
Real World Influences on Software Architecture 
- Interviews with Industrial System Experts 

 
Goran Mustapic, Anders Wall, Christer Norström, Ivica Crnkovic,  

Kristian Sandström, Joakim Fröberg, Johan Andersson 
Dept. of Computer Science and Engineering, Mälardalen University 

PO Box 883, SE-721 23 Västerås, Sweden 
{goran.mustapic, anders.wall, christer.norstrom, ivica.crnkovic,  
kristian.sandstrom, joakim.froberg, johan.x.andersson}@mdh.se 

 
 

Abstract 
 

Industrial systems are examples of complex and 
often long-lived systems in which software is playing 
an increasingly important role. Their architectures 
play a crucial role in maintaining the properties of 
such systems during their entire life cycle. In this 
paper, we present the results of a case study based on 
a series of interviews and a workshop with key 
personnel from research and development groups of 
successful international companies in their Swedish 
locations. The main goal of the investigation was to 
find the significant factors which influence system and 
software architectures and to find similarities and 
differences between the architecture-determining 
decisions and the architectures of these systems. The 
role of the architect was an important subject of the 
investigation. Our findings result in recommendations 
relating to the design and evolution of system 
architectures and suggestions regarding areas in 
which future research would be beneficial. 
 
1. Introduction 
 

There are many large and complex software- 
intensive systems which have been successful, not only 
in commercial terms, but in providing reliable bases 
for  several  products over many years. One of the key 
factors in successfully managing a system, i.e. 
maintaining the system, introducing new features etc. 
is its architecture. There are several factors that 
distinguish the management of large and complex 
industrial systems from the management of smaller 
systems.  The requirements of smaller systems can 
often originate with and be understood by a single 
person, while the requirements of large systems have 
many dimensions and involve many stakeholders, 

which makes them much more complicated and 
difficult to grasp and manage. 

It is not feasible to study the important architectural 
factors affecting large systems by constructing and 
reasoning about small “toy-systems”. The architectural 
work in real systems has so many different aspects that 
it is unrealistic to experiment on system models and to 
expect to draw conclusions of value. Large and 
complex systems can have a lifetime of 20-30 years, 
which makes experimenting with these systems even 
more difficult. A realistic study of factors important for 
successful system management requires that we can 
study a system over a long period of time, or at least 
have access to a reliable source of information 
regarding the history of the system.  

We have studied seven large and complex industrial 
systems in which software has an important and 
expanding role. We looked at several aspects of these 
systems related to their architecture at different points 
in their lifecycles, i.e. requirements, design and 
implementation of the system, system evolution and 
retirement. Among many others, the following issues 
are analyzed in their relationship to architectural 
decisions: reuse, legacy, the effects of the choice of 
technology, standards, organization and development 
process. 

Even though we have primarily focused on software 
architecture, it is important to have in mind that a 
typical industrial system incorporates computer 
hardware, other hardware and software. One of our 
goals was to find out how much importance is given to 
software architecture in the design of these systems. In 
[1], the authors “persist in speaking about software 
architecture primarily, not system architecture, …, 
because most of the freedom is in software choices, not 
hardware choices.” However for the systems we have 
studied, the following statement by Maier and Rechtin 
[6] may be more appropriate: “Even if 90% of the 



system-specific engineering effort is put into software, 
… it is the system, not the software inside that the 
client wishes to acquire.” 

The systems we have studied are: the electronic 
control systems of cars and construction equipment 
provided by Volvo Car Cooperation and Volvo 
Construction Equipment respectively, a robot control 
system provided by ABB Automation Technologies 
AB/Robotics, a train control system provided by 
Bombardier Transportation, the software system of 
radio base stations for 3G provided by TietoEnator 
Telecom & Media, and the Ericsson telecom system 
and platforms of some of its nodes. The study is based 
on interviews with specialists in the system and 
software architectures of the companies’ system and 
software development organizations. The results from 
the interviews were summarized and further discussed 
during a workshop in which the interviewed architects   
participated. 

Most software architecture-related research is 
focused on architectural analysis, architectural 
descriptions, and tools. Consequently, most of the 
documented case studies are focused on these issues 
[9] [2]. Other reports present the utilization of related 
architectural activities in the software development 
process in terms of descriptions and analysis [10]. A 
case study similar to ours but of relatively limited 
scope is presented in [5]. We have found no other 
relevant work that addresses important factors related 
to the software architecture in successful software 
intensive industrial companies to the same extent as 
this paper. 

The contribution of this paper is a description of the 
state-of-practice in industry with respect to software 
architecture and a set of observations and findings 
from an analysis of interviews and a workshop with 
the chief architects from these companies. The findings 
include architecture-related differences between and 
similarities of the systems studied. Moreover, we 
provide speculative findings and trends that were not 
explicitly found in the case study, but were rather the 
results of the intuitive reasoning of the interviewers. 

The outline of the paper is the following: in Section 
2 we present a detailed description of the method used 
in performing the interviews.  In Section 3 we give a 
brief overview of the systems studied. Section 4 
presents a comparative analysis of the data collected in 
our case study. Section 5 contains our conclusions and 
some suggestions for our future work in this field. We 
express our gratitude to the individuals who 
participated in the project and their companies in 
Section 6 and provide a list of references in Section 7. 

