
Possible Implications of Design Decisions Based on Predictions

Magnus Larsson1, Ivica Crnkovic2
1ABB Corporate Research, 721 67 Västerås, Sweden

magnus.larsson@mdh.se
2Mälardalen University, Department of Computer Science and Engineering

PO Box 883, 721 23 Västerås, Sweden
ivica.crnkovic@mdh.se, www.itd.mdh.se/~icc

Abstract. Software systems and applications
are increasingly constructed as assemblies of
pre-existing components. This makes software
development cheaper and faster, and results in
more favorable preconditions for achieving
higher quality. This approach, however,
introduces several problems, most of them
originating from the fact that pre-existing
software components behave as black boxes. One
problem is that it is difficult to analyze the
properties of systems in which they are
incorporated. To simplify the evaluation of
system properties, different techniques have been
developed to predict the behavior of systems on
the basis of the properties of the constituent
components. Because many cannot be formally
specified, these techniques make use of statistical
terms such as probability or mean value to
express system properties. This paper discusses
ethical aspects of the interpretation of such
predictions. This problem is characteristic of
many domains (data mining, safety-critical
systems, etc.) but it is inherent in component-
based software development.

Keywords. Component-based development,
predictability, ethics.

1. Introduction

Software, misunderstood, or even known to
contain faults, is often deployed in computer
systems and this may have serious consequences.
This paper analyzes the ethical grounds on which
decisions which might have such unintended
results are made. In particular, we consider the
prediction of quality attributes. Certain quality
attributes, performance, for example, are difficult
to determine even with thorough testing. A better
approach then pure testing is to develop
techniques for predicting such attributes. These
techniques are not yet fully proven and decisions
based on using the values they predict acquire an

added moral aspect. If critical decisions are
based on an unsound moral reasoning and only
benefit the software company or developer, there
is a risk that catastrophic consequences such as
an incorrect execution time leading to the
missing of a critical deadline may follow. In the
business world, company decisions are
commonly based on self-interest, the purpose of
the company being to make money. From the
business point of view, such a decision might be
acceptable but there are other points of view and
consequences which should be considered when
making decisions.

The aim of this paper is to point out the risks
of using predicted data when making software
design decisions and to convey the importance of
understanding the risks involved in using
software. The paper discusses in particular the
component-based development approach. In this
approach software systems are built from
software components already existing, possibly
developed by third parties. The behavior of such
a system is dependent on, inter alia, the
properties of the components, but these
properties are very often imprecisely defined and
uncertainly validated.

The paper is organized as follows. Section 2
is a short survey of predictability in component-
based software development and discusses the
problems related to the predictability of quality
attributes of a software system or a software
component. Section 3 outlines software risks and
the moral aspects of making decisions in which
these risks are accepted. In section 4 the
limitations to the prediction of software quality
are considered, with an example in which the
importance of a moral decision is discussed.
Section 5 discusses several examples of decision
importance. The paper concludes with a
summary of the advantages and challenges of
prediction-enabled technologies from an ethical
point of view.

2. Overview of predictable component-
based development

To improve the software development
process, a new approach, component-based
development (CBD) has been introduced during
recent years and is now widely used in many
engineering and different application domains.
The major goals of CBD are [3]:
• To provide support for the development of

systems as assemblies of components;
• To support the development of components as

reusable entities;
• To facilitate system maintenance by replacing

components and to enable system upgrading by
customizing components.

The basic idea of CBD is to make possible

the development of software systems in the same
way as hardware systems are developed - by
using components already available on the
market. In a similar way as a car is assembled
from different parts developed by subcontracting
suppliers, CBD supports as far as possible, the
separation of system development from software
component development. This basic approach
has many advantages but is not without
problems. The main problem is the
unpredictability of the total system behavior; in
particular that of quality attributes, such as
reliability, availability, performance, robustness,
etc. Quality attributes are, in general, difficult to
predict in software systems because of
inadequate specifications and validations. This
problem is exacerbated in component-based
systems, since components are developed
independently of systems and the system
developer must rely on the manufacturers’
specifications. These generally remain
inadequate today as there are still no adequate
formal means to express them. For this reason
researchers continue to develop prediction-
enabled component-based technologies which
will be able to justifiably predict the behavior of
component-based systems [4,5,7,10].

