
An event detection algebra for reactive systems

Jan Carlson and Björn Lisper
Department of Computer Science and Engineering

Mälardalen University, Sweden
jan.carlson@mdh.se bjorn.lisper@mdh.se

Abstract

In reactive systems, execution is driven by external events to which the
system should respond with appropriate actions. Such events can be simple,
but systems are often supposed to react to sophisticated situations involving
a number of simpler events occurring in accordance with some pattern. A sys-
tematic approach to handle this type of systems is to separate the mechanism
for detecting composite events from the rest of the application logic.

In this paper, we present an event algebra for composite event detection.
We show a number of algebraic laws that facilitate formal reasoning, and
justify the algebra semantics by showing to what extent the operators comply
with intuition. Finally, we present an implementation of the algebra, and
identify a large subset of expressions for which detection can be performed
with bounded resources.

1 Introduction

Many real-time and embedded systems are reactive, meaning that the execution
is driven by external events to which the system should react with an appropriate
response. For many applications, the system should react to complex event patterns,
sometimes called composite events, rather than to a single event occurrence. A
systematic approach to handle this type of systems is to separate the mechanism
for detecting composite events from the rest of the application logic. The detection
mechanism takes as input primitive events and detects occurrences of composite
events which are used as input to the application logic. This separation of concerns
facilitates design and analysis of reactive systems, as detection of complex events can
be given a formal semantics independent from the application in which it is used,
and the remaining application logic is free from auxiliary rules and information
about partially completed patterns.

Example 1.1 Consider a system with input events including a button B, a pres-
sure alarm P and a temperature alarm T, where one desired reaction is that the
system should perform an action A when the button is pressed twice within two
seconds, unless either of the alarms occurs in between. This can be achieved by a set
of rules that specifies reactions to the three events, so that the combined behaviour
implements the desired reaction. Alternatively, a separate detection mechanism can
be used to define a composite event E that corresponds to the described situation,
with a single rule stating that an occurrence of E should trigger the action A. The
two approaches are illustrated by Figure 1.

The mechanism to detect composite events can be constructed as an event alge-
bra, i.e., a number of operators from which expressions can be built that represent

1

B -

P -

T -
...

A-
...

Application logic

B -

P -

T -
...

E
-

...
A-

...

Event
detection

Application
logic

Figure 1: Implicit and explicit detection of composite events

the event patterns of interest. In this paper, we propose an event algebra that specif-
ically targets applications with limited resources, such as embedded and real-time
systems. We present a number of algebraic laws that facilitate formal reasoning,
and justify the algebra semantics by showing to what extent the operators comply
with intuition. Finally, we identify criteria under which detection can be performed
with limited resources, and present a transformation algorithm that allows many
expressions to be transformed into a form where these criteria are met.

The proposed algebra consists of five operators: The disjunction of A and B
represents that either of A and B occurs, here denoted A∨B. Conjunction means
that both events have occurred, possibly not simultaneously, and is denoted A+B.
The negation, denoted A−B, occurs when there is an occurrence of A during which
there is no occurrence of B. A sequence A;B is an occurrence of A followed by
an occurrence of B. Finally, there is a temporal restriction Aτ which occurs when
there is an occurrence of A shorter than τ time units.

Example 1.2 The composite event E from the previous example corresponds to
the expression (B;B)2−(P∨T) in the algebra.

The operator semantics described informally above does not specify how to
handle situations where an occurrence could participate in several occurrences of a
composite event. For example, three occurences of A followed by two occurrences of
B result in six occurrences of A+B. While this may be acceptable, or even desirable,
in some applications, the memory requirements (each occurrence of A and B must
be remembered forever) and the increasing number of simultaneous events means
that it is unsuitable in many cases.

A common way to deal with this is to introduce variants of the operators that
impose stronger constraints in addition to the basic conditions give above. For
example, a possible sequence variant is to require that in addition to A occurring
before B, this should be the most recent occurrence of A so far. Such variants can
be defined by means of general restriction policies, where each combination of an
operator and a restriction policy yields a operator variant with specific semantics.
When restriction is applied to individual operator occurrences in the expression,
as in existing event algebras with restriction policies, a user of the algebra must
understand the interference from nested restrictions, and the effect of restriction on
different operator combinations.

We have developed a novel restriction policy that is conceptually applied to the
expression as a whole, rather than at the individual operators, which results in an
algebra with simpler and more intuitive semantics. The policy is carefully designed
so that applying it once at the top level is semantically consistent with applying it
recursively to all subexpressions, which allows an efficient implementation.

As far as we know, previous research on event algebras has not addressed con-
formance to algebraic laws. In particular, event algebras suited for systems with

2

limited resources typically exhibit unintuitive semantics and poor algebraic proper-
ties.

The rest of this paper is organised as follows: Section 2 surveys related work. The
algebra is defined in Section 3, followed by a presentation of the algebraic properties
in Section 4. Section 5 presents an implementation, including an analysis of time
and memory complexity. Section 6 describes a semantic-preserving transformation
algorithm, and Section 7 concludes the paper.

2 Related work

The operators of our algebra, as well as the use of interval semantics and restricted
detection, are influenced by work in the area of active databases. Snoop [5], Ode [8]
and SAMOS [7] are examples of active database systems where an event algebra is
used to specify the reactive behaviour. These systems differ primarily in the choice
of detection mechanism. SAMOS is based on Petri nets, while Snoop uses event
graphs. In Ode, event definitions are equivalent to regular expressions and can be
detected by state automata. In the area of active databases, event algebras are
often not given a formal semantics, and algebraic properties of the operators are
not investigated. Also, resource efficiency is typically not a main concern.

Common to these systems is that they consider composite events to be instanta-
neous, i.e., an occurrence is associated with a single time instant, normally the time
at which it can be detected. Galton and Augusto have shown that this results in
unintended semantics for some operation compositions [6]. For example, an occur-
rence of A followed by B and then C, is accepted as an occurrence of the composite
event B;(A;C), since B occurs before the occurrence of A;C. They also present the
core of an alternative, interval-based, semantics to handle these problems. We use
a similar semantic base for our algebra, but we extend it with a restriction policy
to allow the algebra to be implemented with limited resources while retaining the
desired algebraic properties.

Liu et al. use Real Time Logic to define a system where composite events are
expressed as timing constraints and handled by general timing constraint monitoring
techniques. They present a mechanism for early detection of timing constraint
violation, and show that upper bounds on memory and time can be derived [10].

In middleware platforms, event detection techniques are used to handle high
volumes of event occurrences by allowing consumers to subscribe to certain event
patterns rather than to single event types. Sánchez et al. present an event corre-
lation language where event expressions are translated into nested Petri net like
automata. [12].

Knowledge representation techniques use similar operators to reason about event
occurrences. Rather than detecting complex events as they occur, they focus on
how to express formally the fact that some event has occurred, and on defining
inferences rules for this type of statements. Examples include Interval Calculus [1]
and Event Calculus [9].

The event detection mechanisms described above provide no assistance to the
developer in terms of algebraic properties or an event expression equivalence theory.
In the cases where memory usage is addressed, for example by means of restriction
policies, this results in complicated and non-intuitive semantics.

We propose an algebra for which a large class of composite events can be detected
with limited resources. The algebra defined by a simple declarative semantics and
we present a number of algebraic laws that facilitate formal reasoning, and supports
the claim that the intuitive meaning of the operators is valid also for complex
nested expressions. A preliminary version of the algebra, with less useful algebraic
properties and with no memory bound, was described in a previous paper [3].

3

3 Declarative semantics

For simplicity, we assume a discrete time model throughout the paper. The declar-
ative semantics of the algebra can be used with a dense time model as well, under
restrictions that prevent primitive events that occur infinitely many times in a finite
time interval.

Definition 3.1 The temporal domain T is the set of all natural numbers.

3.1 Primitive events

We assume that the system has a pre-defined set of primitive event types to which
it should be able to react. These events can be external (sampled from the envi-
ronment or originating from another system) or internal (such as the violation of a
condition over the system state, or a timeout), but the detection mechanism does
not distinguish between these categories.

For some primitive events, it is useful to associate additional information with
each occurrence. For example, the occurrences of a temperature alarm might carry
the measured temperature value, to be used in the responding action. These values
are not manipulated by the algebra, only grouped and forwarded to the part of the
system that reacts to the detected events.

Definition 3.2 Let P be a finite set of identifiers that represent the primitive event
types that are of interest to the system. For each identifier p ∈ P, let dom(p) denote
the domain from which the values of p are taken.

Occurrences of primitive events are assumed to be instantaneous and atomic.
In the algebra, they are represented by event instances that contain event type,
occurrence time and a value. Formally, we represent a primitive instance as a
singleton set, to allow primitive and complex instances to be treated uniformly.

Definition 3.3 If p∈P, υ∈dom(p) and τ ∈T , then the singleton set {〈p, υ, τ〉} is
a primitive event instance.

Together, the occurrences of a certain event type form an event stream. We
allow simultaneous occurrences in general, but occurrences of the same primitive
event type are assumed to be non-simultaneous.

Definition 3.4 A primitive event stream is a set of primitive event instances all
of which have the same identifier, and different times.

