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Sammanfattning

Med det ökade beroendet av mjukvarussystem i våra liv ökar också vikten av
att säkerställa systemens prestanda, eftersom detta har stor påverkan på vilken
marknadsframgång produkterna kommer att ha. Olika aktiviteter som att testa
prestandan, att säkerställa att den bevaras och att förbättra den bidrar alla till
att säkerställa att prestandakraven uppfylls. Nuvarande metoder för att hantera
utmaningar relaterade till att testa, bevara och förbättra prestanda baseras hu-
vudsakligen på tekniker som bygger på prestandamodeller eller använder sys-
temmodeller eller källkod. Även om modellering ger en djup inblick i sys-
temets beteende, är det utmanande att konstruera en passande detaljerad mod-
ell som kan användas för att undersöka prestanda. En utmaning är också att
artefakter som modeller och källkod inte alltid finns tillgängliga. Sammantaget
motiverar detta att vi undersöker om maskininlärningstekniker som inte bygger
på modeller, som till exempel modellfri förstärkningsinlärning (Reinforcement
Learning, RL), för att säkerställa prestanda hos mjukvarusystem.

Avhandlingen undersöker hur RL kan tillämpas på denna typ av problem.
Fördelen är att en optimal policy for att möta de avsedda målen i en prestand-
abevarande process kan tas fram av det agerande systemet (t.ex. testningssys-
temet) med maskininlärning, vilket gör att målen kan nås utan avancerade
prestandamodeller. Dessutom kan den inlärda policyn senare återanvändas i
liknande situationer, vilket leder till effektivitetsförbättring genom att spara
beräkningstid samtidigt som man slipper beroendet av modeller och källkod.

Forskningsmålet i denna avhandling är att utveckla anpassningsbara och
effektiva tekniker för att säkerställa prestandan i system och produkter utan
tillgång till modeller och källkod. Vi föreslår tre anpassningsbara modellfria
inlärningsbaserade metoder för att hantera de utmaningarna vi identifierat; ef-
fektiv generering av testfall för prestanda, bibehållande av prestanda (respon-
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stid) och förbättring av prestanda när det gäller minskning av tiden det tar att
slutföra en uppgift. Vi demonstrerar effektiviteten och anpassningsbarheten
för våra tillvägagångssätt med experimentella utvärderingar. Dessa är utförda
med forskningsprototypverktyg som består av de simuleringsmiljöer som vi
utvecklat eller skräddarsytt för problem inom olika applikationsområden.



Abstract
With the growing involvement of software systems in our life, assurance of
performance, as an important quality characteristic, rises to prominence for
the success of software products. Performance testing, preservation, and im-
provement all contribute to the realization of performance assurance. Com-
mon approaches to tackle challenges in testing, preservation, and improvement
of performance mainly involve techniques relying on performance models or
using system models or source code. Although modeling provides a deep in-
sight into the system behavior, drawing a well-detailed model is challenging.
On the other hand, those artifacts such as models and source code might not
be available all the time. These issues are the motivations for using model-
free machine learning techniques such as model-free reinforcement learning to
address the related challenges in performance assurance.

Reinforcement learning implies that if the optimal policy (way) for achiev-
ing the intended objective in a performance assurance process could instead
be learned by the acting system (e.g., the tester system), then the intended
objective could be accomplished without advanced performance models. Fur-
thermore, the learned policy could later be reused in similar situations, which
leads to efficiency improvement by saving computation time while reducing
the dependency on the models and source code.

In this thesis, our research goal is to develop adaptive and efficient per-
formance assurance techniques meeting the intended objectives without ac-
cess to models and source code. We propose three model-free learning-based
approaches to tackle the challenges; efficient generation of performance test
cases, runtime performance (response time) preservation, and performance im-
provement in terms of makespan (completion time) reduction. We demonstrate
the efficiency and adaptivity of our approaches based on experimental evalua-
tions conducted on the research prototype tools, i.e. simulation environments
that we developed or tailored for our problems, in different application areas.
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Chapter 1

Introduction

With the growing dependency of different facets of our life on software, qual-
ity assurance of software with respect to both functional and non-functional
aspects of behavior assumes more importance. In addition to functional cor-
rectness and completeness, one of the quality aspects which plays a significant
role in success of software products is performance. In a general phrasing, it
is often referred to as how well a software system (service) accomplishes the
expected functionalities. Enterprise applications (EAs) [1] with internet-based
user interfaces (UIs) such as e-commerce websites, banking, retailing and air-
line reservation systems, are examples whose success is subject to performance
assurance. EAs are often the core parts of corporate business organizations
and their performance mainly influences execution of business functions [2].
Internet-based EAs may receive varying number of requests from customers,
and meanwhile they are required to be resilient enough upon varying execution
conditions [3].