The prediction theories are often validated
empirically, using standard statistical methods.
The theories and results are similar to methods
such as data mining or knowledge-management
in other research areas such as medicine or
economics. One of the main challenges in
developing prediction-enabled component-based
technologies is to obtain trustworthiness of
systems and the components of which they are
built. An underestimated trustworthiness may

result in excessive precautionary measures and
high development costs, while the consequences
of overestimated trustworthiness may be the non-
delivery of services expected by the customers
and users, or such serious results as large
economic losses or even a threat to the
environment or human life.

As software becomes more complex, it is
increasingly difficult to assess the quality of the
functions required. It is even more difficult to
verify system’s quality attributes. It is not
possible to test exhaustively la rge software
systems since the potential number of possible
states and execution paths increases
exponentially. Quality attributes such as
scalability, performance, memory consumption
and reliability, are often not considered to be part
of the functional requirements of a software
system and are therefore often given inadequate
attention during the design process. Purchasers
are most often interested in a particular
functionality when they buy software and,
frequently, particular quality attributes are not
specifically requested. The incorporation of these
attributes is most likely taken for granted by the
end customer. This reasoning implies, however,
that functionality requirements are given higher
priority than the non-functional quality
requirements in the development process.
Further, the lower priority given to quality
attributes means that they may not be adequately
considered until the system is implemented and
tested.

The actual quality of a software product is
determined in the testing phase and only then is
appropriate action taken to achieve the quality
required. Often, only the quality attributes which
obviously do not meet the requirements are
observed. Other attributes, not directly visible
during the development process, but very
important for the product’s lifecycle, such as
those related to reliability and safety issues, are
not given the attention their importance warrants.

3. Morality and software risks

There are several reasons why the quality
attributes are not given proper attention.
Ignorance can be one, high pressure to keep
costs down and to meet time-to-market
requirements, another. As the inadequacy of the
quality attributes might not be directly apparent,
the line of least resistance is to “forget” them and
leave the solution of any problems to the future.

If there is a risk that a particular software
design decision could lead to events that might
harm people, it is questionable if such a decision
is morally sound. What are the moral standards
relating to such decisions? Customers in other
countries and cultures than those of the software
developing company may have different
concepts of what is right or wrong. A better
understanding of whether the behavior of
software products is acceptable or unacceptable
can be attained from a study of ethics, the theory
of morals, in relation to computing.

Figure 1, which shows ethical areas and
issues related to computing, illustrates the
complexity of the problem of making proper
decisions. The most important areas in which
computing and ethics are jointly concerned today
are commerce, computer abuse, privacy, speech
issues, social-justice issues, intellectual
properties.

Figure 1. A landscape of ethical issues
in computing [11]

Quality attributes are mainly associated with

the area Risks (of computing) but also with the
area Commerce. For instance, a software vendor
might certify that the quality attribute
requirement of software supplied has been met.
This certification can be absolute or presented
with a certain degree of confidence and it is of
interest to the end user of the software to know
the degree of confidence placed in the software
components concerned. The customer must
consider if the level of confidence quoted is
acceptable for use in a particular system.

A force driving software developers is the
belief that the software produced will solve the
problems or satisfy the needs of its users. [2].
The quality attributes of software become critical
in the sense that its behavior must be known

before it is used in practice but testing cannot
cover all possible eventualities. The software or
system designer must therefore make certain
decisions based on estimated quality attributes.
In most cases, software technologies cannot
prove and guarantee the correct behavior of
software in all circumstances. For example,
replacing a well-established technology with a
new but not fully proven technology, knowing
that it may cause injury or loss of life to human
beings is morally unsound but on the other hand,
there is a moral dilemma if, with the introduction
of the same technology, it is possible to prevent
damage or save the lives of human beings.

There are several bases for making a moral
decision. Moral decisions can be based on
different ethical theories [6,9]. These include:
• Divine command theories, i.e. obedience to

some sacred text, or the manifested will of
some undisputed power, e.g. the will of God.