The set of identifiers and the value domains capture static aspects of the system,
and instances and event streams are dynamic concepts that describe what happens
during a particular execution of the program. An interpretation is a formal repre-
sentation of a single scenario, as it describes one particular case of primitive event
occurrences.

Definition 3.5 An interpretation is a function that maps each identifier p ∈ P to
a primitive event stream containing instances with identifier p.

Example 3.1 Let P = {T,P} with dom(T)=N and dom(P)= {high, low}. Now
S = {{〈T, 12, 2〉}, {〈T, 14, 3〉}, {〈T, 8, 5〉}} and S′ = {{〈P, low, 4〉}} are examples
of primitive event streams, and I such that I(T) = S and I(P) = S′ is a possible
interpretation.

4

3.2 Composite events

Composite events are represented by expressions built from the identifiers and the
operators of the algebra.

Definition 3.6 If A ∈ P, then A is an event expression. If A and B are event
expressions, and τ ∈T , then A∨B, A+B, A−B, A;B and Aτ are event expressions.

Next, we extend the concepts of instances and streams to composite events as well
as primitive. The way in which instances are constructed is defined by the algebra
semantics. For now, we only define their structure.

Definition 3.7 An event instance is a union of n primitive event instances, where
0 < n.

Informally, an instance of a composite event represents the primitive event occur-
rences that caused an occurrence of the composite event. Since the semantics should
be interval-based, we associate each instance with an interval, through the following
definition.

Definition 3.8 For an event instance a we define

start(a)= Min〈i,υ,τ〉∈a (τ)
end(a) = Max〈i,υ,τ〉∈a (τ)

The interval [start(a), end(a)] can be thought of as the smallest interval which con-
tains all the occurrences of primitive events that caused the occurrence of a. Note
that a primitive event instance is an event instance, and if a is a primitive instance
then start(a) = end(a).

Example 3.2 Let a = {〈T, 12, 2〉, 〈P, low, 4〉, 〈T, 8, 5〉}, then a is an event in-
stance, and we have start(a)=2 and end(a)=5.

We also need a definition of general event streams. These will be used to repre-
sent all instances of a composite event. By this definition, a primitive event stream
is an event stream, just as the names suggest.

Definition 3.9 An event stream is a set of event instances.

The naming convention is to use S, T and U for event streams, and A, B, C,
etc. for event expressions. Lower case letters are used for event instances, and in
general s belongs to the event stream S, etc.

3.3 Semantics

The interpretation provides the occurrences of the primitive events, by mapping
each identifier to an event stream, and the role of the algebra semantics is to extend
this mapping to composite events defined by event expressions.

The following functions over event streams form the core of the algebra seman-
tics, as they define the basic characteristics of the five operators.

Definition 3.10 For event streams S and T , and τ ∈ T , define:

dis(S, T) = S ∪ T
con(S, T) = {s ∪ t | s∈S ∧ t∈T}
neg(S, T) = {s | s∈S ∧ ¬∃t(t∈T ∧ start(s)≤start(t) ∧ end(t)≤end(s))}
seq(S, T) = {s ∪ t | s∈S ∧ t∈T ∧ end(s)<start(t)}
tim(S, τ) = {s | s ∈ S ∧ end(s)− start(s) ≤ τ}

5

The semantics of the algebra is defined by recursively applying the corresponding
function for each operation in the expression.

Definition 3.11 The meaning of an event expression for a given interpretation I
is defined as follows:

[[A]]I = I(A) if A∈P [[A−B]]I = neg([[A]]I , [[B]]I)
[[A∨B]]I = dis([[A]]I , [[B]]I) [[A;B]]I = seq([[A]]I , [[B]]I)
[[A+B]]I = con([[A]]I , [[B]]I) [[Aτ]]I = tim([[A]]I , τ)

To simplify the presentation, we will use the notation [[A]] instead of [[A]]I when the
choice of I is obvious or arbitrary.

These definitions result in an algebra with simple semantics and intuitive alge-
braic properties, but it can not be implemented with limited resources. To deal with
resource limitations, we define a formal restriction policy, and require only that an
implementation should compute a valid restriction of the event stream specified by
the algebra semantics.

Formally, the restriction policy is defined as a relation rem, where rem(S, S′)
means that S′ is a valid restriction of S. Alternatively, it can be seen as a non-
deterministic restriction function, or a family of acceptable restriction functions.
For reasons of repeatability, it is typically desirable that an implementation of the
algebra is deterministic. From a theoretical point of view, however, we prefer to
leave as many detailed design decisions as possible open, as we can ensure that any
implementation which is consistent with the restriction policy relation is guaranteed
to have the properties described in the paper.

The basis of the restriction policy it that the restricted event stream should not
contain multiple instances with the same end time, as this is one of the efficiency
issues. Informally, from the instances with the same end time, the restriction policy
keeps exactly one with maximal start time.

Definition 3.12 For two event streams, S and S′, rem(S, S′) holds if the following
conditions hold:

1. S′ ⊆ S

2. ∀s (s∈S ⇒ ∃s′(s′∈S′ ∧ start(s)≤start(s′) ∧ end(s)=end(s′)))

3. ∀s, s′ ((s∈S′ ∧ s′∈S′ ∧ end(s)=end(s′)) ⇒ s=s′)

Rather than computing [[A]] for a given event expression A, an implementation of
the algebra computes an event stream S′ for which rem([[A]], S′) holds. For the user
of the algebra, this means that at any time when there is one or more occurrences
of A, one of them will be detected.

4 Properties

To aid a user of this algebra, we present a selection of algebraic laws. These laws
facilitate reasoning, both formally and informally, about the algebra and any system
in which it is embedded. They also show to what extent the operators behave
according to intuition. For this, we first define expression equivalence.

Definition 4.1 For event expressions A and B we define A ≡ B to hold if [[A]]I =
[[B]]I for any interpretation I.

Trivially, ≡ is an equivalence relation. Moreover, the following theorem shows that
it satisfies the substitutive condition, and hence defines structural congruence over
event expressions.

6

Theorem 4.1 If A ≡ A′, B ≡ B′ and τ ∈ T , then we have A∨B ≡ A′∨B′,
A+B ≡ A′+B′, A;B ≡ A′;B′, A−B ≡ A′−B′ and Aτ ≡ A′

τ .

Proof: This follows trivially from definitions 3.10 and 4.1. �

The following laws describe the properties of the disjunction, conjunction and
sequence operators, and how they distribute.

Theorem 4.2 For event expressions A, B and C, the following laws hold.

1. A∨A ≡ A
2. A∨B ≡ B∨A
3. A+B ≡ B+A
4. A∨(B∨C) ≡ (A∨B)∨C
5. A+(B+C) ≡ (A+B)+C
6. A;(B;C) ≡ (A;B);C
7. (A∨B)+C ≡ (A+C)∨(B+C)
8. (A∨B);C ≡ (A;C)∨(B;C)
9. A;(B∨C) ≡ (A;B)∨(A;C)

Corollary 4.1

10. A+(B∨C) ≡ (A+B)∨(A+C)

Proof: Most of the laws follow trivially from definitions 4.1, 3.10 and 3.11.

1. [[A∨A]] = dis([[A]], [[A]]) = [[A]] ∪ [[A]] = [[A]]

2. [[A∨B]] = dis([[A]], [[B]]) = dis([[B]], [[A]]) = [[B∨A]]

3. [[A+B]] = con([[A]], [[B]]) = con([[B]], [[A]]) = [[B+A]]

4. [[A∨(B∨C)]] = [[A]] ∪ [[B]] ∪ [[C]] = [[(A∨B)∨C]]

5. [[A+(B+C)]] = con([[A]], con([[B]], [[C]])) =
{a ∪ b ∪ c | a ∈ [[A]] ∧ b ∈ [[B]] ∧ c ∈ [[C]]) = [[(A+B)+C]]

6. [[A;(B;C)]] = {a ∪ e | a∈ [[A]] ∧ e∈{b ∪ c | b∈ [[B]] ∧ c∈ [[C]] ∧
end(b)<start(c)} ∧ end(a)<start(e)} =
{a∪ b∪ c | a∈ [[A]]∧ b∈ [[B]]∧ c∈ [[C]]∧ end(a)<start(b)∧ end(b)<start(c)} =
[[(A;B);C]]

7. [[(A∨B)+C]] = con(dis([[A]], [[B]]), [[C]]) = con(([[A]] ∪ [[B]]), [[C]]) =
{e ∪ c | e∈ [[A]] ∪ [[B]] ∧ c∈ [[C]]} =
{a ∪ c | a∈ [[A]] ∧ c∈ [[C]]} ∪ {b ∪ c | b∈ [[A]] ∧ c∈ [[C]]} =
con([[A]], [[C]]) ∪ con([[B]], [[C]]) = [[(A+C)∨(B+C)]]

8. [[(A∨B);C]] = {e ∪ c | e∈ [[A]] ∪ [[B]] ∧ c∈ [[C]] ∧ end(e)<start(c)} =
{a ∪ c | a∈ [[A]] ∧ c∈ [[C]] ∧ end(a)<start(c)} ∪
{b ∪ c | b∈ [[B]] ∧ c∈ [[C]] ∧ end(b)<start(c)} =
[[(A;C)∨(B;C)]]

9. [[A;(B∨C)]] = {a ∪ e | a∈ [[A]] ∧ e∈ [[B]] ∪ [[C]] ∧ end(a)<start(e)} =
{a ∪ b | a∈ [[A]] ∧ b∈ [[B]] ∧ end(a)<start(b)} ∪
{a ∪ c | a∈ [[A]] ∧ c∈ [[C]] ∧ end(a)<start(c)} =
[[(A;B)∨(A;C)]]

10. This follows from laws 2, 3 and 7.

7

�

Next, we present a set of laws for negation. To simplify the proofs, we introduce
the following predicate.