The ISO/IEC 25010 standard [4] proposes a general quality model
specifying the quality characteristics of software. The quality of a software
product indicates to which degree the software meets the quality requirements
(needs) of the stakeholders. Performance as one of the quality characteristics
in ISO/IEC 25010 quality has been also called “efficiency” in various classifi-
cation schemes of quality characteristics [4, 5, 6]. Performance requirements
mainly present time and resource bound constraints on the behavior of
software. Those constraints are often expressed using performance metrics
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4 Chapter 1. Introduction

such as response time, throughput, and resource utilization.
Realization of performance assurance can be viewed from different per-

spectives. Performance testing (evaluation), preservation and improvement all
contribute to meeting performance assurance. Each aspect is associated to ful-
filling some primary objectives. For example, performance testing is generally
intended to meet the objectives, I. measuring performance metrics, II. detecting
specific functional problems emerging under certain execution conditions such
as heavy workload, III. detecting violations of non-functional requirements [7].
The execution conditions involve characteristics of the execution environment
such as resource availability and characteristics of the workload under which
the system operates.

Performance modeling techniques are common approaches which are
widely used to meet the associated objectives in different aspects of perfor-
mance assurance. Performance modeling involves building a model of system
to express and measure the target performance metrics. Various modeling no-
tations such as queueing networks, Markov processes, and petri nets [8, 9, 10]
together with different analytic techniques are used for performance modeling
[11, 12, 13]. Although models provide helpful insight into the performance
behavior of the system, there are still many details of implementation and
execution environment that might be ignored in the modeling nonetheless
[14]. Moreover, building a precise model expressing the performance behavior
under different and changing conditions might be difficult and costly.

In addition to performance models, many of other common approaches also
rely on some artifacts such as source code or different types of system mod-
els. For example, common performance testing approaches such as techniques
based on source code analysis [15], system model analysis [16, 17, 18], use
case-based [19, 20], and behavior-driven [21, 22, 23, 24] design approaches
mostly rely on source code or system models. Nonetheless, those artifacts
might not be always available or accessible. Currently, the use of various ma-
chine learning techniques to address the challenges in different aspects of per-
formance assurance has been frequently considered. Reinforcement Learning
(RL) as a major part of machine learning is widely used for addressing deci-
sion making problems. With respect to the existing issues of common solution
techniques in performance assurance, RL techniques in particular model-free
RLs could play an interesting role in addressing the related challenges of per-
formance assurance. RL algorithms are specific machine learning algorithms
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in which the learning is based on the experience of interaction with system
and observing the system’s behavior. Model-free RLs are a subset of RL algo-
rithms which can learn the optimal way to solve a problem (i.e., to accomplish
an objective) from the interaction with the system without need to access or
build a model of the system.

In Section 1.1 and 1.2 we discuss the research challenges and motivations
for using RL-assisted techniques with regard to the existing issues of common
techniques in performance assurance.

1.1 Research Challenges
Performance testing involves executing software under various execution con-
ditions to measure the performance metrics and identify behavioral anomalies
such as functional issues or violations of performance requirements. Verify-
ing robustness in terms of finding performance breaking point is one of the
primary purposes of performance testing. A performance breaking point often
refers to a status of software at which the system becomes unresponsive or cer-
tain performance requirements (e.g., in terms of response time and error rate)
get violated. In Performance testing, generating performance test cases to find
the performance breaking point is a challenge for complex systems. Further-
more, similarly preserving the performance of a system or optimizing it with
respect to changeable execution conditions is also challenging.

Performance model-driven techniques for addressing challenges in the
scope of testing, preserving and optimizing performance, mainly suffer due
to the costly process of building detailed performance models, in particular
for complex systems. Relying on source code and system models in other
approaches and also some issues like the need for automated and efficient
generation of performance test cases (See Chapter 3) are some of the major
raised issues in connection to the existing common techniques.

Regarding the aforementioned issues, we propose that reinforcement learn-
ing techniques could help tackle the challenges without relying on source code
or model artifacts. In this thesis, we discuss various aspects of performance
assurance, mainly performance testing, and present how model-free reinforce-
ment learning can guide them towards finding the optimal way of accomplish-
ing the objectives, and meanwhile alleviate the dependency on models and
source code. Moreover, we show how the capability of reusing knowledge can
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improve the efficiency of the activity in terms of reduced required effort, i.e.,
time and cost.

1.2 Motivation

Performance testing (evaluation) as one of the main steps towards performance
assurance, is important for performance-critical software systems in various
domains. Performance anomalies and violations of performance requirements
are generally consequences of performance bottlenecks [25, 26]. A perfor-
mance bottleneck is a system or resource component limiting the performance
of the system and making the system fail to act as well as required [27].