 

2. The case study setup 
 

The case study performed was an investigation of 
the architecture of software. According to [8] the 
following steps are involved in a case study: 
conception, hypothesis setting (particularly important 
as it describes what we measure and how the results 
are analyzed), design, preparation, execution, analysis, 
dissemination and decision-making. Also, because a 
case study usually compares one situation with 
another, some measures must be taken to avoid bias 
and to make sure that hypothetical relationships are 
tested. Possible techniques are: sister project, 
comparison with a general baseline and random 
selection.  We have performed these general steps in 
the following way. In the preparation phase of the case 
study we held several brainstorming sessions. The 
outcome of these meetings was a plan with the 
following agenda: 
• Formulate a list of question to guide the interview.  
• Request and arrange interviews with people who 

have an architect, chief designer or similar 
important role and know the history of the system. 
The interview was estimated to take at least two 
hours, and was conducted by one or preferably 
several of the authors of this paper. We decided to 
use the following criteria in the selection of 
companies to participate in the case study: 
 Successful products on the market 
 Complex, established industrial products in 

which software is an important part of the 
entire system  

 Availability of specialist architects 
 Availability of data from several system 

generations  
• After the interviews, write summaries to send to 

the architects concerned for review. 
• Assemble the results of the interviews in a 

technical report. 
• Make a preliminary analysis of the interviews and 

determine the similarities of and the differences 
between the cases.  

• Organize a workshop with the interviewees and 
perform a further analysis of the results. 

• Publish the results of the case study as a scientific 
article. 

The purpose of submitting a questionnaire was to 
give a common structure to all the interviews and to 
form a basis for comparison and analysis of the results. 
The interviews were not restricted to the questions in 
the questionnaire. Wherever possible, we advanced 
counter arguments to provoke discussion, well aware 
that some of the statements were a summary of the 



interviewee’s experience with multiple systems over a 
period longer than 10-15 years. In some cases, we have 
conducted several interview sessions to penetrate 
different subjects and e.mail exchanges to clarify some 
uncertainties. 
 
3. Systems overviews 
 

In this section, we present a brief overview of the 
systems covered by the case study. The way we 
present the system overviews reflects the views and 
responsibilities of the interviewees. 

 
3.1 ABB Automation Technologies/ Robotics 
 

ABB Automation Technologies Products – 
Robotics is a manufacturer of industrial robotic 
systems. The interviewee is the chief system architect 
for the two most recent system generations. Industrial 
robots are systems consisting of one or more 
mechanical units (robot arms that can carry different 
tools), electrical motors, robot controller (computer 
hardware and software) and clients (used for on-line 
and off-line programming of the robot controller). 
Industrial robots can be characterized as generic tools 
that can be configured and programmed for a specific 
purpose such as painting, welding, palletizing etc. 

 

M ain  
com pu te r

A xis  
com pu te r

T C P /IP

W eb A c cess
(op tion a l)

D riv e  
M o d u le

IO  u n its  o r P L C

fie ld b usses

R o b o t S tud io
(o ffline  
p ro g ram m in g )

R o b o t
C o n tro lle r
w ith  
T ea c h  
P e n d a n t U n it

M a n ip u la to r

 
Figure 1 System hardware view of an industrial 

robot system from ABB Robotics 

A hardware view of a robotics system is shown in 
Figure 1. The clients of the robot controller are 
optional, while the main computer and axis computer 
are tightly coupled, with real-time constraints on their 
communication.  

The system has evolved through four generations, 
and the fifth generation of the system is currently 
being developed. Compared with the first generation 
(S1), which used the first microcomputer-based 
electrical robot control system, and whose software 
design required about three man months of work, the 
effort required to develop the software for the fifth 

generation (S5) is estimated to be about 100 man 
years.  

One of the initial requirements was that the same 
controller should be used for all the different types of 
robots, and thus the architecture can be characterized 
as product line architecture.  

In essence, the controller has layered architecture 
and within layers, an object-oriented design. The 
implementation consists of approximately 2500 KLOC 
of C language source code divided into 400-500 
“classes” and organized in 8 technical domains. The 
software platform of the robot controller defines the 
infrastructure that provides basic services such as: a 
broker for message-based inter-task communication, 
configuration support, persistent storage handling, 
system startup and shutdown, etc. These basic services 
constraint the implementation of the software system, 
as defined by the architecture. 
 
3.2 Ericsson AB (R&D System Management) 
 

The interviewee is a member of the R&D System 
Management group, the task of which is to maintain an 
overall technical view of how the Ericsson product 
portfolio and platform technology is evolving. The 
subject of our discussion was the Ericsson telecom 
system as a system of systems. Telecom systems have 
a long history and have been standardized to permit a 
global communication system. Standards are the 
dominating factor for system functionality in this 
domain - a sign of the maturity of the telecom industry.  
Packet switching networks are more recent and these 
systems are still subject to more dynamics and changes 
in their requirements. A telecom system is a complex 
system and an example of only a part of a telecom 
network is shown in Figure 2. The figure shows a radio 
access network, the radio base station acting as the 
radio modem, converting digital information to analog 
radio signals and vice versa. This particular part of a 
telecom network was illustrated because the software 
architecture of one of its nodes is discussed in the 
following section. 