Definition 4.2 For an event stream S, and τ, τ ′ ∈ T , define empty(S, τ, τ ′) to hold
if ¬∃s(s∈S ∧ τ≤start(s) ∧ end(s)≤τ ′)

Trivially, a∈ [[A−B]] iff a∈ [[A]] and empty([[B]], start(a), end(a)).

Theorem 4.3 For event expressions A, B and C, the following laws hold.

11. (A−B)−C ≡ A−(B∨C)
12. A−(B−B) ≡ A
13. (A∨B)−C ≡ (A−C)∨(B−C)
14. (A+B)−C ≡ ((A−C)+B)−C
15. (A;B)−C ≡ ((A−C);B)−C
16. (A;B)−C ≡ (A;(B−C))−C

Corollary 4.2

17. (A−B)−B ≡ A−B
18 (A−B)−C ≡ (A−C)−B
19. (A∨B)−C ≡ ((A−C)∨B)−C
20. (A∨B)−C ≡ (A∨(B−C))−C
21. (A+B)−C ≡ (A+(B−C))−C
22. (A−B)−C ≡ ((A−C)−B)−C

Proof: Here, ≡23 denotes that the equivalence follows from law number 23, etc.

11. a∈ [[(A−B)−C]] ⇔
a∈ [[A−B]] ∧ empty([[C]], start(a), end(a)) ⇔
a∈ [[A]] ∧ empty([[B]], start(a), end(a)) ∧
empty([[C]], start(a), end(a)) ⇔
a∈ [[A]] ∧ empty([[B]] ∪ [[C]], start(a), end(a)) ⇔
a∈ [[A−(B∨C)]]

12. Since [[B−B]]I =∅ for any interpretation I, it follows that [[A−(B−B)]] = [[A]].

13. [[(A∨B)−C]] =
{e | e ∈ [[A]] ∪ [[B]] ∧ empty([[C]], start(e), end(e))} =
{a | a∈ [[A]] ∧ empty([[C]], start(a), end(a))} ∪
{b | b∈ [[B]] ∧ empty([[C]], start(b), end(b))} =
[[(A−C)]] ∪ [[(B−C)]] =
[[(A−C)∨(B−C)]]

14. e∈ [[((A−C)+B)−C]] ⇔
e=a ∪ b ∧ a∈ [[(A−C)]] ∧ b∈ [[B]] ∧ empty([[C]], start(e), end(e)) ⇔
e=a ∪ b ∧ a∈ [[A]] ∧ b∈ [[B]] ∧ empty([[C]], start(e), end(e)) ∧
empty([[C]], start(a), end(a))

Since start(e) ≤ start(a) and end(a) ≤ end(e), this is equivalent to
e=a ∪ b ∧ a∈ [[A]] ∧ b∈ [[B]] ∧ empty([[C]], start(e), end(e)) ⇔
e=[[(A+B)−C]]

15. e∈ [[(A;B)−C]] ⇔
e=a ∪ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b)) ⇔
e=a ∪ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧

8

empty([[C]], start(a), end(b)) ∧ empty([[C]], start(a), end(a)) ⇔
e=a ∪ b ∧ end(a)<start(b) ∧ a∈ [[A−C]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b)) ⇔
e∈ [[(A−C);B]] ∧ empty([[C]], start(e), end(e)) ⇔
e∈ [[((A−C);B)−C]]

16. e∈ [[(A;B)−C]] ⇔
e=a ∪ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b)) ⇔
e=a ∪ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b)) ∧ empty([[C]], start(b), end(b)) ⇔
e=a ∪ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B−C]] ∧
empty([[C]], start(a), end(b)) ⇔
e∈ [[A;(B−C)]] ∧ empty([[C]], start(e), end(e)) ⇔
e∈ [[(A;(B−C))−C]]

17. This follows from laws 1 and 13.

18. This follows from laws 2 and 11.

19. ((A−C)∨B)−C ≡13 ((A−C)−C)∨(B−C) ≡17 (A−C)∨(B−C) ≡13 (A∨B)−C

20. This follows from laws 2 and 13.

21. This follows from laws 3 and 14.

22. ((A−C)−B)−C ≡18 ((A−B)−C)−C ≡17 (A−B)−C

�

The following laws describe how temporal restrictions can be propagated through
an expression. In Section 6, these laws are used to define an algorithm for trans-
forming event expressions into an equivalent expressions that can be detected more
efficiently.

Theorem 4.4 For event expressions A, B and C, and τ ∈ T , the following laws
hold.

23. A ≡ Aτ if A ∈ P
24. (Aτ)τ ′ ≡ Amin(τ,τ ′)

25. (A∨B)τ ≡ Aτ∨Bτ

26. (A+B)τ ≡ (Aτ +B)τ

27. (A−B)τ ≡ Aτ−B
28. (A−B)τ ≡ (A−Bτ)τ

29. (A;B)τ ≡ (Aτ ;B)τ

30. (A;B)τ ≡ (A;Bτ)τ

Corollary 4.3

31. (Aτ)τ ′ ≡ (Aτ ′)τ

32. (A∨B)τ ≡ (Aτ ∨B)τ

33. (A∨B)τ ≡ (A ∨Bτ)τ

34. Aτ∨Bτ ′ ≡ (Aτ ∨Bτ ′)max(τ,τ ′)

35. (A+B)τ ≡ (A+Bτ)τ

36. (A−B)τ ≡ Aτ−Bτ

Proof:

23. A ∈ P implies that end(a)−start(a) = 0 for any a∈ [[A]], which means that
[[A]] = [[Aτ]].

9

24. [[(Aτ)τ ′]] = {a | a∈ [[A]] ∧ end(a) − start(a) ≤ τ ∧ end(a) − start(a) ≤ τ ′} =
{a | a∈ [[A]] ∧ end(a)− start(a) ≤ min(τ, τ ′)} = [[Amin(τ,τ ′)]]

25. [[(A∨B)τ]] = {e | e ∈ A ∪B ∧ end(e)− start(e) ≤ τ} =
{a | a ∈ A ∧ end(a)− start(a) ≤ τ} ∪ {b | b ∈ B ∧ end(b)− start(b) ≤ τ} =
[[Aτ]] ∪ [[Bτ]] = [[Aτ∨Bτ]]

26. e∈ [[(Aτ +B)τ]] ⇔ e∈ [[Aτ +B]] ∧ end(e)− start(e) ≤ τ ⇔
e=a ∪ b ∧ a∈ [[Aτ]] ∧ b∈ [[B]] ∧ end(e)− start(e) ≤ τ ⇔
e=a ∪ b ∧ a∈ [[A]] ∧ end(a)− start(a) ≤ τ ∧ b∈ [[B]] ∧ end(e)− start(e) ≤ τ

Since end(a) ≤ end(e) and start(e) ≤ start(a), we have end(a) − start(a) ≤
end(e)− start(e) so end(e)− start(e) ≤ τ ⇒ end(a)− start(a) ≤ τ . Thus, the
last formula above is equivalent to
e=a ∪ b ∧ a=[[A]] ∧ b=[[B]] ∧ end(e)− start(e) ≤ τ ⇔
e∈ [[A+B]] ∧ end(e)− start(e) ≤ τ ⇔ e∈ [[(A+B)τ]].

27. [[(A−B)τ]] = {a | a∈ [[A−B]] ∧ end(a)− start(a) ≤ τ} =
{a | a∈ [[A]] ∧ end(a)− start(a) ≤ τ ∧ empty([[B]], start(a), end(a))} =
{a | a∈ [[Aτ]] ∧ empty([[B]], start(a), end(a))} =
[[Aτ−B]]

28. [[(A−Bτ)τ]] = {a | a∈ [[A]]∧end(a)−start(a) ≤ τ∧empty([[Bτ]], start(a), end(a))} =

{a | a∈ [[A]]∧end(a)−start(a) ≤ τ ∧¬∃b(b∈ [[B]]∧start(a)≤start(b)∧end(b)≤
end(a) ∧ end(b)− start(b) ≤ τ)}
Since end(a) − start(a) ≤ τ , start(a)≤ start(b) and end(b)≤ end(a) implies
end(b) − start(b) ≤ τ , that constraint can be removed without changing the
resulting set. Thus, the set above is equivalent to
{a | a∈ [[A]] ∧ end(a)− start(a) ≤ τ ∧ empty([[B]], start(a), end(a))} =
[[(A−B)τ]].