• Utilitarianism or Consequentialism, i.e. the
belief that the best action to take is that which
procures the greatest happiness or good for the
greatest number.

• Virtue ethics, i.e. the taking of action that
maximizes accepted virtue and minimizes
vices.

• The ethics of duty or deontological1 ethics.
The basing of a decision on the duty of the
decision maker. Do your duty.

• Ethical egoism, the taking of action leading to
ones’ own benefit only. This is directly
contrary to Utilitarianism. Ethical egoism
maximizes the benefit of an action to one
person instead of the greatest number.

• The ethics of natural and human rights.
Decisions which acknowledge that all people
are created with certain unalienable rights.

When a condition, for example happiness,
richness or quality of life is considered from the
utilitarian point of view, it is only the number of
those on the positive side which is of importance.
Virtue ethics is related to utilitarianism but
considers the entire group. Let us take happiness
as one example. Utilitarianism maximizes the
number of happy people but accepts that there
are some who could be very unhappy. A decision
could be made which makes many people
extremely happy but some very sad.

Virtue ethics involves both the bad and the
good aspects. Making a decision which makes
fewer people extremely happy might make more
people less unhappy. One can illustrate this with

1 ‘Deon’ = Latin for duty

an example (shown in Figure 2). At the cost of
having some very unhappy people we can get
more very happy people. On the contrary, trying
to have fewer very happy people will result in
fewer who are miserable . This example shows
the differences between utilitarianism and virtue
ethics. Note that this relation might not apply for
other virtues, such as empathy or self-control.

Unhappiness Happiness

Number of people

Utilitarianism
Virtue Ethics

Unhappiness Happiness

Number of people

Utilitarianism
Virtue Ethics

Figure 2. An example of the relation
between utilitarianism and virtue ethics

Decision makers are frequently unaware of

the ethical theory on which they base their
decisions. They live in a culture with more or
less fixed moral standards and make decisions in
accordance with the ethical norm on which these
moral standards are based. Awareness of the
ethical basis of their decision-making and
understanding the moral standards of the
customer could reduce the number of incorrect
decisions.

The risks associated with using software
must also be understood and risk assessment
should be a natural part of software development.
Today, risk assessment in software development
is more often than not, only the checking of the
risks of not delivering the expected results on
time. Software risks should not be confused with
software process risks. For example, there is a
software risk when software replaces hardware
safety equipment such as an emergency brake.
There is a software process risk when technology
used in a project becomes obsolete during its
development.

Apart from these underlying theories on
which decisions are based, ethical norms or
codes of ethics have been defined for use in
software engineering specifically. There are the
software engineering codes of ethics and
professional practice issued by IEEE-CS and
ACM [8] and The Ten Commandments of
Computer Ethics [1]. These codes of ethics are
defined in the form of a policy and state general

principles about how the software developer
should behave. For instance the first
commandment from Computer Professionals for
Social Responsibility (CPSR) [1]: “Thou shalt
not use a computer to harm other people”, or the
3rd principle of the IEEE/ACM code of ethics [8],
“Software engineers shall ensure that their
products and related modifications meet the
highest professional standards possible”.

Neither of the two codes of ethics addresses
the making of decisions relating to the use of
software that might cause damage to property or
injury to persons.

4. Prediction of quality attributes –
examples of a moral dilemma

Better quality can be achieved by considering
the quality attributes from the beginning of the
development process. By having the architecture
set rules for and limitations on the actual
software produced in the architecture, it is
possible to design the software so that certain
quality attributes can be predicted with a certain
degree of confidence in the design phase. This
set of rules is determined by selection of a
component-based technology. The predictability
of quality attributes during the design phase
permits explicit reasoning about quality and the
determination of these attributes in advance.
Predictions can very seldom be 100% accurate
and there is usually a varying degree of
confidence in the predictions. The question that
then arises is: What if a software product is
stated to have certain quality attributes and a
customer makes decisions on that information in
building a system which, if the quality
requirements are not fulfilled, could harm the
environment or, even worse, people?