A telecom system requires exceptional reliability 
and availability. For example, a switch is started only 
once, and after that it should be possible to perform 
almost all maintenance during operations. 
Interoperability is another key property of a telecom 
system. 



Radio Base Station

 Figure 2 Radio Access Network 

 
3.3 TietoEnator Telecom & Media 
 

TietoEnator Telecom & Media, in partnership with 
Ericsson, develops 3G-base stations for the new 
mobile telecommunication system UMTS. We 
interviewed a senior software specialist who acts as 
one of the software architects of the Radio Base 
Station (see Figure 2). One of the most significant 
characteristics of 3G base stations is that they are sold 
in very large numbers (for example, each 3G provider 
in Sweden requires about 12,000 base stations).  They 
must have very high degrees of availability and ease of 
maintenance. 

The system currently being developed is the first 
version of the new 3G-base stations. The development 
of the base station system was preceded by an initial 
prototype and experimental implementation, gathering 
experience and evaluating architectural solutions. In 
the actual product development, experience from the 
prototype development was very useful, but no 
software from the prototype was reused. The radio 
base station controller software consists of 
approximately 2000 KLOC of code organised in about 
5000 UML-RT model elements, i.e. capsules, 
protocols and classes. About 80% of the code is 
generated automatically from Real-time UML. The 
base stations are built on a platform delivered by 
Ericsson (CPP, Connectivity Packet Platform). The 
platform is based on the OSE-Delta real-time operating 
system. 

Figure 3 shows the functional architecture and the 
major functional components of a Radio Base Station. 
The functional components can be realized both in 
software and hardware, the Traffic Control and 
Operation & Maintenance being the most SW-centric 
components. 
 

In fras truc ture  and P latformInfras truc tu re and P la tfo rm

T ransportT ransport BasebandBaseband R ad ioR ad io
Antenna

N ear
Parts

Antenna
N ear
Parts

T raffic  C ontro lT raffic  C ontro l O peration  &  M aintenanceO pera tion &  M a in tenance

U ser P lane

U uIub

M ub G U IIub /N BAP

Iub /AAL0

 
Figure 3 Radio Base Station Functional 

Architecture 

The main characteristic of the software architecture 
is that the functional architecture has been arranged in 
a layered structure. The layering can be seen in three 
distinct dimensions: From the Traffic Control point of 
view, from the Operation & Maintenance point of view 
and from the Platform point of view. The main focus 
in the layered structure from the Traffic Control point 
of view is on the hardware abstraction layer, which 
decouples the higher layers from the actual HW 
realization in the Transport, Baseband, Radio and 
Antenna-near parts. The decoupling is achieved by 
means of reusable components that provide the User 
Plane functionality in the same way, irrespective of 
how the HW is being realized, i.e. irrespective of 
which kind of radio base station is being built. 
 
3.4 Ericsson AB (Core Network Development) 
 

In this interview, we met two software technology 
specialists at the Ericsson Core unit, Core Network 
Development. This group develops platforms which 
provide the basic hardware and software in different 
types of telecommunication systems. Examples of 
platforms are CPP, AXE switch platform and WPP 
platform (for GSN nodes). Platforms include both 
hardware and software. Examples of systems built on 
these platforms are nodes in telecom networks: Digital 
switching systems (e.g. AXE108), Mobile Base 
Stations (e.g. RBS discussed in section 3.3 above), 
SGSN (GPRS Support Node). 

Many architecture patterns can be recognized in 
each of those platforms, e.g. “client server", 
"blackboard" and especially “pipes and filters”. The 
system has a layered structure both on the system and 
subsystem levels. Special attention was devoted in the 
architectural design of these systems to concurrency 
and availability. 
 



3.5 Volvo Construction Equipment 
 

Volvo Construction Equipment (Volvo CE) 
develops and manufactures a wide variety of 
construction equipment vehicles such as articulated 
haulers, excavators, graders, backhoe loaders, and 
wheel loaders. We interviewed a technical specialist in 
electronic systems, who have been involved in the 
architectural design of several generations of the 
Volvo CE system. 

Compared with passenger cars, most construction 
equipment vehicles are equipped with less complex 
electronic systems and networks. Using a distributed 
electronic system reduces the cost of the product by 
permitting the use of sensors and displays for several 
purposes and enabling the use of control solutions 
which permit the use of les expensive mechanical 
components.  

Figure 4 shows the basic architecture of the 
electronic system consisting of several ECUs 
(Electronic Control Units) connected by busses. A 
unified hardware is currently used for all nodes except 
for the display ECUs that differ due to space and 
appearance requirements. A unified hardware means, 
in this case, a common design with configurable I/O. 

Together with the common hardware platform, 
Volvo CE uses a common software platform for the 
on-board ECUs. All of the nodes have a layered 
structure as shown in Figure 4. Software 
implementation that is reused between nodes includes: 
boot code, drivers, communication software, service 
software, error handling etc. Tools such as compiler, 
code generators, and scheduler can be used more easily 
due to the fixed hardware platform. Methods for 
parameterization of software are also reused. 