29. [[(A;Bτ)τ]] =
{a ∪ b | a∈ [[A]] ∧ b∈ [[Bτ]] ∧ end(a)<start(b) ∧ end(b)− start(a) ≤ τ} =
{a ∪ b | a∈ [[A]] ∧ b∈ [[B]] ∧ end(b)− start(b) ≤ τ ∧ end(a)<start(b) ∧
end(b)− start(a) ≤ τ}
Since end(a)<start(b) and end(b)−start(a) ≤ τ implies end(b)−start(b) ≤ τ ,
this criteria can be dropped without changing the meaning. Thus, the set
above is equivalent to
{a∪b | a∈ [[A]]∧b∈ [[B]]∧end(a)<start(b)∧end(b)−start(a) ≤ τ} = [[(A;B)τ]]

30. [[(Aτ ;B)τ]] =
{a ∪ b | a∈ [[Aτ]] ∧ b∈ [[B]] ∧ end(a)<start(b) ∧ end(b)− start(a) ≤ τ} =
{a ∪ b | a∈ [[A]] ∧ end(a)− start(a) ≤ τ ∧ b∈ [[B]] ∧ end(a)<start(b) ∧
end(b)− start(a) ≤ τ}
Since end(a)<start(b) and end(b)−start(a) ≤ τ implies end(a)−start(a) ≤ τ ,
this criteria can be dropped without changing the meaning. Thus, the set
above is equivalent to
{a∪b | a∈ [[A]]∧b∈ [[B]]∧end(a)<start(b)∧end(b)−start(a) ≤ τ} = [[(A;B)τ]]

31. (Aτ)τ ′ ≡28
Amin(τ,τ ′) ≡ Amin(τ,τ ′) ≡

28 (Aτ ′)τ

32. (A∨B)τ ≡
25

Aτ∨Bτ ≡
24 (Aτ)τ∨Bτ ≡

25 (Aτ∨B)τ

33. This follows trivially from laws 2 and 32.

10

34. (Aτ∨Bτ ′)max(τ,τ ′) ≡
25 (Aτ)max(τ,τ ′)∨(Bτ ′)max(τ,τ ′) ≡

24

Amin(τ,max(τ,τ ′))∨Bmin(τ ′,max(τ,τ ′)) ≡ Aτ∨Bτ ′

35. This follows trivially from laws 3 and 26.

36. (A−B)τ ≡
28 (A−Bτ)τ ≡

27
Aτ−Bτ

�

The laws identify expressions that are semantically equivalent, but in order to
handle resource limitations, we expect an implementation of the algebra to compute
an event stream S′ such that rem([[A]], S′). As a result, detecting A might yield a
different stream than detecting A′, even when A ≡ A′. Consequently, it should
be clearified to what extent the laws presented above are still applicable when
restriction is applied.

Trivially, if A ≡ A′ then a valid restriction to [[A]] is also a valid restriction to
[[A′]]. However, while the restriction policy is defined as a relation, an implemen-
tation produces a single restricted stream. As a result, detecting A might yield a
different stream than detecting A′. Although not identical, we will show that the
two streams are closely related.

Definition 4.3 For event streams S and T , define S ∼= T to hold if the following
holds: {〈start(s), end(s)〉 | s∈S} = {〈start(t), end(t)〉 | t∈T}
Trivially, ∼= is an equivalence relation.

Theorem 4.5 If rem(S, T) and rem(S, T ′) holds, then T ∼= T ′

Proof: Take any t ∈ T . Then, since T ⊆ S, t ∈ S. By the second condition
in the definition of rem, there is some t′ ∈ T ′ such that start(t) < start(t′) and
end(t) = end(t′). We also have t′ ∈ S, and thus there is some t′′ ∈ T such that
start(t′) ≤ start(t′′) and end(t′) = end(t′′). According to the third condition in the
definition of rem this implies t = t′′, which means that we have start(t) ≤ start(t′) ≤
start(t) and thus start(t′) = start(t). So, for any t ∈ T there is a t′ ∈ T ′ with the
same start and end time. Trivially, the opposite holds as well. �

Corollary 4.4 If A ≡ A′, rem([[A]], T) and rem([[A]], T ′), then T ∼= T ′.

Thus, A ≡ A′ ensures that for any implementation consistent with the restriction
policy, the instances found when detecting A and A′ have the same start and end
times. Of course, the detected instances are also guaranteed to belong to the event
stream defined by the algebra semantics (which according to A ≡ A′ are the same).

In order to get the desired efficiency, all subexpressions of an expression must
be detected in an efficient way, and thus the restriction policy must be applied
recursively to every subexpression. This scenario would normally require a user of
the algebra to understand how the restrictions in different subexpressions interfer
with each other, and how they effect different operator combinations. To avoid this,
the operators and the restriction policy have been carefully designed to support the
following theorem. Informally, it states that restricting the subexpressions as well as
the whole expression gives a result which is valid also for the case when restriction
is applied only at the top level.

Theorem 4.6 If rem(S, S′) and rem(T, T ′) holds, than for any event stream U and
τ ∈ T the following implications hold:

1. rem(dis(S′, T ′), U) ⇒ rem(dis(S, T), U)
2. rem(con(S′, T ′), U) ⇒ rem(con(S, T), U)
3. rem(neg(S′, T ′), U) ⇒ rem(neg(S, T), U)
4. rem(seq(S′, T ′), U) ⇒ rem(seq(S, T), U)
5. rem(tim(S′, τ), U) ⇒ rem(tim(S, τ), U)

11

Proof:

1. Assume rem(dis(S′, T ′), U). For any u ∈ U we have u ∈ dis(S′, T ′) and thus
u ∈ S′ ∪ T ′. Then, since S′ ⊆ S and T ′ ⊆ T , we have u ∈ S ∪ T , implying
u ∈ dis(S, T). Thus U ⊆ dis(S, T), which satisfies the first constraint in the
definition of rem.

Next, take an arbitrary u ∈ dis(S, T). Then u ∈ S∪T and by the definition of
rem there exists an u′ ∈ S′∪T ′ with start(u) ≤ start(u′) and end(u′) = end(u).
We have u′ ∈ dis(S′, T ′) and thus rem(dis(S′, T ′), U) implies that there exists
an u′′ ∈ U such that start(u′) ≤ start(u′′) and end(u′′) = end(u′). Since this
means that start(u) ≤ start(u′′) and end(u′′) = end(u), the second constraint
in the definition of rem is satisfied.

Finally, rem(dis(S′, T ′), U) ensures that all instances in U have different end
times. Together, this gives rem(dis(S, T), U).

2. Assume rem(con(S′, T ′), U). For any u ∈ U we have u ∈ con(S′, T ′) and thus
u = s ∪ t with s ∈ S′ and t ∈ T ′. By the subset requirement in the definition
of rem, s ∈ S and t ∈ T . So u ∈ con(S, T) and thus U ⊆ con(S, T).

Next, take an arbitrary u ∈ con(S, T). Then u = s ∪ t with s ∈ S and t ∈ T ,
and by the definition of rem there exists s′ ∈ S′ and t′ ∈ T ′ with start(s) ≤
start(s′), end(s′) = end(s), start(t) ≤ start(t′) and end(t′) = end(t). Let
u′ = s′ ∪ t′. Now u′ ∈ con(S′, T ′) with start(u) ≤ start(u′) and end(u′) =
end(u). This means that there exists some u′′ ∈ U with start(u) ≤ start(u′′)
and end(u′′) = end(u), which satisfies the second constraint in the definition
of rem.

Finally, rem(con(S′, T ′), U) ensures that all instances in U have different end
times. Together, this gives rem(con(S, T), U).

3. Assume rem(neg(S′, T ′), U). For any u ∈ U we have u ∈ neg(S′, T ′) and
thus u ∈ S′. By the subset requirement in the definition of rem, u ∈ S. If
there exists a t ∈ T with start(u) ≤ start(t) and end(t) ≤ end(u), then there
must exist some t′ ∈ T ′ with start(t) ≤ start(t′) and end(t′) = end(t) which
contradicts the fact that u ∈ neg(S′, T ′). Since no such t can exist, we have
u ∈ neg(S, T) and thus U ⊆ neg(S, T).

Next, take an arbitrary u ∈ neg(S, T). Then u ∈ S and there exists an u′ ∈ S′

with start(u) ≤ start(u′), end(u′) = end(u). If there exists a t ∈ T ′ with
start(u′) ≤ start(t) and end(t) ≤ end(u′), then the fact that t ∈ T contradicts
u ∈ neg(S, T). Since no such t can exist, we have that u′ ∈ neg(S′, T ′).
This means that there exists some u′′ ∈ U with start(u′) ≤ start(u′′) and
end(u′′) = end(u′), and thus start(u) ≤ start(u′′) and end(u′′) = end(u),
which satisfies the second constraint in the definition of rem.

Finally, rem(neg(S′, T ′), U) ensures that all instances in U have different end
times. Together, this gives rem(neg(S, T), U).

4. Assume rem(seq(S′, T ′), U). For any u ∈ U we have u ∈ seq(S′, T ′) and
thus u = s ∪ t with s ∈ S′, t ∈ T ′ and end(s) < start(t). By the subset
requirement in the definition of rem, s ∈ S and t ∈ T . So u ∈ seq(S, T) and
thus U ⊆ seq(S, T).

