the patterns
in which the components plays a role (indeed in principle the same system com-
ponent can contribute to the realization of different patterns), to let the system
architect to easily retrieve patterns applications in the model and in the available
diagrams.

Assurance argument pattern instantiation: To facilitate automated in-
stantiation of the proposed argumentation pattern in Fig. 2, we implement the
Argument Generator plugin within OpenCert and CHESS. The user is prompted
to select both the source CHESS model and the target assurance case. The plu-
gin generates a set of argument-fragments from the source CHESS model, one
for each design pattern applied in the system model, and stores them in the cor-
responding target assurance case. The plugin assumes that the CHESS model
contains the applied design patterns with their templates specified.



10 Irfan Sljivo, Garazi Juez Uriagereka, Stefano Puri, and Barbara Gallina

Fig. 4. Explanation of CACC and Platoon Driving

The argument patterns library for architectural assurance in OpenCert de-
picted with the dotted line in Fig. 3, is currently hardcoded and does not allow
user the option of specifying multiple argument patterns and choosing which
argument pattern to use for assuring a particular architectural design technique.
For example, one predefined argument pattern is used for contract-based design,
and another for application of design patterns.

4 Case Study

In this section we present our automotive case study. First, we describe the
system that is the case of the study, its safety and security implications as well
as the goal of the case study. Then, we describe the selected design patterns to
address the specific safety and security requirements and specify them in the
form of the design pattern template presented in Section 3.1. Next, we describe
the pattern application performed on the system modelled in CHESS. Finally,
we present the assurance of the selected patterns using the automated assurance
argument support in the AMASS platform.

4.1 The Case of the Study: CACC and Car Platooning

Cooperative Adaptive Cruise Control (CACC) is a typical example of a cooper-
ative safety-critical system where the cruise control of a vehicle is automatically
guided by the information wirelessly received from the predecessor vehicle. Fig. 4
describes the different operation modes. The vehicle in CACC mode enhances the
local sensor-based Adaptive Cruise Control (ACC) mode with a Car2Car link
to the predecessor vehicle. Enhancing the CACC mode, in the platoon mode
the vehicles use not only the information from the predecessor vehicle, but also
from the leader of the platoon, which is usually the first vehicle in the string of
vehicles. As a case study in the AMASS research project, we use a fleet of au-
tonomous model cars that can run autonomously and sense the environment by
means of camera and ultrasonic sensors [14]. Additionally, the cars can exchange
Car2Car messages via WIFI connection and in that way operate in CACC and
platoon modes.



Guiding Assurance of Architectural Design Patterns for Critical Applications 11

The goal of the case study is to evaluate the feasibility of use of the AMASS
tool-support design pattern application and assurance methodology to different
kinds of design patterns. While we have initially developed the methodology
for use in safety-critical domains, and in particular targeted the fault-tolerance
design patterns, in this case study we aim to evaluate that the methodology
can be also used for other types of design patterns such as those addressing
security-related challenges.

Safety and security implications: Although there are different hazards that
may be associated with the CACC and platooning modes, in this case study
we focus on hazard H1: inadequate longitudinal control that may lead to rear
collision of one or more vehicles. Given that the vehicles perform the longitudinal
control autonomously in CACC and platooning modes, either based on the own
sensory input or the input received from the other vehicles, to find causes to
our hazard we turn to reliability and security of communication between the
vehicles, as well as the reliability of the own sensory input. To address the hazard
H1, we define the functional safety concept according to the functional safety
standard ISO 26262 [15]. Although this standard cannot be directly applied to
such system-of-systems such as CACC and car platooning, the basic concepts of
defining the safety goals and the related functional safety requirements for each
hazard are still applicable. A subset of the functional safety concept we defined
to address the hazard is given in Table 1. To achieve the safety goal SG1 we
focus on the two particular functional safety requirements FSR1 and FSR2. The
first requirement aims to ensure that given a failure of any of the components
on which the autonomous functionality depends on (be it in the own vehicle,
in the communication channel or in the cooperating vehicle), the vehicle will
go to the appropriate mode in order to increase system availability in light of
failures. Implementing this requirement requires a monitoring component that
issues a command to move the vehicle in the appropriate mode. While such
monitoring component deals with the quality of communication and potential
failures of components, it does not deal with the protection of the received and
sent messages to ensure that they are coming from the correct source. For that
purpose, we define FSR2 that is at the same time a security requirement. It
enforces the communication between the vehicles to be encrypted, so that a
random adversary cannot simply inject false messages in the communication
between the platoon members.