 

E C U  1 E C U  n. . .

     S E  J I 9 39 /C A N

S A E  J I 8 57 /J I87 0

H a rd w a re  la ye r

C o m m u n ic . R u b u s IO

A p p lic a tio n  L a ye r

 
Figure 4 Components in electronic system of Volvo 

CE equipment. 

To permit the reuse of software components and 
methodology in different products, Volvo CE has 
incorporated the Rubus component model for the real 
time application domain [12]. The component model is 
an important part of the Volvo CE electronic platform 
since it enables reuse and commonality in terms of 

tools and methods. The Rubus component model is 
port-based and provides an architecture that 
corresponds to the pipes and filters pattern.  
 
3.6 Volvo Car Corporation 
 

Volvo Car Corporation (Volvo CC) is a subsidiary 
of the Ford Motor Company, manufacturing a 
premium product aimed at the upper end of the car 
market. In this interview we met with the Program 
Manager, Research & Advanced Engineering. Volvo 
CC manufactures nearly half a million cars per year. 
To achieve these volumes, and still offer the customer 
a wide range of choices, the products are built on 
platforms containing common technology that has the 
flexibility to be adaptable to different models. A 
typical configuration of a Volvo CC car includes ECUs 
from more than 10 suppliers. A Volvo CC car contains 
a maximum of about 40 ECUs , connected via 4 
different networks.  

External suppliers work with a number of different 
car companies (or OEMs, original equipment 
manufacturers), providing them with similar parts. The 
role of the OEM is to provide external suppliers with 
specifications so that the component supplied will be 
suitable for a particular car model. Currently, external 
suppliers offer components in the form of ECUs with 
associated software, but as the computational power of 
the ECUs increase, it will be more common to include 
software from several suppliers in the same nodes, this 
increasing the complexity of the integration. The 
suppliers develop the ECU software using their tools 
and structure, but Volvo CC, as an OEM specifies: 
communication, power consumption, diagnostics, and 
software download procedure. 

 

Hardware

RTOS IO

Network CommunicationDiagnostic Kernel

Application

 
 

Figure 5 ECU node architecture. 

The Volvo CC node architecture is a layered 
architecture (Figure 5) that must include a diagnostic 
kernel and a network interface provided by Volvo CC. 
All these components are integrated by Volvo CC, 
which is responsible for guaranteeing each node’s 
resource requirements with respect to communication 
bandwidth. 



3.7 Bombardier Transportation 
 

Bombardier Transportation is the global leader in 
the rail equipment, manufacturing and servicing 
industry. We interviewed persons with two different 
roles – a system architect and a technology specialist. 
Examples of Bombardier products are: passenger rail 
vehicles and total transit systems, locomotives, freight 
cars, propulsion & controls, signaling equipment and 
systems. The group, representatives of which we met, 
develops components of the control system, propulsion 
and control systems. The control system components 
are delivered to the system groups that develop 
complete solutions for the end customers, and in 
particular, sub-domains (e.g. InterCity trains, Metro, 
Railway Control System). 

A simplified model of a train with the most 
important elements of its control system is shown in 
Figure 6. A standard designated TCN (Train 
Communication Network), defines the network 
interconnections between vehicles (WTB – Wire Train 
Bus) and within vehicles (MVB - Multifunction 
Vehicle Bus). A common time-triggered protocol is 
used on both WTB and MVB bus. 

 
Figure 6 Train communication network 

The layers pattern is dominant on the architectural 
level. Other design patterns such as publisher-
subscriber and cyclic execution are also used in 
addition to own internal patterns to develop 
applications in a distributed deterministic real-time 
environment. For application programming, within 
nodes of the control system, Bombardier uses function 
blocks as defined in the IEC 61131-3 standard 
programming languages [11].  

In addition to the traditional control system-related 
functionality, comfort-related functionality is 
becoming more important. Each of the computer-based 
electronic equipment units developed by the 
organization can be classified in one of the three 
domains of criticality: comfort (e.g. connection system, 
passenger information, entertainment, etc), safety 
(control system that is a part of the safety control) and 
control. 

 
4. Comparative interview analysis 
 

In this section, we present a comparative analysis of 
the interview data grouped according to the questions 
used in the interviews. In addition to a request to the 
interviewees to provide an overview of their systems, 
the following groups of questions have been used in 
the interviews (for detailed lists of questions see [7]): 
• Relationship of software and system architecture 

and propagation of requirements between them; 
• Reuse/inheritance/legacy issues; 
• Business/application domain factors: 
• Choice of technologies: 
• Organizational issues and architecture; 
• Process issues; 
• Resources in architectural activities 
 
4.1 Relationship of system, computer hardware 
and software architecture 
 

From the brief overviews of system and software 
architectures presented in Section 3, we can conclude 
that they have many similarities.  All of the systems 
have complex distributed system architectures with 
distributed and relatively autonomous units.  In some 
cases we can treat them as systems of systems.  