We shall illustrate this with examples and
cases.

4.1 A steel production control example

A control system monitors and controls a
steel production mill. One of its tasks could be to
control the pouring of molten steel into a cast.
This task might be time-critical and if not
fulfilled, molten steel might splash into the open,
injuring personnel or damaging the plant. In this
case, it is of great importance that the designer of
the controller is certain that the task can be
fulfilled within the specified period. In a
component-based development the component
providing that function should guarantee its

execution time. This information is necessary but
not sufficient to guarantee the response time of
the component in a running system.

The main problem is not to make predictions
about the actual latency of a task but to prove
that the predictions are correct. Having a theory
of how to predict quality attributes, such as
latency, in the development of a component-
based software system is certainly advantageous,
but the accuracy of the theory must be known.
The verification of any theory can be formal or
empirical, the formal verification actually
proving its correctness and the empirical giving a
degree of confidence in the theory. When the
designer of a system has only a certain degree of
confidence in the predictions of quality
attributes, any decision to use the software, when
and how, assumes a moral aspect. There are of
course, other means of ensuring safety, even if
the controller is not 100% proven. A decision to
introduce safety equipment should be made if
vital parts cannot be proven 100% reliable, or
even if a proof indicates them to be 100% fail-
safe since the confidence in the proof itself and
the non-occurrence of unexpected events might
be less than 100%.

A utilitarian approach to the decision to use
or not to use certain control software in steel mill
applications can lead to problems. The theory
says that the decision should be made which
procures the greatest happiness for the largest
number of customers. The controller might
deliver excellent functionality and contribute to
producing the very best quality of steel, but there
may be a known risk that the worst might
happen, i.e. that hot steel could cause a serious,
even fatal, accident. The decision can be reduced
to choosing between the social and economic
impact of the possible accident and the
advantage of selling a system which satisfies
many customers prepared to accept the risk.

4.2 Ariane 5 launcher case

On its maiden flight, the European Ariane 5
launcher crashed about 40 seconds after takeoff
[12]. Fortunately there were no human casualties
but the economic loss was half a billion dollars.
The disaster was the result of a software error
and particularly annoying was the fact that the
error originated in a section of the software that
was active unnecessarily after lift-off. The
execution of a software component was intended
to have ceased at 9 seconds before lift-off but the
computation continued for 50 seconds. After lift-

off this computation served no purpose but in the
Ariane 5 flight it caused an exceptional situation
which was not detected and the software and the
launcher crashed. There has been much
discussion regarding the root cause of such a
banal error. The same software component
functioned satisfactorily for Ariane 4 (although it
included the same error) but was not tested for
Ariane 5. What is interesting from an ethical
point of view is the fact that due to budget
reductions, there was a deliberate decision to
omit certain tests. The quality was compromised
for reasons of costs. Before every launch the
quality manager decides if the launch is to be
started or canceled. His final decision is based on
the facts from different reports, his confidence in
the reliability of the system, but also on pressures
from different people who may be more ready to
take the risks. The final decision is thus based on
moral choices as well as on the technical facts.

4.3 Safety and probability

For safety-critical systems there is usually
very little space left for uncertainty. The systems
are designed so that their state is deterministic.
For example, in real-time systems, it is assumed
that the safety-critical services have available
resources (memory, CPU, time). There are
design methods that can achieve this
determinism, but they require more resources.
Finding a proper balance between safety
requirements and cost constraints is the primary
challenge in many software engineering
domains. For example in the automotive industry
the costs of electronics increase significantly
year after year. To reduce production costs some
car companies consider changing the principle of
worst case execution time (WCET) to “most
probable execution time”. An implication of this
is that services (such as ABS-antilock braking
system, or similar) function satisfactorily most of
the time but that there is a risk of malfunction
which might lead to catastrophic consequences.
The companies calculate the probability of
accidents, the probability of severe consequences
and the resultant cost to the company (cost of
possible compensation payments, bad image, and
similar), and compare them with the costs of
building systems which are 100% safe. Any
decision to use a system less than 100% safe for
economic reasons is morally questionable.