Next, take an arbitrary u ∈ seq(S, T). Then u = s ∪ t with s ∈ S, t ∈ T and
end(s) < start(t). By the definition of rem there exists s′ ∈ S′ and t ∪ T ′

with start(s) ≤ start(s′), end(s′) = end(s), start(t) ≤ start(t′) and end(t′) =
end(t). Let u′ = s′ ∪ t′. Now, since end(s′) = end(s) < start(t) ≤ start(t′),
we have u′ ∈ seq(S′, T ′) and start(u) ≤ start(u′) and end(u′) = end(u).

12

This means that there exists some u′′ ∈ U with start(u) ≤ start(u′′) and
end(u′′) = end(u), which satisfies the second constraint in the definition of
rem.

Finally, rem(seq(S′, T ′), U) ensures that all instances in U have different end
times. Together, this gives rem(seq(S, T), U).

5. Assume rem(tim(S′, τ), U). For any u ∈ U we have u ∈ tim(S′, τ) and thus
u ∈ S′ and end(u)− start(u) ≤ τ . By the subset requirement in the definition
of rem, we have u ∈ S which means that u ∈ tim(S, τ) and thus U ⊆ tim(S, τ).

Next, take an arbitrary u ∈ tim(S, τ). Then u ∈ S and there exists an u′ ∈ S′

with start(u) ≤ start(u′), end(u′) = end(u). Since end(u) − start(u) ≤ τ , we
have end(u′) − start(u′) ≤ τ and thus u′ ∈ tim(S′, τ). According to the def
of rem, this means that there exists some u′′ ∈ U with start(u′) ≤ start(u′′),
end(u′′) = end(u′). Since this means that start(u) ≤ start(u′′), end(u′′) =
end(u) the second constraint in the definition of rem is satisfied.

Finally, rem(tim(S′, τ), U) ensures that all instances in U have different end
times. Together, this gives rem(tim(S, τ), U).

�

5 An event detection algorithm

In this section, we present an imperative algorithm that, for a given event expression
E, computes an event stream S for which rem([[E]], S) holds. Throughout this
section, E denotes the event expression that is to be detected. The numbers 1 . . .m
are assigned to the subexpressions of E in bottom-up order, and we let Ei denote
subexpression number i. Consequently, we have Em =E and E1∈P.

Figure 2 presents the algorithm. The algorithm is executed once every time
instant, and computes the current instance of E from the current instances of the
primitive events, and from stored information about the past.

Each operator occurrence in the expression requires its own state variables,
and thus variables are indexed from 1 to m. The variable ai is used to store the
current instance of Ei, and thus am contains the output of the algorithm after each
execution. The auxiliary variables li, ri, ti and qi store information about the past
needed to detect Ei properly. In li and ri, a single event instance is stored, ti stores
a time instant and qi contains a set of event instances. The symbol 〈〉 is used to
represent a non-occurrence, and we define start(〈〉) = end(〈〉) =−1 to simplify the
algorithm.

The algorithm is designed for detection of arbitrary expressions, and the the
main loop selects dynamically which part of the algorithm to execute for each
subexpression. For systems where the event expressions of interest are static and
known at the time of development, the main loop can be unrolled and the top-level
conditionals, as well as all indices, can be statically determined. A concrete example
of this is given in Figure 3.

5.1 Algorithm correctness

Next, the relation between this algorithm and the algebra semantics described in
previous sections must be established. For this purpose, we need to formalise the
algorithm output by constructing corresponding event streams.

Definition 5.1 For 1≤ i ≤ m, define

A(i) = {e | e ∈ out(i, τ) ∧ e 6= 〈〉 ∧ τ ∈ T }

13

for i from 1 to m
if Ei ∈ P then

ai := the current instance of Ei, or 〈〉 if there is none.
if Ei = Ej∨Ek then

if start(aj)≤start(ak) then ai := ak else ai := aj

if Ei = Ej +Ek then
if start(li)<start(aj) then li := aj

if start(ri)<start(ak) then ri := ak

if li =〈〉 or ri =〈〉 or (aj =〈〉 and ak =〈〉) then ai := 〈〉
else if start(ak)≤start(aj)

then ai := aj∪ri

else ai := li∪ak

if Ei = Ej−Ek then
if ti <start(ak) then ti := start(ak)
if ti <start(aj) then ai := aj else ai := 〈〉

if Ei = Ej ;Ek then
ai := 〈〉
if ak 6=〈〉 then

foreach e in qi

if end(e)<start(ak) and start(ai)<start(e)
then ai := e

if ai 6=〈〉 then ai := ak∪ai

if ti <start(aj) then
qi := qi∪{aj}
ti := start(aj)

if Ei = (Ej)τ then
if end(aj)−start(aj)≤τ then ai := aj else ai := 〈〉

Figure 2: For a given event expression E this algorithm computes an event stream
S for which rem([[E]], S) holds. Initially, ti =−1, li =ri =〈〉 and qi =∅ for 1 ≤ i ≤ m.

14

a1 := the current instance of T, or 〈〉 if there is none.
a2 := the current instance of P, or 〈〉 if there is none.
if start(a1) ≤ start(a2) then a3 := a2 else a3 := a1

a4 := the current instance of B, or 〈〉 if there is none.
if t5 < start(a4) then t5 := start(a4)
if t5 < start(a3) then a5 := a3 else a5 := 〈〉

Figure 3: Statically simplified algorithm for detecting (T∨P)−B. Initially, t5 =−1.

where out(i, τ) denotes the value of ai after executing the algorithm at times 0 to τ .

We also introduce what can be thought of as a pointwise restriction relation, and a
lemma that captures how it relates to the ordinary restriction policy.

Definition 5.2 For an event instance e, an event stream S and τ ∈ T , define
valid(e, S, τ) to hold if:

(e ∈ S ∧ end(e)=τ ∧ ¬∃s(s ∈ S ∧ start(e)<start(s) ∧ end(s)=τ)) ∨
(e=〈〉 ∧ ¬∃s(s∈S ∧ end(s)=τ))

Lemma 5.1 For event instances e0, e1, e2, . . . and an event stream S such that
valid(eτ , S, τ) holds for any τ ∈ T , let S′={e0, e1, e2, . . .} − {〈〉}. Then rem(S, S′)
holds.

Proof: By the definition of valid, it follows that S′ ⊆ S. Next, take an arbitrary
s ∈ S, and let τ = end(s). Since valid(eτ , S, τ), we must have eτ 6= 〈〉, and thus
eτ ∈ S′. From the definition of valid, we know that start(s)≤ start(eτ). We also
have end(eτ) = end(s), which means that the second requirement in the definition
of rem is satisfied. Finally, all elements in S′ have different end times. Together,
this implies that rem(S, S′) holds. �

The correctness proof is organised as follows. For each of the six operators, we
prove a lemma showing that for an expression of that type, the output is always valid
and the internal state is correctly updated, with respect to the instances detected
for the subexpresions. Finally, these lemmas are combined with Theorem 4.6 from
the previous section to prove the algorithm correct.

Before turning to the operators, some general observations regarding the algo-
rithm can be made. It is straightforward to see that during the ith iteration of
the loop only variables with index i are changed, and all variables that are used
have indices less then or equal to i, since the subexpressions of E are numbered in
bottom-up order. Thus, when proving correctnes for subexpression Ei, it is suffi-
cient to consider the ith iteration. The auxiliary predicates defined in this section
do not refer to variables of index highter than i, and thus if they hold after the ith
iteration, they will hold after iterations i+1 to m as well.

Disjunction: Ei =Ej∨Ek

The disjunction operator is fairly simple and requires no auxiliary variables. If Ej

and Ek occur at the same time, the restriction policy requires that the one with
latest start time is selected. When the start times are the same, this implementation
gives precedence to the right subexpression.

The fact that the implementation of the disjunction operator corresponds to
the declarative semantics with restriction, with respect to the instances that are
detected for the subexpressions, is formulated by the following lemma.

15

Lemma 5.2 For 1≤ i ≤ m such that Ei = Ej∨Ek, and any τ ∈ T , the following
holds:

i) valid(ai,dis(A(j),A(k)), τ) holds after executing the algorithm at time τ .

ii) rem(dis(A(j),A(k)),A(i)).

Proof:

i) If one or both of aj and ak are 〈〉, then trivially valid(ai,dis(A(j),A(k)), τ)
holds after executing the disjunction part of the algorithm. Otherwise, both
aj and ak belong to dis(A(j),A(k)), and thus the one with maximum start
time satisfies the condition of valid. If the start times are equal, the algorithm
selects ak, which satisfies the condition.

ii) Follows from i) and Lemma 5.1.

�

Conjunction: Ei =Ej +Ek

For conjunctions, it is necessary to store the instance with maximum start time
so far from each of the two subexpressions. This is formalised by the following
predicate, which holds at the start of time instant τ if li and ri have correct values.

Definition 5.3 For 1≤ i ≤ m such that Ei = Ej +Ek, and for τ ∈ T , we define
constate(i, τ) to hold if the following holds:

• li is an element in {e | e∈A(j) ∧ end(e)<τ} with maximum start time, or 〈〉
if that set is empty.

• ri is an element in {e | e∈A(k)∧ end(e)<τ} with maximum start time, or 〈〉
if that set is empty.

The following lemma states that the conjunction operator is correctly implemented
by the algorithm.