The occurrence of some limitations associated with the component such as
saturation and contention makes a component act as a bottleneck. A system
or resource component saturation happens upon full utilization of its capac-
ity or exceeding a usage threshold [27]. The primary causes of performance
bottleneck emergence can be categorized into three groups, application-based,
platform-based, and workload-based ones. Application-based causes are the
issues such as defects in the source code or system architecture faults, while
the issues related to hardware resources, operating system, and execution envi-
ronment could be described as platform-based causes. Workload-based causes
also represent the issues such as deviations from the expected workload inten-
sity.

Therefore, for example to address the challenge of performance testing
with the purpose of finding performance breaking point, we need to find how
to provide critical execution conditions which make the performance bottle-
necks emerge. The focus of performance testing in our research is to assess
the robustness of system and find the performance breaking point. We want
to achieve this based on generating platform-based and workload-based test
conditions in this research thesis.

Regarding this objective, it is required to keep in mind that the effects of
internal causes, i.e., application/architecture-based ones, are also important,
and they could vary due to continuous changes and updates of the software,
i.e., Continuous Integration/Continuous Delivery (CI/CD). They might act dif-
ferently on different platforms (execution environments) and under different
workload conditions. Therefore, in many cases it is hard to build a precise per-
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formance model expressing the effects of all factors at play due to the complex-
ity of the software under analysis/test (SUT) and the internal affecting factors.

It can be inferred that the same conditions and challenges are valid for other
tasks like performance preservation or performance improvement. This is a
major barrier motivating the use of model-free learning-based approaches like
model-free RL, in which the optimal policy for accomplishing the objective
could be learned indirectly through interaction with the environment (software)
and reused in further similar situations. In our problem statement, we consider
the software (i.e., with its involved factors affecting performance) as the envi-
ronment. Then, the learning system, which is an smart agent and does testing,
control or improvement, explores the behavior of the environment and learns
the optimal policy to achieve the intended target, without access to source code
or a model of the environment. It stores the learned policy and is able to later
reuse the learned policy in similar situations. This is an interesting feature
of the proposed learning approach which is supposed to lead to productivity
benefits (reduction of computation time) in the problem.

1.3 Research Process
In order to conduct research in a right way, using a proper research method-
ology is of great importance. G. Dodig-Crnkovic [28] describes a scientific
framework which is widely used as a logical scheme by researchers and scien-
tists to address research questions in general sciences. She discusses scientific
differentiating aspects of computer science from other sciences and describes
how the general scientific methodology can be customized for computer sci-
ence fields. H. J. Holz et al. [29] also provide an overview of different com-
puting research methods and a general framework for organizing the process
of computing research. Their framework involves four steps describing and
handling the cycle of research collectively. The four steps, identifying research
problem (challenge), formulating research goal/question, proposing a solution,
and evaluating the proposed solution (i.e., followed by an industrial validation
step in some cases) are the main ones inspired from their framework.

Regarding the industrial validation step, it is worth remarking that there are
always challenges for software engineering research in reaching its potential
due to the lack of enough research grounded on realistic application contexts.
The solutions which do not match the real needs and could not scale are of those
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challenges [30]. Therefore, we customize the general framework inspired from
[29], as shown in Figure 1.1.

Research
Problem
/Challenge

Industry input

Proposed
SolutionEvaluation

Research process

Industrial
Validation

Research
Goal

/Question

Figure 1.1: Research process

We try to consider the feedback from the industry’s point of view in each
step. Thus, the realization of each step in our research is summarized as fol-
lows:

Research Problem. We identify the research problems based on reviewing
both state of the art and practice. We review the literature and find the sources,
in particular through the search methods of systematic literature review (SLR)
such as snowballing.

Research Goal/Question. The research goals or questions are formulated
based on the identified research problems (challenges).

Proposed Solution. After identifying the research problems and formulat-
ing research goals, we consolidate our ideas for meeting the research goals in
terms of initial solutions. Then, in further steps based on our studies and re-
ceived feedback from industry’s point of view, we improve the initial solutions
and develop the improved ones (i.e., as research prototypes) which can be used
for the evaluation step.
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Evaluation. We choose experimentation as an empirical research method,
based on the guidelines provided by Robson and McCartan [31] for the evalu-
ation. In the evaluation step, we evaluate the efficacy and efficiency of our so-
lutions through conducting a set of controlled experiments in accordance with
the existing guidelines [32]. Depending on the evaluation results, the research
problems, goals, and the proposed solutions could be refined. This process can
be conducted iteratively until reaching the desired results.