In [6] Maier and Rechtin discuss a shift in 
architectural design methods from “hardware first” to 
“software first”. One of the goals of our investigation 
was to determine the current state of practice regarding 
the relationship of software and system architectures in 
industrial systems. All interviewees agreed that the 
system architecture comes first, where the system 
consists of other hardware, computer hardware and 
software. That the “software before computer 
hardware” approach is becoming increasingly common 
is demonstrated by several of the systems we have 
studied; recent system generation has changed from 
“hardware first” to “software first” at both ABB 
Robotics and Volvo CE. Increasingly more intelligence 
is encapsulated in the software of these systems. In the 
ABB Robotics example, the computer hardware was 
completely redesigned in the most recent system 
generation shift, the software platform remaining the 
same. In the Ericsson cases, hardware still dominates 
the design of the software system. In the Volvo CC 
case, the hardware architecture remains dominant as it 
is the basis for integration of external functionality but 
the importance of software and software architecture is 
increasing. 

The following are views regarding software vs. 
system knowledge expressed by interviewees. One   



stated that a “good enough knowledge, or at least 
understanding of the system and the HW... with 
respect to managing, supervising and controlling all 
the different HW is needed. However, I find that my 
experience in SW engineering and good general 
knowledge of SW is much more valuable in getting a 
good SW architecture.” Another commented “I have 
seen ‘strange’ software solutions built by 
application/domain specialists who did not have 
sufficiently good general software architecture design 
knowledge.” This indicates that system expertise is 
necessary, but not sufficient. 
 
4.2 Reuse and legacy in architectural design  
 

As described in Section 2, several of the systems 
described have passed through clearly defined 
generations and within the systems, there have been 
corresponding generations of the (control) system 
hardware and software. We analyzed the relative 
importance of the following three factors: experience, 
subsystems and code, in the design of a major new 
generation of a system.  

All of the interviewees stated that experience in 
developing similar systems, or previous generations of 
the system, was of the greatest importance. This is 
because the design of a new system generation seldom, 
if ever, begins with a blank sheet. 

The reuse of subsystems in a new system design 
was considered to be an important economy and 
therefore can have more impact on the architectural 
design than might be expected. There are examples 
(ABB, Ericsson), in which complete subsystems were 
either reused from a previous system generation or 
acquired from a third party, when a new generation 
was designed. In the case of ABB, the design of the S4 
system generation would have never been approved, 
because of the unacceptably high cost, if the new 
architecture required all subsystems to be changed or 
replaced.  It is hard to disregard the legacy in long-
lived systems. In the case of Bombardier, we have seen 
an example in which new hardware was designed with 
the explicit requirement that it should run old system 
software without change. In safety critical systems, e.g. 
train safety control, it is highly desirable to reuse a 
critical code that has been proven to work well in 
practice. 

As the amount of software in a system increases it 
becomes increasingly important to reuse software 
components to minimize the investment in a new 
system or generation. It is therefore important to 
package software components in such a way that they 
can be used in a variety of architectures.  A stable base 
platform infrastructure and easily reconfigurable 

connections between components on higher-levels is 
economically advantageous as seen in the ABB 
Robotics example. The software architecture in the 
system is considered to be the same in the most recent 
system generations, because although some new, very 
different features have been added, the basic patterns, 
message-based communication and similar have not 
changed. From a structural point of view, as 
connectors and components, this architecture would be 
considered to be a new architecture because a number 
of components and the way they are connected have 
changed. Of course different system properties, such as 
timing properties or reliability can be changed, due to 
changes in the structure, and must therefore be re-
verified. 
 
4.3 Business and application domain factors 
 

In this section, we analyze the impact of business 
and domain related factors on system and software 
architecture. More specifically, we have investigated 
the influence of the following factors: standards, type 
of customers, production volumes, product lifetime, 
and non-functional requirements. 

The influence of Standards varies on the basis of 
the domains in which the systems are used. Standards 
completely dominate the telecom domain, leaving 
space for competition based on optional features in 
standards and other non-functional requirements. 
Standards are not only used for interoperation between 
different systems, but also for interoperation between 
the nodes within a system. This is the case not only in 
telecommunication but also in the automotive industry 
in which e.g. the standardization of bus protocols is 
used as the integration point. The importance of 
standards and interoperability go hand-in-hand in the 
telecom domain. It is very important, to remain 
competitive in the market, to participate in 
standardization activities, to be at the leading edge and 
deliver solutions as soon as standards are finalized. For 
other systems and domains, we were told that 
standards have the greatest impact on subsystem level 
(e.g. a safety subsystem). This says basically that 
system partitioning was applied in the solution space, 
in order to comply with standards more easily (i.e. to 
certify a subsystem rather than the whole system). It is 
common to use software to implement more advanced 
safety features and have software independent core 
safety function as a backup (e.g. robotics system 
safety, ABS systems for car brakes, trains safety). 
Industry standards have a considerable impact on 
system architecture, e.g. for robotic systems - support 
for different kinds of field busses, for train control 
systems - TCN standard for train networks, other 



industry standards for network communication. These 
systems often have architectural level variability points 
to be able to support, for example, multiple industry 
standard protocols. 