4.2 The selected design pattern templates

Given that the problems in both of the functional safety requirements in Table 1
are quite common, we choose two particular design patterns to address each of
them. For the first requirement we opt for the Monitor-Actuator design pattern
(shown in Fig. 5 and described in [16]), while for the second requirement we
opt for the Security Gateway design pattern (shown in Fig. 6 and described
in [17]). We first bring the design patterns in the form of templates presented in
Section 3.1, and then we apply those patterns in designing our CACC system.



12 Irfan Sljivo, Garazi Juez Uriagereka, Stefano Puri, and Barbara Gallina

Table 1. A subset of the functional safety concept

SG1: A sudden braking manoeuvre of predecessor vehicle shall not result in distance
shorter than 2m.

FSR1: The vehicle shall maintain safe distance to the predecessor by monitoring the
system and environmental conditions, and selecting an appropriate operation
mode (platoon, CACC, ACC, manual) based on the observed conditions.

FSR2: The Car2Car messages shall be encrypted to prevent against unauthorised
messages propagating to the CACC control software.

Fig. 5. The Monitor-Actuator Pattern modelled in CHESS

The Monitor-Actuator Pattern [16]:

– Pattern name: Monitor-Actuator Pattern.
– Other well-known names: -
– Intent/context: The Monitor-Actuator pattern is a special type of hetero-

geneous redundancy intended for systems with low availability requirements
and a fail-safe system state.

– Problem: How to improve the safety of an embedded system in the presence
of a single point of failure in a system that includes a fail-safe state and low
availability requirements at reasonable cost.

– Solution/Pattern Structure: One channel is responsible for performing
the end-to-end actuation, while the monitor channel compares the output
of the actuator channel against the expected value and forces the actuation
channel to enter a fail-safe state if a discrepancy is found. The two channels
are independent such that faults from one are not affecting functioning of
the other channel.

– Consequences: If a failure in the monitoring channel occurs, the actuation
channel will continue to operate correctly unless there is a second failure in
the actuation channel.

– Implementation: The monitor channel usually contains a reduced version
of the actuation algorithm and is driven by a separate set of sensors. The
same set of sensors may be used, but this introduces a common mode failure
into the system. Latent failure must be avoided through periodic mainte-
nance checks and/or specific built-in-tests.

– PatternAssumptions: -



Guiding Assurance of Architectural Design Patterns for Critical Applications 13

Fig. 6. The Security Gateway Pattern modelled in CHESS

– PatternGuarantees:

1. There is no influence on the execution time of the actuation channel.
2. The pattern does not improve the reliability of the system: Rnew = Rold

3. The percentage of the relative safety integrity improvement (RSI) is RSI
= RMCCMC x 100%, where RMC is the reliability of the monitored
channel, and CMC is the probability that the failure in the actuation
channel is detected by the monitoring channel.

The Security Gateway Pattern [17]:

– Pattern name: Security Gateway.
– Other well-known names: Firewall
– Intent/context: Control incoming and outgoing messages/connections, re-

strict access to certain entities.
– Problem: An attacker can use an entry point to inject malicious content

into the internal unit.
– Solution/Pattern Structure:

1. An interceptor, the gateway, is placed between an unprotected inter-
nal network and untrusted external entities when communication to the
outside is inevitable.

2. All incoming or outgoing messages pass through this host.
3. The gateway controls the network access to the internal unit(s) according

to predefined security policies and can also inspect msg content to detect
intrusion attempts and anomalies.

– Consequences:

1. It adds security protection and segments the system without fundamen-
tally changing the existing in-car system architecture

2. Security gateway might introduce latency into the communication, which
is a subject of safety/performance impact analysis

– Implementation: Two implementation variants of a gateway are men-
tioned: the stateless gateway and the stateful gateway. In general, the state-
less gateway is more performant and the statefull gateway is more advanced,
i. e. it is able to make more intelligent decisions.