Moreover, an industrial validation of the developed research prototype
could be conducted based on the industry’s view on the solution.

1.4 Research Goals
The main challenge that we address in this thesis is accomplishing performance
assurance objectives from the perspectives of performance testing, preservation
and improvement, particularly in the cases where performance models are not
available or building a model is too costly. We investigate the use of model-free
reinforcement learning techniques which learn the optimal way of meeting the
objectives without access to model or source code and provide the opportunity
to transfer the gained knowledge between similar situations. Therefore, the
main research goal driving this research is as follows:

Overall Research Goal. To introduce and develop adaptive learning-based
performance assurance techniques that are able to learn the optimal way (pol-
icy) to meet the intended objectives and re-use the knowledge properly in po-
tential situations, without access to underlying models or source code.

The general theme of the overall research goal is solution-focused [33],
i.e., it focuses on creating better (more effective and efficient) solutions. The
overall research goal is divided into three subgoals. They are as follows:

• subgoal 1: To formulate and develop a self-adaptive model-free perfor-
mance testing framework that is able to learn the efficient generation
of the performance test cases to meet the intended testing objectives in
different testing situations.

• subgoal 2: To formulate and develop an adaptive performance preser-
vation technique able to learn how to keep the target performance re-
quirement satisfied in changing conditions.
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• subgoal 3: To design and develop an adaptive model-free learning-based
technique for performance improvement.

Figure 1.2 shows how each step of the research process has been realized in
the thesis.

Research
Challenges 

(Sec. 1.1)

Proposed
Solutions
(Included
papers)

Industry input

Evaluation
(Included
papers)

Research process

Industrial
Validation

Overall
Research

Goal 
(Sec. 1.4)

subgoal 1
(Testing)

subgoal 2
(Preservation)

subgoal 3
(Improvement)

Figure 1.2: Realization of research steps in the thesis

During this research, we have chosen different application domains to ac-
complish the research subgoals. In the remainder of the thesis, we present our
contributions in relation to the research subgoals mentioned above. Note that
we have mostly used simulation methods to carry out the experimental eval-
uations in our contributions. Our simulation-based experimental evaluation
allowed us to show the efficacy and applicability of RL-assisted techniques in
different aspects of performance assurance for meeting the related objectives.
There are also specific heuristics and customized techniques which could fa-
cilitate the use of RL techniques in realistic scaled-up environments with more
complexity.
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1.5 Thesis Outline
This thesis is divided into two parts. The first part is a summary of the the-
sis and is organized in four chapters, which are as follows: Chapter 1 gives
an overview of the preliminaries, research challenges, research goals, moti-
vations, and the research process which directed our research. In Chapter 2,
we describe the contributions of the thesis to realization of the research goals.
Chapter 3 presents an overview of the related work and background concepts,
in particular RL algorithms. Finally, in Chapter 4, we conclude the first part
of the thesis with a discussion on our results as well as possible directions for
the future work. The second part of the thesis is given as a collection of the
included publications which present the technical contributions of the thesis in
detail.





Chapter 2

Research Contribution

In this section we summarize our contributions in the thesis to achieve the
research goals mentioned in Section 1.4.

Contribution towards subgoal 1 (C1): The contributions towards achieving
subgoal 1 consist of three parts, C1.1, C1.2, and C1.3, which are described as
follows:

C1.1. Formulation of the performance testing problem in terms of an RL
problem. First, we investigate the possibility of applying RL algorithms to a
performance testing problem with the purpose of finding performance break-
ing points. We propose an initial architecture of a learning-based performance
testing agent and present a general overview of the main parts of the architec-
ture and how each step of the learning is formulated (paper A) [34]. Q-learning
[35], which is a well-known reinforcement learning, is used as the core learning
procedure in the proposed approach. The proposed RL-based smart agent ba-
sically learns the optimal policy of accomplishing the intended objective (i.e.,
reaching the intended performance breaking point) through episodes of inter-
action with the environment, i.e., SUT and execution platform. This interaction
generally involves sensing the state of the environment, taking an action which
affects the environment towards the intended objective and receiving a reward
signal which shows the effectiveness of the applied action. The primary idea
of a smart tester agent is formulated as follows:

13
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How the smart agent works. We use Q-learning as the core learning algo-
rithm in the smart agent. The proposed smart tester agent assumes two phases
of learning:

• Initial learning during which the agent learns an optimal policy for the
first time.

• Transfer learning during which the agent replays the learned policy in
similar cases while keeping the learning running in the long term.