5. Summary and Conclusions

What are the consequences of a design
decision? In many cases, the software engineer is
more interested in meeting the technical
challenge than in any non-technical
consequences. Brooks stated already in the
seventies that programming is fun and that the
quality part of the work is not considered fun [2].
Every programmer wants to feel the sheer joy of
making things.

The decision-making process in software
engineering is often complicated by the fact that
the designers are assigned multiple
responsibilities. A software engineer is often
responsible for requirements analysis, research,
design, implementation, testing, error detection
and correction, report and documentation writing
and even project management. All these roles
require that decisions be made, decisions which
might have severe impact on the well-being of
other human beings. This is not always clear and
very often the designer have no time for
engagement in philosophical discussions about
the possible consequences of the decisions made.

In using the prediction-enabled technology,
the objective is to determine the component
behavior and predict the system behavior with a
certain degree of accuracy. The positive aspect of
this approach is that it provides explicit
specifications and expresses them in statistical
terms which indicate the degree to which they
are correct. There is however a risk that the
specifications may be mistakenly accepted as
being absolutely correct and that the “high
confidence numbers” guarantee that the system
will work correctly.

Individuals may make decisions with the best
of intentions but if a decision is incorrect, there is
a risk that the consequences are a problematical
situation which they cannot manage. They must
instead be handled by a professional
organization, making conscious and professional
decisions based on policies known internally, as
well as externally. Professionalism in these, and
other, aspects provides a competitive advantage.

6. References

 [1] Barquin, R., Computer Ethics Institute,
The Ten Commandments of Computer
Ethics,www.cpsr.org/program/ethics/cei.ht
ml, 2003.

 [2] Brooks F. P., The Mythical Man-Month -
Essays On Software Engineering, 20th

Anniversary Edition, ISBN 0201835959,
Addison-Wesley Longman, 1995.

 [3] Crnkovic I., Larsson M., and Lüders F.,
"Implementation of a Software
Engineering Course for Computer Science
Students", In Proceedings of 7th Asia -
Pacific Software Engineering Conference
(APSEC), 2000.

 [4] Crnkovic I., Schmidt H., Stafford J., and
Wallnau K. C., "4th ICSE Workshop on
Component-Based Software Engineering:
Component Certification and System
Prediction", In Software Engineering
Notes, volume 26, issue 6, pp. 33-40, 2001.

 [5] Crnkovic I., Schmidt H., Stafford J., and
Wallnau K. C., "5th Workshop on
Component-Based Software Engineering:
Benchmarks for Predictable Assembly", In
Software Engineering Notes, volume 27,
issue 5, 2002.

 [6] Hinman, L. M., University of San Diego,
Lectures on Ethical Theory,
http://ethics.acusd.edu/video/Hinman/Theo
ry/, 2001.

 [7] Hissam S. A., Hudak J., Ivers J., Klein M.,
Larsson M., Moreno G. A., Northrop L.,
Plakosh D., Stafford J., Wallnau K. C., and
Wood W., Predictable Assembly of
Substation Automation Systems: An
Experience Report, report CMU/SEI-2002-
TR-031, Software Engineering Institute,
Carnegie Mellon University, 2002.

 [8] IEEE, IEEE-CS/ACM, Software
Engineering Code of Ethics and
Professional Practice,
http://www.computer.org/tab/seprof/code.h
tm, 2003.

 [9] Martin M. W. and Schinzinger R., Ethics
in Engineering, ISBN 0-07-040849-1,
McGraw-Hill, 1996.

[10] Moreno G. A., Hissam S. A., and Wallnau
K. C., "Statistical Models for Empirical
Component Properties and Assembly-
Level Property Predictions: Toward
Standard Labeling", In Proceedings of 5th
Workshop on component based software
engineering, 2002.

[11] NCSU, North Carolina State University,
Ethics in Computing,
http://legacy.eos.ncsu.edu/eos/info/comput
er_ethics/, 2003.

 [12] Ariane 5 report, www.esrin.esa.it
 /htdocs/tidc/Press/Press96/ariane5rep.html