The type of customers has an appreciable impact on 
the process of architectural design. In some cases 
(Volvo CC) there are many small customers. In this 
case, the development partners are those involved in 
the architectural design. In other cases (ABB Robotics, 
Ericsson) there are both large customers and many 
small. We were told that: “large customers have their 
opinions not only about what a system should do but 
also how a system should be built”. In the case of 
special customers, architectural issues may be a matter 
for discussion between the customer and the architects.  

Product volumes also have an important effect on 
the architectural design. If a product is to be 
manufactured in large numbers, it is easier to justify 
the expenditure of more time in optimizing the product 
with respect to certain properties if this will lower the 
unit cost. The properties which need to be further 
optimized depend on the product. Ease of maintenance 
and fault tracing by non-experts is definitely one 
important property (Volvo CC, Volvo CE). 

Product lifetime is another factor that is important 
in the architectural design of the systems we have 
studied. Most of the systems studied use a layered 
approach to decouple hardware and software, but also 
to decouple platform software and operating system. 
When the product lifetime is 20-30 years, any 
unavailability of the OS used to build the original 
system is as much a problem as the unavailability of 
the hardware used in the original system design. We 
were shown examples of projects in which it was 
decided to use the Linux OS platform instead of MS 
Windows, because it was believed to be preferable to 
own the source code. We are not aware of any 
systematic approach to dealing with this issue. 

We have seen that non-functional requirements 
(NFR) have a significant explicit impact on the 
architectural design of systems investigated. Each of 
the systems has particular non-functional requirements 
that are dominating and explicitly taken into account. 
Operational NFR are always analyzed from the system 
level. For some systems (e.g. trains) there is more 
focus on hardware NFR because of the nature of the 
operational environment (e.g. temperature variations –
40C to +50C, humidity, vibrations, etc), while for 
other systems (e.g. telephone switches) software and 
hardware play an equally important role in providing 
support for performance/concurrency. The 
implementation of software concurrency mechanisms 
and fault-tolerance (especially fault isolation) is given 
much attention during the architectural design in 

telecom networks. Understandability of the system 
architecture was stressed by all of the interviewees as 
being very important. 
 
4.4 Choice of technologies 
 

A number of questions were asked during the 
interviews to determine how technologies and 
architecture have influenced each other in the creation 
process and the evolution of systems. In particular, we 
wanted to know if any explicit architectural activities 
or measures taken were related to choice of 
technology. We used the term technology in a broad 
sense - something that includes particular principles, 
methods and tools - e.g. database-technology, .NET or 
Java technology or similar. 

From the architectural point of view, a common 
opinion was that technology does not play a crucial 
role. An ambition is to keep architecture separated 
from implementation, and in many cases, the use of a 
particular technology is seen as a matter of particular 
implementation. New technology is introduced 
carefully, very often in a part of a system (ABB 
Robotics, Ericsson). The introduction of new 
technology is sometimes forced by cost reduction 
requirements, e.g. the introduction of new cheaper 
hardware (Bombardier), or because of a possibility of 
utilizing more efficient tools (Bombardier, ABB 
Robotics). 

However we have seen that the choice of 
technology may have important impacts on the 
architectural documentation, design and evaluation. If 
a particular technology brings some important 
advantages in analysis and settings of quality attributes 
(such as timing properties), its use becomes the central 
paradigm of the development process. One 
characteristic example is the use of a component-based 
technology used by Volvo CE in which the software 
and, to a degree, the system architecture are expressed 
consequently in terms of components with a 
standardized specification. Another example is the 
Model Based approach which is used at TietoEnator in 
the design of RBS software (section 3.3). UML-RT 
specifications are strictly used and the code is 
generated from the specification. In these cases 
technology plays an important role, achieving not only 
greater efficiency but also a better understanding of the 
system architecture. 

A somewhat surprising finding related to 
technology was that technology choices are sometimes 
even made to motivate the developers of the system 
and create enthusiasm in the team.  
 



4.5 Organizational factors and architecture 
 

We analyzed the following issues in this section: 
influence of distributed development on architecture, 
outsourcing, size, maturity, dynamics, etc., of the 
organization which was to implement the system. 

It is widely accepted that the organization 
influences the architecture; for example, Conway's 
Law says that the structure of the organization that 
builds some software matches the structure of the 
software [3]. The allocation of resources and people 
working on the project will have a direct impact on the 
architecture of the system. The majority of the 
interviewees stressed that the company’s organization 
often mirrors the system architecture and vice versa. 
Proper handling of this relationship is important in 
order to minimize the dependencies in the software 
that make integration and validation more difficult and 
also to achieve distinct interfaces between different 
organizational units. 

Several interviewees emphasized the importance of 
taking into account in architectural design, the fact that 
implementation will take place in geographically 
different places. We have also seen examples of 
distributed development not being taken into account, 
this resulting in less than optimal architectural support 
for the distributed development process. However, 
partitioning that is appropriate in a distributed 
organization may impair other system properties. 

Several interviewees mentioned that changes in the 
organization are more frequent than changes in the 
architecture. Some of the reasons for organizational 
changes are company mergers and changes in the 
market. Moreover, some employees leave and others 
join the development organization and it is important 
that the newly employed people can become 
productive quickly. That is why NFR mentioned in 4.3 
- understandability is of the utmost importance. 