– PatternAssumptions: Incoming messages can be analysed/inspected
– PatternGuarantees: The gateway will be able to make an access control

decision (grant, reject, discard, or modify) and detect intrusion attempts.



14 Irfan Sljivo, Garazi Juez Uriagereka, Stefano Puri, and Barbara Gallina

Fig. 7. The CACC system-level architecture with Security Gateway pattern application

4.3 Design pattern application

Fig. 7 presents the high-level architecture of the CACC system that shows the
connection of the CACC software with the corresponding hardware elements,
which include the front distance sensor, the WLAN adapter and the vehicle ECU
that provides own vehicle information from other vehicle systems. We apply the
security gateway pattern at this level, as it should add a security layer without
fundamentally changing the existing in-car system architecture and it should
handle all incoming and outgoing messages between the internal and external
network. We place the gateway component between the WLAN adapter and the
CACC software such that all communication between the autonomous functions
of the vehicles in CACC and platoon modes goes through the gateway. The cacc-
sw component (shown in Fig. 8) takes in the data from the gateway and the
own hardware components, processes them and issues the longitudinal control
command.

Fig. 9 represents the architecture of the CACC manager component as a
part of cacc-sw in charge of computing and issuing the longitudinal control com-
mand. Since CACC manager contains the actuator component (cacccontroller),
we choose to apply the Monitor-Actuator pattern in this subsystem. In partic-
ular, the pattern is applied to each system operating mode such that the fail
safe for each mode represents transition to a lower mode of operation. We have
the caccstatemanager component to act as the monitor, and the cacccontroller
as the actuator. The two components implement the FSR1 from Table 1 such
that caccstatemanager analyses the sensory and WLAN data input and sends a
signal to the cacccontroller component if there is a failure detected and to which
mode should the system transition.



Guiding Assurance of Architectural Design Patterns for Critical Applications 15

Fig. 8. The first-level of the CACC software architecture

4.4 Safety Assurance

We drive the assurance that the application of these patterns adequately ad-
dresses the corresponding requirements by considering the argument-pattern
presented in Section 3.1. We discuss the assurance in according to the four
first-level subgoals: pattern assumption satisfaction, the rationale, pattern im-
plementation, and pattern guarantees adequacy.

Monitor-Actuator assurance: Since the design pattern template does not
state any pattern assumptions, we do not further develop the goal. It implies
that the system is not required to fulfil particular demands in order to enable
application of this pattern. In the rationale argument branch we argue over the
adequacy of the given pattern to resolve the problem at hand. Given the need
to increase overall system availability by sacrificing availability in higher modes
of operation upon failures, the pattern problem matches the system problem in
this regard since the CACC operating modes do not have high availability re-
quirements separately. Furthermore, the fact that the monitor component should
not influence nominal behaviour of the system meets the needs of the system,
so in that respect, the pattern consequences are acceptable within the CACC
context. In the implementation branch of the argument we argue over adequacy
of the particular instantiation of the pattern and that it correctly implements
the design pattern. Since the implementation of the design pattern components
can be described via semi-formal specifications, it is possible to use such specifi-
cations to argue over adequacy of the implementation. For example, the pattern
template states in the implementation section that the monitor and the actuator
may use the same or redundant inputs. As we can see from Fig. 8, in our case the



16 Irfan Sljivo, Garazi Juez Uriagereka, Stefano Puri, and Barbara Gallina

Fig. 9. The CACC manager architecture with the Monitor-Actuator design pattern

Monitor and the Actuator use the same sensory input and not redundant sen-
sors, which means that the corresponding specifications will deal with the same
variables. Finally, we compare the pattern guarantees with the related safety re-
quirements to ensure that the pattern guarantees meet the relevant requirements.
In this regard we would ensure that the integrity and availability requirements
meet the demands imposed by the criticality of the hazard as mandated by the
corresponding safety standard.