The initial proposed architecture (paper A) uses Q-learning together with
the idea of using multiple experience (knowledge) bases. It stores the learned
optimal policy of achieving the objective (i.e., finding performance breaking
point) for different types of SUT, i.e., CPU-intensive, memory-intensive and
disk-intensive programs in separate knowledge bases. This paper uses experi-
ence adaptation based on using multiple experience bases during the learning.

Subsequently, we extend the primary idea of RL-assisted performance test-
ing and develop a self-adaptive model-free reinforcement learning-driven per-
formance testing framework mainly involving two parts which are as follows:

• SaFReL: self-adaptive fuzzy reinforcement learning performance testing
through platform-based test cases (paper B)

• RELOAD: adaptive reinforcement learning-driven load testing (paper C)

C1.2. SaFReL. We extend and improve the initial concept proposed in pa-
per A and develop a self-adaptive fuzzy reinforcement learning testing agent,
SaFReL. It generates the platform-based performance test cases resulting in the
intended performance breaking point, for different software programs without
access to source code or system models (paper B). The proposed smart tester
agent assumes two learning phases, initial and transfer learning, as described
above. We augment the learning by adopting fuzzy logic to model the state
space of the environment (SUT and execution platform) and fuzzy classifi-
cation for state detection. It helps tackle the issue of uncertainty in defining
discrete classes and improve the accuracy of the learning. We also propose an
adaptive action selection strategy adjusting the parameters related to the action
selection based on the detected similarity between the performance sensitivity
of SUTs. It is intended to make the learning adapt to different testing cases.
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We conduct a two-fold experimental evaluation, i.e., performance (effi-
ciency and adaptivity) and sensitivity analysis of the testing agent. The evalua-
tion is carried out based on simulating performance behavior of various SUTs.
We implement a performance prediction module along with our smart tester
agent to conduct the experimentation. According to our experimental eval-
uation, SaFReL meets the objective, i.e., reaches the intended performance
breaking point, more efficiently in comparison to a typical performance testing
technique which mainly generates the performance test cases based on chang-
ing the performance test conditions, by certain steps in an exploratory way.
SaFReL leads to a reduced cost in terms of computation time for performance
test case generation by reusing the learned policy upon the SUTs with similar
performance sensitivity. Moreover, it adapts its operational strategy to various
SUTs with different performance sensitivity effectively while preserving the
efficiency.

C1.3. RELOAD. The second part of the smart framework is an intelligent
RL-assisted load testing agent which learns the optimal policy to generate a
workload resulting in meeting an intended error rate threshold (paper C). It ba-
sically uses Q-learning with an adaptive action selection strategy to improve
the learning performance. The intelligent load testing agent, RELOAD, uses a
load generator/runner tool (i.e., Apache JMeter) to execute the recommended
workload on the SUT. We use a typical e-commerce store running on a Word-
Press hosting server as SUT in the experimental evaluation. According to the
results, RELOAD generates a more efficient workload (i.e., smaller workload
in terms of number of users) to meet the intended objective compared to a typi-
cal load testing technique which mainly involves applying a basic workload and
increasing the load of the involved transactions by a certain increase step. The
generation of an efficient test workload without dependency on source code,
system and user behavior models, and also reduction of the required effort for
workload generation in further situations (e.g., regression load testing) are the
main strengths of the proposed RL-driven load testing

Contribution towards subgoal 2 (C2): We formulate an adaptive RL-
assisted performance preservation technique, i.e., an adaptive runtime
response time control for PLC-based programs, and conduct an experimental
evaluation using simulating the performance behavior of the programs (paper
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D) [36]. The proposed approach formulates a model-free RL-assisted response
time control using Q-learning to provide adaptive preservation of response
time according to the timing requirement. We evaluate the efficacy of the
approach through multiple experiments. Our approach mostly keeps the pro-
grams adhering to the response time requirements despite various execution
conditions during the run time, i.e., the occurrence of time-related events
resulting in time deviations.

Contribution towards subgoal 3 (C3): Our contribution is based on
performance improvement in terms of makespan reduction for data-intensive
task execution in a data grid. We propose a two-step model-free learning-based
task placement (i.e., resource allocation) for executing data-intensive tasks
(paper E) [37]. We conduct the evaluation experiments based on integrating
our proposed technique into an open source simulation environment which we
used in the experiments. We evaluate the efficacy of our approach in terms
of resulted makespan (completion time) for submitted tasks. We investigate
the achieved performance improvement in our learning technique under
different types of workloads. Our proposed learning-based algorithm results in
performance improvement in comparison to four common algorithms which
mainly use parameters of the environment and work based on model analysis
of the environment.