Some of the interviewees had fundamentally 
different opinions concerning understandability. An 
Ericsson architect opinion is that it is impossible to 
achieve quality if the developers do not “have the big-
picture”, i.e. understand how a sub-system is used and 
operates with other units. On the contrary, at ABB 
Robotics, opinion is that it is more important that many 
developers can be good development contributors, 
without knowing and understanding the entire system. 
This is because the ABB Robotics system is relatively 
multi-disciplinary; control engineers, mechanical 
engineers, and software engineers must be able to 
contribute to the same system without necessarily 
having any deeper knowledge in the other’s fields.  
Other possible factors that have an impact on this issue 

are, for instance, related to the turnover of engineers, 
and the magnitude of the system. 

One organizational and process issue related to 
system evolution which is particularly interesting is 
how to balance long-term strategic goals and short-
term project goals. The conflict begins as early as in 
the architectural phase (experiences from Ericsson) – 
should more time be spent in establishing a good solid 
base for a long-term product evolution, or in getting a 
single product to the market as soon as possible? 
 
4.6 Process related factors 
 

There was surprisingly little interest among the 
architects (with a few exceptions) in life cycle and 
development processes. While it is obvious that 
architecture is a main means of preserving system 
properties in an evolution process, it seems that the 
process itself is not a direct concern of the architects. 
This implies that the mutual relations and influences 
are not under direct control but happen more or less 
ad-hoc. Examples in which a process view of the 
architecture would be beneficial are the designing of a 
testable architecture or, for managing future changes 
in, e.g. technologies, by having a life-cycle process 
associated with the architecture. We believe that the 
absence of a process view in these architectures may 
be one of their weaknesses and also that the indirect 
impact of the processes is appreciable. An example in 
which a more defined process could be advantageous 
was given by the architect at TíetoEnator. Integrating 
software and hardware for the very first time is usually 
a source of friction. One potential remedy of this 
problem could be software/hardware co-design.  

Standards, e.g. safety standard such as IEC 61508 
and ISO 15998, specify the development and 
maintenance processes. These standards will affect 
Volvo CE and have already been considered at 
Bombardier Transportation in different domains of 
criticality (comfort, control, and safety). Processes for 
development in the safety domain are much more strict 
and regulated, than e.g. those for the comfort domain. 
 
4.7 Resources used for architectural design 

 
Factors that were discussed included the time and 

effort invested in architectural activities and the 
number of people involved in architectural design. 

The companies that participated in this investigation 
spend several years in developing a new architecture. 
Typically, architectural evaluation is based on 
prototypes and pilot systems.  



All the architects who participated in this 
investigation agreed upon the importance of small 
core-teams that decide the architecture, i.e. single-
mind-consistency. Typically, architects should be 
people with knowledge of the domain, the technology, 
and the architecture. One interviewee described an 
architect as “a person who could implement the 
complete system by himself/herself, if only time (to 
market) permitted.” 

The fundamental principles of the system i.e. its 
basic infrastructure are a result of the architectural 
design. Examples of fundamental principles in this 
context are the infrastructures for communication and 
concurrency. The fundamental principles should be 
developed and stable before too many developers are 
involved. We were given a contra-example of an 
unsuccessful project (Ericsson), one of the main 
reasons identified being that too many people were 
involved before the basic principles were stabilized. 

 
5. Conclusion 
 

In this paper we have presented the results of a case 
study of several complex industrial systems. We will 
conclude the paper by providing a synthesis of our 
interviews with respect to the life cycle of a system.  
For each phase of the life cycle we will present our 
main findings. 

IVIIIIII

fu
nc

tio
na

lit
y

time  
Figure 7 A system life cycle plotted as functionality 

over time 

A system’s life cycle can be divided roughly into 
four different phases as depicted in Figure 7: (I) 
inception, (II) initial development, (III) maintenance 
and evolution, and (IV) end of life time. The curve in 
Figure 7 plots the functionality in the system over 
time. Hence, for a successful system it is desirable to 
stay in the phase III as long as possible with a curve 
that has an inclination as steep as possible, because this 
implies a high degree of productivity. The architecture 
is the means that should ensure a long life cycle.  

It is the initial phase that lays the foundation for a 
long life cycle. A core team of experienced designers 
should be responsible for deciding the important 

architectural principles and the infrastructure. The 
architectural principles typically manifest themselves 
as guidelines, handbooks and an infrastructure as a 
platform. It is the architectural principles that ensure 
that the most important non-functional requirements 
are fulfilled. The most common mistake reported is to 
involve too many people in the initial phase. Several of 
the interviewees reported experiences in which too 
many people were involved without having a clear 
understanding of how to implement what. At best, the 
development is hesitant and in the worst case, many 
creative engineers design diverging system 
components which are incompatible because there are 
too few constraints on their work. This problem often 
occurs because   higher management requires too much 
result in too short a time and believes that increasing 
the number of engineers employed in the project will 
solve the problem. 