Security Gateway assurance: For the security gateway pattern to be applica-
ble, we need to ensure that the communication between the vehicles is encrypted
and that the gateways in all vehicles are compatible. While the security gateway
adds the security layer without significantly affecting the system architecture,
it does affect system timing behaviour by increasing the latency of end-to-end
communication between the different CACC controllers. As long as that latency
does not violate the timing safety requirements, the security gateway pattern
consequences are acceptable within the context of the CACC system. Arguing
further the rationale behind applying this design pattern, we match both the
pattern problem to the system problem we needed to resolve, as well as the de-
scription of the pattern solution with the corresponding high-level requirements.
The implementation branch is the place where we argue that for example the
implementation of the gateway fulfills the message integrity demands (e.g., that



Guiding Assurance of Architectural Design Patterns for Critical Applications 17

the gateway does not change the contents of the message sent and received) as
well as the timing demands that should not be broken for the system to meet
its timing requirements. Finally, the pattern guarantees that the gateway will
reject or grant messages based on their security layer matches the corresponding
requirement FSR2 as stated in Table 1.

Based on the specified design template, and the defined requirements and
specification in the CHESS model, we use CHESS to automatically instanti-
ate the argument-fragment for architectural pattern contract-based assurance
presented in Fig. 2. An example of the generated argument-fragment for the
application of the security pattern in our case study is shown in Fig. 10. Due
to space constraints, the node statements in the argument in Fig. 10 got short-
ened so the three dots were used in places where the entire statement could not
be previewed. A similar argument is generated for each specified design pattern
application in the CHESS model. The example argument shows how the data
from the design pattern template is used to populate the argument regarding
the design pattern application. Developing goals related to the implementation
are out of scope of this paper.

4.5 Discussion

Extending design pattern templates with contractual specifications aims at en-
abling clear understanding of what an environment needs to fulfil in order for
the design pattern to provide its guaranteed behaviours. Conceptually, such con-
tracts can be specified using a range of representations from natural text to for-
mal languages. However, in practice, it is not easy to formally specify all the
requirements that a system should meet for a pattern to be applied successfully.
In our methodology, we envisage the possibility of specifying design pattern con-
tracts formally such that automatic checking of design pattern compatibility is
possible, but in the implementation in CHESS we have only provided support
for informal contracts. In this case study, we find that even just having infor-
mal design pattern contracts is useful during the design pattern application,
although greater benefits can be reaped if those contracts could be captured
formally. CHESS does support formal specification and checking of contracts
using Othello Specification language, used by the OCRA tool [18] for system
property verification. However, further investigation is needed to determine the
expressiveness of such specification language for design pattern contracts.

A general concern when using assume-guarantee style contracts lies in their
completeness, i.e., have we identified all of the assumptions and have we defined
all of the consequences in form of guarantees. It is impossible to prove that a
component will always provide the given guarantees in any environment that
meets its assumptions. Instead, contracts can be proved complete in that sense
only in a subset of all environments constrained by the variables used to define
the contract. Hence, contracts are said to be inherently incomplete [19]. One way
to tackle their inherent incompleteness is by using confidence arguments about
the contract completeness. In terms of completeness of design pattern contracts,
evidence that could support it includes previous usages of the design pattern



18 Irfan Sljivo, Garazi Juez Uriagereka, Stefano Puri, and Barbara Gallina

F
ig
.
1
0
.

A
n

ex
a
m

p
le

o
f

th
e

a
u
to

m
a
tica

lly
g
en

era
ted

a
rg

u
m

en
t

in
O

p
en

C
ert

fo
r

th
e

secu
rity

g
a
tew

ay
d
esig

n
p
a
ttern



Guiding Assurance of Architectural Design Patterns for Critical Applications 19

and the similarity of the context in which it was used before to the context in
which it will be applied. The argument pattern for design pattern application
assurance that we propose in this paper focuses on the design pattern template
information and the way it is implemented. The confidence argument regarding
the completeness of the design pattern contract relates to whether the current
application of the design pattern in terms of its implementation in the current
context behaves accordingly (the confidence goal in Fig. 2). However, since we
did not focus on the implementation in this case study, we did not fully develop
that goal in the assurance argument in Fig. 10.

5 Related Work

Design patterns were proposed by Alexander [1] in order to establish a common
solution to recurring design problems. Design patterns help designers and sys-
tem architects when choosing suitable solutions for commonly recurring design
problems. The use of patterns speeds architecture specification and facilitates
the (re)use of components, targeted at being used in such patterns, as well as
analysis results associated with the patterns.