2.1 Overview of the Included Papers
The main contributions of the thesis are organized and presented as a set of
papers which have been included in the thesis. Other papers that have been just
listed at the beginning of the thesis and are not included, also strengthen the
contributions of the thesis. A summary of the included papers is as follows:

• Paper A: Machine Learning to Guide Performance Testing: An Au-
tonomous Test Framework

Abstract: Satisfying performance requirements is of great impor-
tance for performance-critical software systems. Performance analysis
to provide an estimation of performance indices and ascertain whether
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the requirements are met is essential for achieving this target. Model-
based analysis as a common approach might provide useful information
but inferring a precise performance model is challenging, especially
for complex systems. Performance testing is considered as a dynamic
approach for doing performance analysis. In this work-in-progress
paper, we propose a self-adaptive learning-based test framework which
learns how to apply stress testing as one aspect of performance testing
on various software systems to find the performance breaking point.
It learns the optimal policy of generating stress test cases for different
types of software systems, then replays the learned policy to generate
the test cases with less required effort. Our study indicates that the
proposed learning-based framework could be applied to different types
of software systems and guides towards autonomous performance
testing.
Contribution: I have been the initiator and main author of the paper.

• Paper B: An Autonomous Performance Testing Framework Using
Self-Adaptive Fuzzy Reinforcement Learning

Abstract: Test automation brings the potential to reduce costs and
human effort, but several aspects of software testing remain challenging
to automate. One such example is automated performance testing
to find performance breaking points. Current approaches to tackle
automated generation of performance test cases mainly involve using
source code or system model analysis or use-case based techniques.
However, source code and system models might not always be available
at testing time. On the other hand, if the optimal performance testing
policy for the intended objective in a testing process instead could be
learned by the testing system, then test automation without advanced
performance models could be possible. Furthermore, the learned policy
could later be reused for similar software systems under test, thus
leading to higher test efficiency. We propose SaFReL, a self-adaptive
fuzzy reinforcement learning-based performance testing framework.
SaFReL learns the optimal policy to generate performance test cases
through an initial learning phase, then reuses it during a transfer learning
phase, while keeping the learning running and updating the policy in the
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long term. Through multiple experiments on a simulated environment,
we demonstrate that our approach generates the target performance
test cases for different programs more efficiently than a typical testing
process, and performs adaptively without access to source code and
performance models.
Contribution: I have been the initiator and main author of the paper.

• Paper C: Intelligent Load Testing: Self-Adaptive Reinforcement
Learning-Driven Load Runner

Abstract: Load testing with the aim of generating an effective
workload to identify performance issues is a time-consuming and
complex challenge, particularly for evolving software systems. Current
automated approaches mainly rely on analyzing system models and
source code, or modeling of the real system usage. However, that
information might not be available all the time or obtaining it might
require considerable effort. On the other hand, if the optimal policy for
generating the proper test workload resulting in meeting the objectives
of the testing can be learned by the testing system, testing would be
possible without access to system models or source code. We propose
a self-adaptive reinforcement learning-driven load testing agent that
learns the optimal policy for test workload generation. The agent can
reuse the learned policy in subsequent testing activities such as meeting
different testing targets. It generates an efficient test workload resulting
in meeting the objective of the testing adaptively without access to
system models or source code. Our experimental evaluation shows that
the proposed self-adaptive intelligent load testing can reach the testing
objective with lower cost in terms of the workload size, i.e., the number
of generated users, compared to a typical load testing process, and
results in productivity benefits in terms of higher efficiency.
Contribution: I have been the initiator and main author of the paper. A
part of the experiments has been implemented by Golrokh Hamidi.

• Paper D: Adaptive Runtime Response Time Control in PLC-Based
Real-Time Systems Using Reinforcement Learning

Abstract: Timing requirements such as constraints on response
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time are key characteristics of real-time systems and violations of these
requirements might cause a total failure, particularly in hard real-time
systems. Runtime monitoring of the system properties is of great
importance to check the system status and mitigate such failures. Thus,
a runtime control to preserve the system properties could improve the
robustness of the system with respect to timing violations. Common
control approaches may require a precise analytical model of the
system which is difficult to be provided at design time. Reinforcement
learning is a promising technique to provide adaptive model-free control
when the environment is stochastic, and the control problem could be
formulated as a Markov Decision Process. In this paper, we propose
an adaptive runtime control using reinforcement learning for real-time
programs based on Programmable Logic Controllers (PLCs), to meet
the response time requirements. We demonstrate through multiple ex-
periments that our approach could control the response time efficiently
to satisfy the timing requirements.
Contribution: I have been the initiator and main author of the paper.