Lemma 5.3 For 1≤ i ≤ m such that Ei = Ej +Ek, and any τ ∈ T , the following
holds:

i) constate(i, τ) holds at the start of time τ .

ii) valid(ai, con(A(j),A(k)), τ) holds after executing the algorithm at time τ .

iii) rem(con(A(j),A(k)),A(i)).

Proof:

i) constate(i, 0) holds for an initial state where li = ri = 〈〉. Next, assume that
constate(i, τ) holds at the start of time τ . Then the first conditional in the
conjunction part of the algorithm ensures that li contains an instance consis-
tent with constate(i, τ +1), after executing the conjunction part. Similarly,
the second conditional ensures the correctness of ri. By induction, the lemma
holds for any τ ∈T .

ii) From the proof of i), we know that constate(i, τ + 1) holds after execut-
ing the first two conditionals of the conjunction part. If the guard of the
third conditional is satisfied, it trivially follows that there is no instance in
con(A(j),A(k)) with end time τ , and thus the lemma holds after assigning
〈〉 to ai. If the guard is false, we identify three separate cases. For the case

16

when aj = 〈〉, we know that li ∪ ak ∈ con(A(j),A(k)). Assume the existence
of e ∈ con(A(j),A(k)) with start(li ∪ ak) < start(e) and end(e) = τ . Then,
as aj = 〈〉, we must have e = e′ ∪ ak with e′ ∈ A(j), start(li) < start(e′)
and end(e′) < τ . This contradicts constate(i, τ+1), and thus no such e′ exists
which means that li ∪ ak is valid. Since aj = 〈〉, the inner conditional evalu-
ates to false and li ∪ ak is assigned to ai, meaning that the lemma holds for
this case. Similarly, for the case when ak = 〈〉 the lemma holds after after
assigning aj ∪ ri to ai. The third case, when neither aj nor ak are 〈〉, both
aj ∪ ri and li ∪ ak belong to con(A(j),A(k)). Using the same reasongin as in
the previous cases, we have that there can exist no e ∈ con(A(j),A(k)) with
start(li ∪ ak) < start(e), start(aj ∪ ri) < start(e) and end(e) = τ . If the inner
conditional holds, we have start(ak)≤start(aj) and by constate(i, τ+1) we also
have start(ak)≤ start(ri). Thus start(li ∪ ak)≤ start(aj ∪ ri), and the lemma
holds after after assigning aj ∪ri to ai. Similarly, if the inner conditional does
not hold, the lemma holds after after assigning li ∪ ak to ai.

iii) Follows from ii) and Lemma 5.1.

�

Negation: Ei =Ej−Ek

According to the semantics of the negation operator, an instance of B is an instance
of B−C unless it is invalidated by some instance of C occurring within its interval.
If the current instance of B is invalidated at all, it is invalidated by the instance
of C with maximum start time (of those that have occured so far). Thus, it is
sufficient to store a single start time, since the end time is trivially known to be less
than the end time of the current instance of B.

Definition 5.4 For 1≤ i ≤ m such that Ei = Ej−Ek, and for τ ∈ T , we define
negstate(i, τ) to hold if ti is the maximum start time of the elements in {e | e ∈
A(k) ∧ end(e)<τ}, or −1 if this set is empty.

Lemma 5.4 For 1≤ i ≤ m such that Ei = Ej−Ek, and any τ ∈ T , the following
holds:

i) negstate(i, τ) holds at the start of time τ .

ii) valid(ai,neg(A(j),A(k)), τ) holds after executing the algorithm at time τ .

iii) rem(neg(A(j),A(k)),A(i)).

Proof:

i) negstate(i, 0) holds for an initial state where ti = −1. Next, assume that
negstate(i, τ) holds at the start of time τ . Then the first conditional in the
negation part of the algorithm ensures that ti contains the value specified by
negstate(i, τ +1) after executing the negation part. By induction, the lemma
holds for any τ ∈T .

ii) From the proof of i), we know that negstate(i, τ+1) holds after executing the
first conditional of the negation part. If the guard of the second conditional
holds, then we have aj 6=〈〉 and thus aj ∈A(j). According to negstate(i, τ+1)
there is no e in A(k) with start(aj)≤ start(e) and end(e) < end(aj) = τ , and
thus aj ∈neg(A(j),A(k)). Trivially, since aj is the only instance in A(j) with
end time τ , we have valid(aj ,neg(A(j),A(k)). Thus, the lemma holds after
assigning aj to ai.

17

iii) Follows from ii) and Lemma 5.1.

�

Sequence: Ei =Ej ;Ek

The sequence operator requires the most complex algorithm. The reason for this
is that in order to detect a sequence B;C correctly, we must store several instances
of B. Once C occurs, the start time of that instance determines with which of the
stored instances of B it should be combined to form the instance of B;C.

Definition 5.5 For 1 ≤ i ≤ m such that Ei = Ej ;Ek, and for τ ∈ T , we define
seqstate(i, τ) to hold if the following holds:

• ti is the maximum start time of the elements in {e | A(j) ∧ end(e) < τ}, or
−1 if this set is empty.

• qi = {e | A(j) ∧ end(e) < τ ∧ ¬∃e′(e′ ∈ A(j) ∧ e′ 6= e ∧ start(e)≤ start(e′) ∧
end(e′)≤end(e))}

Lemma 5.5 For 1≤ i ≤ m such that Ei = Ej ;Ek, and any τ ∈ T , the following
holds:

i) seqstate(i, τ) holds at the start of time τ .

ii) valid(ai, seq(A(j),A(k)), τ) holds after executing the algorithm at time τ .

iii) rem(seq(A(j),A(k)),A(i)).

Proof:

i) seqstate(i, 0) holds for an initial state where ti =−1 and qi =∅. Next, assume
that seqstate(i, τ) holds at the start of time τ . The first conditional of the
sequence part of the algorithm does not change the values of ti and qi. If the
second conditional holds, ti is updated to the value specified by seqstate(i, τ+
1). Also, by seqstate(i, τ), we know that there is no e ∈ A(j) with ti < start(e)
and end(e) < τ , which implies that seqstate(i, τ +1) holds after adding aj

to qi. If the second conditional does not hold, no changes are required for
seqstate(i, τ +1) to hold. By induction, the lemma holds.

ii) From i), we know that seqstate(i, τ) holds at the start of time τ . Consider
first the case when ak = 〈〉. Then there is no instance in seq(A(j),A(k)) with
end time τ . Thus, the lemma holds after assigning 〈〉 to ai. In the second
case we have ak 6= 〈〉. If ai = 〈〉 after executing the foreach statement, then
there is no instance e in qi with end(e)< start(ak), and thus by seqstate(i, τ)
there is no e ∈ A(j) with end(e) < start(ak). This implies that there is
no e′ ∈ seq(A(j),A(k)) with end(e′) = τ , and thus the lemma holds after
assigning 〈〉 to ai. If ai 6= 〈〉 after executing the foreach statement, we have
end(ai) < start(ak) and thus ai ∪ ak ∈ seq(A(j),A(k)). By seqstate(i, τ) we
also know that there is no e′ ∈ A(j) with start(ai) < start(e′) and end(e′) <
start(ak), and thus valid(ai ∪ ak, seq(A(j),A(k)) and the lemma holds after
assigning ai ∪ ak to ai.

iii) Follows from ii) and Lemma 5.1.

�

18

Temporal restriction: Ei =(Ej)τ ′

The temporal restriction is fairly straightforward to implement and requires no
auxiliary state variables.

Lemma 5.6 For 1 ≤ i ≤ m such that Ei = (Ej)τ ′ , and any τ ∈ T , the following
holds:

i) valid(ai, tim(A(j),A(k)), τ) holds after executing the algorithm at time τ .

ii) rem(tim(A(j),A(k)),A(i)).

Proof:

i) If aj =〈〉, lemma holds after assigning 〈〉 to ai, which is done in both branches
of the conditional. If aj 6= 〈〉 and the conditional holds, we have aj ∈
tim(A(j), τ ′). Since aj is the only instance in A(j) with end time τ , it fol-
lows that the lemma holds after assigning aj to ai. If the conditional is false,
there is no instance in tim(A(j), τ ′) with end time τ , so the lemma holds after
assigning 〈〉 to ai.

ii) Follows from i) and Lemma 5.1.

�

Putting it all together

The following theorem establishes the correctness of the algorithm by stating that
for each subexpression Ei, including E itself, the detected instances correspond to
a valid restriction of [[Ei]].

Theorem 5.1 For any i such that 1 ≤ i ≤ m, rem([[Ei]],A(i)) holds.

Proof: For Ei ∈ P, we have A(i) = [[Ei]] under the assumption that the inter-
pretation correctly represents the real-world scenario. Thus rem([[Ei]],A(i)) holds
trivially.

Next, assume that for some i, rem([[Ex]],A(x)) holds for any 1 ≤ x < i. If
Ei = Ej ∨Ek, then according to Lemma 5.2 we have rem(dis(A(j),A(k)),A(i)).
Since the subexpressions are numbered bottom-up, we have j < i and k < i, so
by assumption rem([[Ej]],A(j)) and rem([[Ek]],A(k)) holds. Then, according to
Theorem 4.6, rem(dis([[Ej]], [[Ek]]),A(i)) holds, which means that rem([[Ei]],A(i))
holds. A similar proof can be constructed for each of the operators. By induction,
the theorem holds. �

5.2 Memory complexity

Instances are not of a fixed size, but an instance from a subexpression of E contains
at most m/2 primitive instances, one from each identifier occurrence in E. Thus,
assuming that the elements in the value domains are of constant size, the size of a
single event instance is bounded.