Along the years several design patterns have been proposed tackling different
concerns in Cyber-Physical Systems design such as safety (especially, via fault
tolerance means) and security. Some of the most remarkable design patterns are
the ones adopted in the design of safety-critical systems presented in form of a
catalogue by Douglas [20], [21].

Starting from those patterns Armoush [7] proposed a template for defining
design patterns template. However, his template offers no support for arguments
generation and corresponding facilitation of the assurance and certification pro-
cesses. In this direction, Gleirscher and Kugele summarized the applied research
on design and argument patterns for the assurance of system safety [22]. Their
work extended the study started in [23] to a larger context. We complement
their study taking into account not only safety but security properties.

Concerning security patterns, both academic researchers and industry have
contributed to their definition [24]. Although security patterns have been investi-
gated, their role, when designing safety-critical systems, has not been sufficiently
considered. Amorim et al. [17] proposed a systematic pattern-based approach
that interlinks safety and security patterns and provides guidance with respect
to selection and combination of both types of patterns in the context of system
engineering. They developed the so-called Pattern Engineering Lifecycle, which
provides a systematic way of safety- and security-related pattern engineering
process. The feasibility of their approach was applied to an automotive use case.

Other domains such as industrial automation have already described secu-
rity patterns as part of their certification framework. In detail, the industrial
automation and control systems (IACS) Cybersecurity Certification Framework
defines a protection profile of an industrial firewall in the industrial automa-
tion domain [25]. This industrial firewall can be used to segregate networks of
different criticalities and to protect Industrial Control Systems. Moreover, the



20 Irfan Sljivo, Garazi Juez Uriagereka, Stefano Puri, and Barbara Gallina

documented security requirements can be translated as a set of assumptions
(ToE adnministrators are competent, trained and trustworthy) and guarantees
(The ToE guarantees also non replay of exchanges.) by means of the solution
presented in this work.

Similarly, Preschern et al. [26] evaluated existing safety patterns regarding
their effect on the overall system security. The security analysis of safety pat-
terns was carried out by using the STRIDE approach (which stands for spoofing,
tampering, repudiation, information disclosure, and escalation of privileges) and
the highly critical threats for each pattern presented in a Goal Structuring No-
tation diagram. This work was further elaborated in [27], where GSN diagrams
were related to the patterns to provide a structured overview of their architec-
tural decisions. They presented a system of safety patterns and describe their
relationships to each other.

Hamid and Perez proposed a pattern-based development approach to address
dependability through a model-driven engineering approach [28]. The approach is
composed of several steps and consists of metamodelling techniques that enable
the specification of dependability patterns. Besides, Radermacher et al. [29]
combined design patterns and model driven engineering techniques for building
component-based applications with safety requirements.

Object Management Group (OMG) has published The Structured Patterns
Metamodel Standard (SPMS) [30] as an industry standard that defines the def-
inition and description of patterns used in architecting, designing, and imple-
menting software systems. The definition of design patterns in CHESS is par-
tially compliant to this standardised metamodel, in particular with respect to
the definition of patterns. While a pattern definition is represented in terms of
Roles and Sections in SPSM, CHESS uses only Roles to define a pattern, but
not the sections. In addition to SPSM, we extend the pattern definition with as-
sume/guarantee contracts, which is reflected both in the proposed methodology,
and its CHESS implementation.

In comparison to our approach, none of the aforementioned works uses both
multi-concern (safety and security) contracts for architectural patterns and re-
lates them with their corresponding assurance arguments in order to facilitate
the assurance and certification processes. Table 2 highlights the differences be-
tween our methodology and pre-existing related work. Specifically, ”Y” indicates
that the functionality is supported, ”N” indicates that the functionality is not
supported, ”-” indicates that nothing was mentioned.

6 Conclusions and Future Work

In this paper, we have presented a methodology for assuring the application
of architectural design patterns to those critical systems (i.e., safety or security-
critical) for which assurance and its documentation via assurance cases is manda-
tory. The basis for assuring the application of a design pattern lies in the tem-
plate that defines the pattern. Since, however, this basis is not sufficient for
retrieving fully structured information for assurance, we proposed to extend the



Guiding Assurance of Architectural Design Patterns for Critical Applications 21

Table 2. Comparative analysis summary

Functionality/Related Work

A
M

A
S
S

A
rm

o
u
sh

[7
]

G
le
ir
sc
h
e
r
e
t
a
l.