• Paper E: Makespan Reduction for Dynamic Workloads in Cluster-based
Data Grids Using Reinforcement Learning Based Scheduling

Abstract: Scheduling is one of the important problems within the
scope of control and management in grid and cloud-based systems.
Data grid still as a primary solution to process data-intensive tasks,
deals with managing large amounts of distributed data in multiple
nodes. In this paper, a two-phase learning-based scheduling is proposed
for data-intensive tasks scheduling in cluster-based data grids. In the
proposed approach, a hierarchical multi agent system, consisting of one
global broker agent and several local agents, is applied to scheduling
procedure in the cluster-based data grids. At the first step of the
proposed approach, the global broker agent selects the cluster with the
minimum data cost based on the data communication cost measure, then
an adaptive policy based on Q-learning is used by the local agent of the
selected cluster to schedule the task to the proper node of the cluster.
The impacts of three action selection strategies have been investigated
in the proposed approach, and the performance of different versions of
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the approach regarding different action selection strategies, has been
evaluated under three types of workloads with heterogeneous tasks.
Experimental results show that for dynamic workloads with varying task
submission patterns, the proposed learning-based scheduling gives bet-
ter performance compared to four common scheduling strategies, Queue
Length (Shortest Queue), Access Cost, Queue Access Cost (QAC) and
HCS, which use regular combinations of primary parameters such as,
data communication cost and queue length. Applying a learning-based
strategy provides the scheduling with more adaptability to the changing
conditions in the environment.
Contribution: I have been the initiator and main author of the paper.

The contributions of the papers to reach the subgoals are summarized in
Table 2.1.

Table 2.1: Mapping of the papers to the contributions and research goals

Thesis Paper Contribution Research Goal
A C1.1 G1
B C1.2 G1
C C1.3 G1
D C2 G2
E C3 G3



Chapter 3

Background and Related
Work

This chapter discusses reinforcement learning, in particular model-free rein-
forcement learning algorithms and the role of them in finding the optimal be-
havior to meet an objective in learning problems. In later sections, it presents
a cross-section of the related work.

3.1 Reinforcement Learning

The concept of reinforcement learning (RL) [35] can be found in various sec-
tions in different fields of science. It is intended to solve the problems of deci-
sion making. In fact, decision making is the common nature of all the problems
to which RL is going to address. In general, RL is a fundamental science which
is intended to find the optimal way to make decisions. Therefore, many faces
of this concept can be found in many different fields of science in which same
problems are solved with similar techniques under different names, such as
optimal control techniques in engineering fields. Reinforcement learning in
computer science belongs to the field of machine learning.

Machine learning is an analytical technique which does the same process as
the learning process in the human mind. Generally, there are three main types
of machine learning techniques as supervised, unsupervised and reinforcement

21
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learning. Supervised learning mainly involves building a model and extract-
ing useful patterns from a training data set including known input and output.
The extracted model is often used for prediction purposes. The supervised
learning algorithms work based on classification or regression. Classification
techniques mainly build models on discrete data while regression techniques
are used to produce/predict continuous output. A number of common classi-
fication algorithms are k Nearest Neighbor (KNN), Support Vector Machine
(SVM), Neural Network, Naiive Bayes and Decision Trees [38, 39]. Some
of the common regression techniques are Gaussian Process Regression (GPR)
models, SVM regression, regression trees and generalized linear models. Un-
supervised learning explores data to find hidden patters/structures. Cluster-
ing techniques are the most common algorithms in the category of unsuper-
vised learning. A number of common clustering algorithms are K-means, K-
Medois, hierarchical clustering, Fuzzy c-means and Gaussian mixture models
[40, 41, 38].

Reinforcement learning (RL) is a different learning paradigm from the pre-
viously mentioned ones, which is based on interaction with the environment
(system 1) of the problem. Basically, at each step of the interaction, the agent
observes (senses) the environment, takes a possible action and receives a re-
ward signal from the environment showing the effectiveness of the applied
action to accomplish the intended objective of the agent (Figure 3.1). Some of
the major distinct differences between RL and other learning paradigms are as
follows [35, 42]:

• There is no supervisor at play in RL, the agent just receives a reward
signal.

• The agent receives the reward (feedback) with a delay.

• RL is based on sequential decision making process. The learning does
not occur based on a training data set. Instead, the agent goes through the
environment, decides at each step and based on optimizing the reward, it
learns the optimal way of decision making.

• The agent’s actions influence the system and consequently affect the sub-
sequent received data by the agent.

1system and environment are used interchangeably hereafter in the thesis.



3.1 Reinforcement Learning 23
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Figure 3.1: Reinforcement learning cycle between agent and environment

3.1.1 Principles

The principle concepts in RL are as follows [35, 42]:
State. In general, the agent takes actions based on its observations from the

environment (system). In fact, at each step, the agent decides what actions to
take based on the history. The history refers to the sequence of observations,
actions and rewards that happened during the past steps. Considering the whole
history is not definitely efficient, therefore, state as a concise summary of the
history, which includes all the required information, is used to determine what
should be taken next.