A quick analysis of the algorithm reveals that each disjunction, conjunction,
negation and temporal restriction in the event expression requires a limited amount
of storage. The storage required for a sequence operator depend on the maximum
size of qi, for which no bound exists in the general case. For an important class of
sequence expressions, however, the detection algorithm can be redefined to ensure
limited memory and time complexity.

19

foreach e in qi

if end(e) < τ c−τ ′ then qi := qi−{e}; li := e
ai := 〈〉
if ak 6= 〈〉 then

foreach e in qi

if end(e) < start(ak) and start(ai) < start(e) then ai := e
if ai = 〈〉 then ai := li
if ai 6= 〈〉 then ai := ak ∪ ai

if ti < start(aj) then qi := qi ∪ {aj}; ti := start(aj)

Figure 4: Algorithm for Ei = Ej ;Ek when Ek ≡ Ek
τ ′

For a sequence A;B where we know that the maximum length of the instances
of B is τ , which can be expressed as B ≡ Bτ , this limits the number of instances
of A that must be stored in order to detect the sequence correctly. Informally, the
start of any instance of B will be at most τ time units back in time, and thus there
is no need to store more than one instance of A that ends earlier than this, if we
store one with maximum start time. From the instances of A that end later than
this point in time, we need to store several, as in the original algorithm.

The improved algorithm for detecting A;B when B ≡ Bτ with bounded memory
is presented in Figure 4. Here, τ c is used to access the current time instant. The
state is similar to the state used for sequences in the original algorithm, but this
qi contains a suffix of the qi variable of the original version. From the remaining
elements, a single element with maximum start time is stored in li. Since the size of
qi never exceeds τ+1, this type of sequences can be detected with limited memory.

For this new algorithm, we prove a lemma similar to those in the previous
section.

Definition 5.6 For 1≤ i ≤ m such that Ei =Ej ;Ek and Ek ≡ Ek
τ ′ , and for τ ∈T ,

we define newstate(i, τ) to hold if the following holds:

• ti is the maximum start time of the elements in {e | A(j) ∧ end(e) < τ}, or
−1 if this set is empty.

• qi = {e | A(j) ∧ end(e) < τ ∧ τ − τ ′−1 ≤ end(e) ∧ ¬∃e′(e′ ∈ A(j) ∧ e′ 6=
e ∧ start(e)≤start(e′) ∧ end(e′)≤end(e))}

• li is an element in {e | A(j) ∧ end(e)<τ − τ ′−1} with maximum start time,
or 〈〉 if that set is empty.

Lemma 5.7 For 1≤ i ≤ m such that Ei = Ej ;Ek and Ek ≡ Ek
τ ′ , and any τ ∈ T ,

the following holds:

i) newstate(i, τ) holds at the start of time τ .

ii) valid(ai, seq(A(j),A(k)), τ) holds after executing the algorithm at time τ .

iii) rem(seq(A(j),A(k)),A(i)).

Proof:

i) newstate(i, 0) holds for an initial state where ti =−1, qi =∅ and li =〈〉. Next,
assume that newstate(i, τ) holds at the start of time τ . If the conditional of
the first foreach statement holds for e, we have end(e) = τ−τ ′−1. This means
that the conditional can hold for at most one element of qi. The definition of

20

newstate requires this e to be removed from qi in order for newstate(i, τ +1)
to hold. By newstate(i, τ), we also have that e fulfills the requirement on li as
specified by newstate(i, τ+1). In the rest of the algorithm, qi is updated in the
same way as for the original sequence algorithm, and in the end newstate(i, τ+
1) holds. Then by induction the lemma holds for any τ ∈T .

ii) From i), we know that newstate(i, τ) holds at the start of time τ .

The case when ak =〈〉 follows the proof for the original sequence. In the case
when ak 6= 〈〉, if ai 6= 〈〉 after executing the second foreach statement, then we
have valid(ai ∪ ak, seq(A(j),A(k)) as in the proof of the original sequence. If
ai =〈〉 after executing the second foreach statement, then there is no instance
e in qi with end(e) < start(ak). In this case, we assign li to ai. If li 6= 〈〉 we
know that end(li) < start(ak), and then since li has the value specified by
newstate(i, τ +1), we have that valid(li ∪ ak, seq(A(j),A(k))) holds.

Thus, arriving at the next conditional we know that either ai = 〈〉 and
there is no instance e in A(j) with end(e) < start(ak), or that valid(ai ∪
ak, seq(A(j),A(k))) holds. Thus, the lemma holds after this conditional, and
this is not affected by the final conditional.

iii) Follows from ii) and Lemma 5.1.

�

5.3 Time complexity

As a result of instances not having a fixed size, assigning an instance to a variable
might not be a constant operation, but rather proportional to the instance size.
Thus, each operator contributes with at least a factor m to the complexity for the
whole algorithm. For sequences, a straightforward representation of the qi variables
gives a linear time complexity for finding the best matching instance, with respect
to the size limit of that qi variable. This gives a a total complexity of O(mn′), where
m is the number of subexpressions in E, n′=max(m,n) and n is the maximum size
limit of the qi variables.

Due to the particular characteristics of qi, a more elaborate implementation is
possible, where we keep qi sorted with respect to end times. Since qi should contain
no fully overlapping instances, this means thay it will be sorted with respect to
start times as well. Since an instance that is added to qi has a later start time than
the instances already in qi, and elements are removed when they become too old,
qi will behave like a first-in-first-out queue.

Consequently, keeping qi updated is only bounded by the m factor for variable-
sized instances. However, when an instance of B occurs we need to find the best
matching instance in qi efficiently, i.e., the instance with latest start time among
those that end before the start time of the B instance. Since qi is sorted with respect
to both start and end times, this can be implemented as a straightforward binary
search if the implementation of qi allows constant access to arbitrary elements.

To allow this, we base the implementation of qi on a static array, and use two
variables to mark the part of this array that currently contain qi. When elements
are added and removed, these variables are increased accordingly, and when the end
of the array is reached they simply continue at the beginning. Since the size limit of
qi is known, using the same size for the array ensures that there is always room for
qi in the array, i.e., that the start marker will not overtake the end marker. Using
this implementation, the total complexity is O(mn′′), where m is the number of
subexpressions in E, n′′=max(m, log n) and n is the maximum size limit of the qi

variables.

21

6 Transformation algorithm

This section describes how event expressions can be automatically transformed into
equivalent expressions that allow a more efficient detection. The transformation
algorithm is based on the algebraic laws describing how temporal restrictions can
be propagated through an expression, presented in Theorem 4.4.

To simplify the presentation, we extend the algebra syntax with two constructs.
The symbol ∞ is added to the temporal domain to allow temporally restricted and
unrestricted expressions to be treated uniformly. Formally, we define A∞ = A.
Since the improved sequence algorithm is defined for sequences A;B where B ≡ Bτ ,
we introduce the notation A;τB to label sequences with this information.

The transformation algorithm is based on a recursive function that takes an
expression and a time as input, and returns the transformed expression and a time.
This function is defined in Figure 5. The input time represents a temporal restric-

transform(A, τ) = 〈A, 0〉 if A ∈ P

transform(A∨B, τ) = 〈A′∨B′,max(τa, τb)〉
where 〈A′, τa〉 = transform(A, τ)

〈B′, τb〉 = transform(B, τ)

transform(A+B, τ) = 〈A′+B′,∞〉
where 〈A′, τa〉 = transform(A, τ)

〈B′, τb〉 = transform(B, τ)

transform(A−B, τ) = 〈A′−B′, τa〉
where 〈A′, τa〉 = transform(A, τ)

〈B′, τb〉 = transform(B,min(τa, τ))

transform(A;B, τ) =
{
〈A′;τb

B′,∞〉 if τb ≤ τ
〈A′;τ (B′

τ),∞〉 if τ < τb

where 〈A′, τa〉 = transform(A, τ)
〈B′, τb〉 = transform(B, τ)

transform(Aτ ′ , τ) =
{
〈A′, τa〉 if τa ≤ τ ′′

〈A′
τ ′′ , τ ′′〉 if τ ′′ < τa

where 〈A′, τa〉 = transform(A, τ ′′)
t′′ = min(τ, τ ′)

Figure 5: Definition of the transformation function

tion that can be applied to the expression without changing the meaning of the
expression as a whole. The returned time represents a temporal restriction that can
be applied to the transformed expression without changing its meaning.

This informal description is formalised in the following lemma, which states that
the transformation function preserves the semantics of the original expression when
called properly. It also defines the meaning of the returned time.

Lemma 6.1 For an event expression E and τ ∈ T , if transform(E, τ) = 〈E′, τ ′〉,
then Eτ ≡ E′

τ and E′ ≡ E′
τ ′ .

Proof: For each case in the definition of transform, we assume that the recursive
calls are correct, and show that this implies that the return tuple is correct. Since
the recursion trivially terminates, the lemma holds by induction. In the following

22

proof, ≡23 denotes that the equivalence follows from law number 23 in Theorem 4.4,
etc. and ≡ a indicates that the equivalence follows from the assumptions.