It is important that the architectural principles are 
properly communicated through the development 
organization in order to preserve them. However, no or 
limited strategies for communicating the important 
architectural principles were found in the case studies. 
One strategy that was reported as successful was to 
appoint members of the core architecture team as 
technical leaders in the development projects. In this 
way technical leaders become the medium that carries 
and transfers information of importance to the 
development organization. 

The architects or technical leaders also have a very 
important role in bridging the gap between architecture 
and technology, acting as mentors or guides [4]. It is 
crucial that the architect is a technically very 
competent person, able to handle both detailed 
technical issues in the implementation view as well as 
the coarse-grained big picture represented by the 
architecture and the domain. Only this kind of architect 
will be trustworthy in the eyes of the developers who 
implement the system. Architects should also be able 
to rise above the small-detail problems and find a 
better solution on a higher level, when appropriate. 

Communicating the important architectural 
principles is a continuous process that must be 
considered throughout the life cycle of the system. It is 
important to define processes and strategies, not only 
for communicating architectural principles, but also for 
managing for example, the satisfaction of new 
requirements. A possible reason for finding process 
issues rather insignificant could be that engineers who 
develop systems and those responsible for process 
related issues tend to have a different focus – product 
and process quality. 

The majority of the systems we have studied are 
continuously exposed to new requirements from the 



customers. If these are not properly handled, the 
system evolution may result in architectural 
deterioration. As a system is maintained and new 
functions are added the technical complexity will 
increase. This is especially true if the architecture does 
not completely adopt and support the new functions.  

Moreover, the cognitive complexity also becomes a 
problem if there is a large turnover in personnel. 
Consequently, it is important to have continuity in the 
people working with the system since they are carriers 
of undocumented and important knowledge. In the 
majority of the cases in our study, tools or processes 
for handling new requirements were not used. As a 
consequence, the focus during system evolution is on 
the new requirements only. This creates a risk that old 
requirements are violated while new requirements are 
being implemented. Ideally, old requirements should 
always be verified when new requirements are being 
implemented. We found no systematic approach to 
solving this problem. 

Finally, the system reaches a point (phase IV in 
Figure 7) where the current architecture cannot support 
the new requirements or they become too difficult i.e. 
too expensive, to implement within the frame provided 
by the architecture. As the inclination of the 
functionality curve in Figure 7 decreases, the effort of 
adding new functions becomes excessive.  
Paradoxically, this is likely the time at which the 
company makes the most profit from the system, and 
will probably continue doing so for quite a while. It is 
important to set aside funds from that profit for 
investment in a new architecture. Such an activity 
should begin towards the end of the phase III. 

We believe that the results presented in this paper 
are applicable in general to complex industrial systems 
in which software has an important and growing role. 

In this paper, we have identified several areas that 
deserve more attention and each can be the profitable 
subject of a new study. Additionally, in our future 
work, we plan to perform additional interviews with 
smaller organizations and study their systems and 
compare the results with our current observations and 
conclusions. We have performed one such interview, 
which is not discussed in this paper. Before we can 
publish any results we need to perform additional 
investigation. 
 
6. Acknowledgments 
 

We are very grateful to the following people who 
participated in this case study and their companies: 
Peter Ericsson (ABB Automation Technologies 
AB/Robotics); Ulf Olsson, Hans Brolin and Mike 

Williams (Ericsson AB); Nils-Erik Bånkestad (Volvo 
Construction Equipment), Jakob Axelsson (Volvo Car 
Corporation); Peter Cigéhn (TietoEnator Telecom & 
Media); Erik Gyllensvärd and Peter Sandberg 
(Bombardier Transportation). 
 
7. References 
 
 [1]  Bass L. et al, Software Architecture in Practice, 

Addison-Wesley, 2003. 

 [2]  Bril R.J., et al, Embedding Architectural 
Support in Industry, International Conference 
on Software Maintenance, 2003. 

 [3]  Conway M., How do committees Invent?, 
Datamation, 14 (4), 1968. 

 [4]  Fowler M., Who needs an architect?, IEEE 
Software, 2003. 

 [5]  Graaf B. et al, Embedded Software Engineering: 
The State of the Practice, IEEE Software, 2003. 

 [6]  Maier M. and Rechtin E., The art of systems 
architecting, CRC Press, 2000. 

 [7]  Mustapic G. et al, Influences between Software 
Architecture and its Environment in Industrial 
Systems - a Case Study, MRTC Technical 
Report, http://www.idt.mdh.se, 2004 

 [8]  Pfleeger S.L., Software Engineering - Theory 
and Practice, Prentice Hall, 2000. 

 [9]  Smolander K. et al, What is Included in 
Software Architecture? – A Case Study in Three 
Software Organizations, proceedings of the 9th 
IEEE International Conference and Workshop 
on Engineering of Computer-Based Systems, 
2002. 

 [10]  Soni D. et al, An Empirical Approach to 
Software Architectures, proceedings of the 7th 
International Workshop on Software 
Specification and Design, 1993. 

[11]  Application and Implementation of IEC 1131-3, 
Standard provided by the International 
Electrotechnical Commission, May 1995. 

[12]  The Rubus Operating System Manual, 
www.arcticus.se 

 