[2
2
]

L
u
o

[2
3
]

P
re

sc
h
e
rn

e
t
a
l.

[2
6
]

H
a
m
id

[2
8
]

A
m
o
ri
m

[1
7
]

IA
C
S

[2
5
]

S
P
M

S
[3
0
]

Argumentation-oriented Pattern
template definition

Y N N N N N N N N

Consideration of assumption and
guarantee properties in design
patterns

Y - - N N - - N N

Pattern(s) selection Y - - N N - - N N

Argumentation-oriented Multi-
concern Pattern compatibility
check

Y N N N N N N N N

Pattern application Y Y Y N N Y N N Y

Pattern-based Argument frag-
ment generation

Y N N N N N N N N

templates with assumption/guarantee contracts. We used the extended template
to guide the assurance of the application of the corresponding design pattern by
proposing a safety case argument pattern. The proposed argumentation pattern
identifies the evidence that should be gathered for the design pattern application
assurance. We have shown that the tool-support through the AMASS platform
can be used to extract information from the design pattern application and
automatically instantiate the proposed argumentation patterns for each design
pattern application. We have used both safety and security related design pat-
terns in our automotive case study to show that the methodology is not specific
to a particular system concern such as safety, but it can be applied to different
concerns.

As future work, we plan to extend our methodology and further integrate its
extensions within the AMASS platform. In particular, while we have provided
tool-support for specification of informal design pattern contracts, as future
work, we would like to provide support for (semi-)formal design pattern contract
specification. This would allow for: a finer-grained specification of the design
pattern contracts, including their variability; as well as automatic recognition
of possible conflicts among selected patterns and refinement checking between
the pattern contracts and the contracts of their implementations. Given that the
argument patterns library is currently hardcoded within the AMASS platform,
we plan to implement the argument patterns library where new patterns could



22 Irfan Sljivo, Garazi Juez Uriagereka, Stefano Puri, and Barbara Gallina

be added and the user could choose from such a library which argument pattern
to automatically instantiate.

Acknowledgements

This work is supported by the EU and VINNOVA via the ECSEL Joint Under-
taking project AMASS (No 692474) [8].

References

[1] Alexander, C.: A Pattern Language: towns, buildings, construction. Number 2
in Center for Environmental Structure series. Oxford University Press, New York
(1977)

[2] Beck, K., Johnson, R.: Patterns generate architectures. In Tokoro, M., Pareschi,
R., eds.: Proceedings ECOOP ’94. Volume 821 of LNCS., Bologna, Italy, Springer-
Verlag (July 1994) 139–149

[3] Object Management Group: SACM: Structured Assurance Case Metamodel.
Technical report, Version 2.0, OMG, 2018. http://www.omg.org/spec/SACM

[4] Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.B., Reinke-
meier, P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen, K.G.:
Contracts for System Design. Research Report RR-8147, Inria (November 2012)

[5] Sljivo, I., Gallina, B., Carlson, J., Hansson, H., Puri, S.: A method to gener-
ate reusable safety case argument-fragments from compositional safety analysis.
Journal of Systems and Software 131 (2017) 570 – 590

[6] Assurance Case Working Group of The Safety-Critical Systems Club: GSN Com-
munity Standard Version 2. Technical report (January 2018)

[7] Armoush, A., Salewski, F., Kowalewski, S.: Design pattern representation for
safety-critical embedded systems. JSEA 2(1) (2009) 1–12

[8] ECSEL-JU-692474: AMASS – Architecture-driven, Multi-concern and Seam-
less Assurance and Certification of Cyber-Physical Systems. http://www.amass-
ecsel.eu/

[9] J.L. de la Vara, A. Ruiz, B. Gallina, G. Blondelle, E. Alaña, J. Herrero, F. Warg,
M. Skoglund: The AMASS Approach for Assurance and Certification of Critical
Systems. In: embedded world Conference (ewC), Nuremberg, Germany. (February
2019)