Primitive For E ∈ P, we have E ≡23
E0. Thus, 〈A, 0〉 is a valid answer.

Disjunction For E = A∨B, we have Aτ ≡ A′
τ , A′ ≡ A′

τa
, Bτ ≡ B′

τ and B′ ≡ B′
τb

since we assume that the lemma holds for the two recursive calls. Then,
we have (A∨B)τ ≡25

Aτ ∨Bτ ≡ a
A′

τ ∨B′
τ ≡25 (A′ ∨B′)τ . We also have

(A′∨B′) ≡ a
A′

τa
∨B′

τb
≡34 (A′

τa
∨B′

τb
)max(τa,τb) ≡

a (A′∨B′)max(τa,τb).

Thus, 〈A′∨B′,max(τa, τb)〉 is a valid answer to transform(A∨B, τ).

Conjunction For E = A+B, we assume Aτ ≡ A′
τ , A′ ≡ A′

τa
, Bτ ≡ B′

τ and
B′ ≡ B′

τb
. Then, we have (A+B)τ ≡

26,35 (Aτ+Bτ)τ ≡
a (A′

τ+B′
τ)τ ≡

26,35 (A′+B′)τ

and by definition (A′+B′)∞ ≡ (A′+B′) so 〈A′+B′,∞〉 is a valid answer.

Negation For E = A−B, we assume Aτ ≡ A′
τ , A′ ≡ A′

τa
, Bτ ′ ≡ B′

min(τa,τ) and
B′ ≡ B′

τb
. Then, we have (A−B)τ ≡27

Aτ −B ≡ a
A′

τ −B ≡ a (A′
τa

)τ −
B ≡24

A′
min(τa,τ)−B ≡27 (A′−B)min(τa,τ) ≡

28 (A′−Bmin(τa,τ))min(τa,τ) ≡
a

(A′−B′
min(τa,τ))min(τa,τ) ≡

28 (A′−B′)min(τa,τ) and (A′−B′)τa
≡27 (A′

τa
−B′) ≡ a

(A′−B′) so 〈A′−B′, τa〉 is a valid answer.

Sequence For E = A;B, we assume Aτ ≡ A′
τ , A′ ≡ A′

τa
, Bτ ≡ B′

τ and B′ ≡ B′
τb

.
We consider the two cases separately.

If τb ≤ τ , then (A−B)τ ≡
29,30 (Aτ−Bτ)τ ≡

a (A′
τ−B′

τ)τ ≡
29,30 (A′−B′)τ and trivially

(A′−B′)∞ ≡ A′−B′. So 〈A′;B′,∞〉 is a valid answer, and so is 〈A′;τb
B′,∞〉.

If τ < τb, then (A−B)τ ≡29,30 (Aτ −Bτ)τ ≡ a (A′
τ −B′

τ)τ ≡29 (A′−B′
τ)τ and

trivially (A′−(B′
τ))∞ ≡ (A′−(B′

τ)). So 〈A′;(B′
τ),∞〉 is a valid answer, and so

is〈A′;τ (B′
τ),∞〉.

Temporal For E = Aτ ′ , we assume Aτ ′′ ≡ A′
τ ′′ and A′ ≡ A′

τa
. Let t′′ = min(τ, τ ′),

and consider the two cases:

If τa ≤ τ ′′, then τa ≤ τ ′ and we have (Aτ ′)τ ≡31 (Aτ)τ ′ ≡ a (A′
τ)τ ′ ≡31

(A′
τ ′)τ ≡

a ((A′
τa

)τ ′)τ ≡
24 (A′

min(τa,τ ′))τ ≡ (A′
τa

)τ ≡
a

A′
τ and by assumption

A′
τa
≡ A′ so 〈A′, τa〉 is a valid answer.

If τ ′′ < τa, then (Aτ ′)τ ≡
24 ((Aτ ′)τ)τ ≡

24 (Amin(τ ′,τ))τ ≡ (Aτ ′′)τ ≡
a (A′

τ ′′)τ

and (A′
τ ′′)τ ′′ ≡24

A′
τ ′′ so 〈A′

τ ′′ , τ ′′〉 is a valid answer.

�

Finally, this lemma is used to prove that the transformation preserves the se-
mantic meaning of the expression, and that sequences are labeled correctly.

Theorem 6.1 If E is an event expression and transform(E,∞) = 〈E′, τ ′〉, then
E ≡ E′ holds. Also, all sequences in E′ are on the labeled form A;τB, where B ≡ Bτ

holds.

Proof: From Lemma 6.1, E ≡ E′ follows trivially. A subexpression in E′ on the
form A;τB was created by the sequence part of the transformation algorithm, which
has two cases. In the first case, 〈B, τ〉 was the result of a call to transform, which
according to Lemma 6.1 implies that B ≡ Bτ In the second case, B = (B′)τ , which
trivially means that B ≡ Bτ . �

The time complexity of the transformation algorithm is linear with respect to
the size of E. If no sequence in E′ is labeled with ∞, then E′ (and consequently
E) can be correctly detected with limited memory.

23

Example 6.1 transform((B;B)2−(P;(P+T)), ∞) = 〈(B;0B)2−(P;2(P+T)2), 2〉
which means that this expression can be detected with limited memory. Note
that the temporal restriction in the left subexpression of the negation has been
propagated to the right subexpression, making it detectable with limited memory.

7 Conclusions and future work

We have presented a fully formal event algebra with operators for disjunction, con-
junction, negation, sequence and temporal restriction. To allow an efficient imple-
mentation, a formal restriction policy was defined. This restriction policy is applied
to the expression as a whole, rather than to the individual operator occurences,
which means that a user of the algebra is not required to understand the effects of
nested restrictions.

A number of algebraic laws were presented that facilitates formal reasoning and
justifies the algebra semantics by showing to what extent the operators comply
with intuition. When restriction is applied, these laws are valid with respect to the
start and end time of the detected event instances. We presented an imperative
algorithm that computes a restricted version of the event stream specified by the
algebra semantics, in accordance with the restriction policy. For the user of the
algebra, this means that at any time when there is one or more occurrences of the
composite event, one of them will be detected by the algorithm. Finally, criteria
under which detection can be performed with limited resources were identified, and
we described an algorithm by which many expressions can be transformed to meet
these criteria.

Our ongoing work includes investigating how to combine the algebra with lan-
guages that specifically target reactive systems, in particular Esterel [2], AFRP [11]
and Timber [4]. We are also investigating how information about primitive event
frequencies can be used to lower the size limits of the qi variables, resulting in more
precise worst case memory and time estimates.

References

[1] J. F. Allen and G. Ferguson. Actions and events in interval temporal logic.
Journal of Logic and Computation, 4(5):531–579, Oct. 1994.

[2] G. Berry. The Esterel-V5 Language Primer. CMA and Inria, Sophia-Antipolis,
France, v 5.21, release 2.0 edition, May 1999.

[3] J. Carlson and B. Lisper. An interval-based algebra for restricted event de-
tection. In First Int. Workshop on Formal Modeling and Analysis of Timed
Systems (FORMATS 2003), Marseille, France, Sept. 2003.

[4] M. Carlsson, J. Nordlander, and D. Kieburtz. The semantic layers of Timber.
In Proceedings of the First Asian Symposium on Programming Languages and
Systems (APLAS’2003), volume 2895 of Lecture Notes in Computer Science,
Beijing, China, 26–29 Nov. 2003. Springer-Verlag.

[5] S. Chakravarthy and D. Mishra. Snoop: An expressive event specification
language for active databases. Data Knowledge Engineering, 14(1):1–26, 1994.

[6] A. Galton and J. C. Augusto. Two approaches to event definition. In Proc. of
Database and Expert Systems Applications 13th Int. Conference (DEXA’02),
volume 2453 of Lecture Notes in Computer Science. Springer-Verlag, Sept.
2002.

24

[7] S. Gatziu and K. R. Dittrich. Events in an active object-oriented database
system. In Proc. 1st Intl. Workshop on Rules in Database Systems (RIDS),
Edinburgh, UK, Sept. 1993. Springer-Verlag.

[8] N. Gehani, H. V. Jagadish, and O. Shmueli. COMPOSE: A system for com-
posite specification and detection. In Advanced Database Systems, volume 759
of Lecture Notes in Computer Science. Springer, 1993.

[9] R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New
Generation Computing, 4:67–95, 1986.

[10] G. Liu, A. Mok, and P. Konana. A unified approach for specifying timing
constraints and composite events in active real-time database systems. In 4th
IEEE Real-Time Technology and Applications Symposium (RTAS ’98), pages
199–209, Washington - Brussels - Tokyo, June 1998. IEEE.

[11] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive programming,
continued. In Proceedings of the 2002 ACM SIGPLAN Haskell Workshop
(HASKELL-02), pages 51–64, New York, Oct. 3 2002. ACM Press.

[12] C. Sánchez, S. Sankaranarayanan, H. Sipma, T. Zhang, D. Dill, and Z. Manna.
Event correlation: Language and semantics. In Embedded Software, Third
International Conference, EMSOFT 2003, volume 2855 of Lecture Notes in
Computer Science, pages 323–33. Springer, 2003.

25