[10] Javed, M.A., Gallina, B.: Get EPF Composer back to the future: A trip from
Galileo to Photon after 11 years. In: EclipseCon, Toulouse, France, June 13-14.
(2018)

[11] Soundarajan, N., Hallstrom, J.O.: Responsibilities and rewards: Specifying de-
sign patterns. In Finkelstein, A., Estublier, J., Rosenblum, D.S., eds.: 26th In-
ternational Conference on Software Engineering (ICSE 2004), 23-28 May 2004,
Edinburgh, United Kingdom, IEEE Computer Society (2004) 666–675

[12] International Organization for Standardization: ISO/IEC 15026: Systems and
software engineering – Systems and software assurance. (2011)

[13] Object Management Group: UML: Unified Modeling Language. Technical report,
Version 2.5.1, OMG, 2017. https://www.omg.org/spec/UML/2.5.1/



Guiding Assurance of Architectural Design Patterns for Critical Applications 23

[14] Sljivo, I., Gallina, B., Kaiser, B.: Assuring degradation cascades of car platoons via
contracts. In Stefano Tonetta, Erwin Schoitsch, F.B., ed.: 6th International Work-
shop on Next Generation of System Assurance Approaches for Safety-Critical
Systems. Volume 10489., Springer (September 2017) 317–329

[15] International Organization for Standardization: ISO 26262: Road vehicles —
Functional safety. (2011)

[16] Armoush, A.: Design Patterns for Safety-CriticalEmbedded Systems. PhD thesis,
Aachen University (June 2010)

[17] Amorim, T., Martin, H., Ma, Z., Schmittner, C., Schneider, D., Macher, G., Win-
kler, B., Krammer, M., Kreiner, C.: Systematic pattern approach for safety and
security co-engineering in the automotive domain. In: Computer Safety, Reliabil-
ity, and Security, Cham, Springer International Publishing (2017) 329–342

[18] Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based
embedded systems. Science of Computer Programming 97(3) (2014) 333–348

[19] Sljivo, I., Jaradat, O., Bate, I., Graydon, P.: Deriving safety contracts to support
architecture design of safety critical systems. In: 16th IEEE International Sym-
posium on High Assurance Systems Engineering, IEEE (January 2015) 126–133

[20] Douglass, B.P.: Doing hard time: Developing real-time system with UML, objects,
frameworks, and pattern. New York: Addison-Wesley (1999)

[21] Douglass, B.P.: Agile Systems Engineering. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (2016)

[22] Gleirscher, M., Kugele, S.: Assurance of system safety: A survey of design and
argument patterns. CoRR abs/1902.05537 (2019)

[23] Y. Luo, Z., van den Brand, M.: A categorisation of gsn-based safety cases and
patterns. In: 2016 4th International Conference on Model-driven Engineering and
Software Development(MODELSWARD). (2016) 509–516

[24] Schumacher, M.: Security Engineering with Patterns: Origins, Theoretical Models,
and New Applications. Springer, Heidelberg (2003)

[25] IACS: IACS Cybersecurity Certification Framework. Technical report, IACS
(July 2018)

[26] Preschern, C., Kajtazovic, N., Kreiner, C.: Security analysis of safety patterns.
In: Proceedings of the 20th Conference on Pattern Languages of Programs, The
Hillside Group (2013)

[27] Preschern, C., Kajtazovic, N., Kreiner, C.: Building a safety architecture pattern
system. In: Proceedings of the 18th European Conference on Pattern Languages
of Program. EuroPLoP ’13, New York, NY, USA, ACM (2015) 17:1–17:55

[28] Hamid, B., Perez, J.: Supporting Pattern-Based Dependability Engineering via
Model-Driven Development: Approach, tool-support and empirical validation.
Journal of Systems and Software vol. 122 (September 2016) pp. 239–273

[29] Radermacher, A., Hamid, B., Fredj, M., Profizi, J.L.: Process and tool support for
design patterns with safety requirements. In: Proceedings of the 18th European
Conference on Pattern Languages of Program. EuroPLoP ’13, New York, NY,
USA, ACM (2015) 8:1–8:16

[30] Object Management Group: SPMS: Structured Patterns Metamodel Standard.
Technical report, Version 1.2, OMG, 2017. https://www.omg.org/spec/SPMS/