One related concept to the (summary) function of the history, is the concept
of Markov state. A state St is Markov if and only if

P [St+1 | St] = P [St+1 | St, St−1, ..., S1] (3.1)

The states within the environment are Markov by definition. If the environ-
ment is fully observable to the agent, then the states for the agent (the agent’s
states), which are used for making decisions on the actions, are Markov too.
This representation shows the main formalism for RL which is Markov De-
cision Process (MDP). If the environment is partially observable to the agent,
which means that the agent does not observe the whole environment, then the
states for the agent are not equivalent to the environment’s states. This situa-
tion needs a different formalism for RL, such as partially observable Markov
Decision Process and certain heuristics such as keeping the whole history or
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using a recurrent neural network, could be used to build the states of the agent.
The environments (systems) in the cases in this thesis are assumed to be full
observable to the agent.

Action and Reward. The agent selects the actions to maximize the long-
term reward. The reward is a scalar feedback signal which shows how well
the agent does at each step. Generally, the goal of the agent is maximizing the
cumulative long-term reward.

Agent’s Properties. An agent which acts based on RL might have one or
some of the following learning elements:

• Policy which is a function describing the behavior of the agent, i.e., what
actions the agent selects given a certain state (a map from states to ac-
tions).

• Value function which describes how good each state and/or action is. In
other words, how much reward we expect upon taking a particular action
in a particular state (a prediction of future reward). Figure 3.2 shows an
example of the state value and policy map of an RL problem in a Maze
example.

• Model which is the agent’s representation (view) of the environment. It
predicts what the environment will be next. The agent might have (or
build) a model of the environment. Two types of models, i.e. transition-
based and reward-based models, are often used to show the behavior of
the environment. A transition-based model predicts the next state given
a certain state and taking a particular action and a reward-based gives
the next immediate reward upon taking a particular action in a particular
state. Many of the Rl algorithms do not use a model of the environment
(model-free RL).

3.1.2 RL Algorithms

Reinforcement learning algorithms could be categorized based on the learning
elements that the agent uses. A fundamental categorization of RL algorithms
is as follows [35]:

Model-free. These RL algorithms are not intended to explicitly build or
learn a model of the environment to understand how the environment works.
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Figure 3.2: An example of the state value and policy map of an RL problem (Maze
example)

The purpose of these algorithms are learning the optimal behavior, i.e., under-
standing how to behave to achieve as much reward as possible through mul-
tiple experiences of interaction with the environment. Monte Carlo learning
and Temporal-Difference (TD) learning including Q-learning algorithms are
well-known model-free RL algorithms.

Model-based. These algorithms first build a model (dynamics) of the en-
vironment, then use the model for planning and looking ahead to find out the
optimal way to behave.

Other possible categorizations based on the key elements of the learning are
value-based, policy-based and actor critic algorithms. A value-based algorithm
just uses the value function and the policy can be implicitly read and extracted.
A policy-based algorithm instead of using value-functions, stores and uses the
policy explicitly. Finally, an actor critic algorithm stores and uses both the
value-function and policy together.

3.1.3 Model-Free RL Algorithms

Access to a model of the environment could be an unrealistic assumption for
many real complex systems. In model-free RL algorithms, there is no assump-
tion of access to a model of the environment, i.e., no known MDP of the en-
vironment. Instead, they use the experience of interactions with the system to
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estimate the value function and hence find the optimal policy to accomplish
the intended objective of the agent. There are two directions of using model-
free RL algorithms which are estimating the value function of a given policy
and optimizing the value function (finding the optimal value function) which
results in the optimal policy [35].

Monte-Carlo (MC) RL is the first major family of model-free methods,
which might not be the most efficient methods but are very effective and widely
used in practice. MC techniques use the complete (terminated) episodes of the
interaction with the environment to estimate the value function of states given
a particular policy. The value function of state s under policy π, Vπ(s), is the
expected return (Equation 3.2) from state s under policy π, which is indicated
as follows:

Gt = rt+1 + γrt+2 + ...+ γT−1rT (3.2)

Vπ(s) = Eπ[Gt|st = s] (3.3)

where rt+1 is the received reward upon first transition from state s, γ is
the discount factor, and Gt is the return (total discounted reward till the ending
of episode). For estimating the value function of a particular state, MC uses
the mean of the returns of the experienced episodes started from that particular
state. However, a mean value could be calculated incrementally (See Equation
3.4 which shows the incremental calculation of µn representing the average
value of x1, x2, ..., xn). Therefore, the average value of returns could be sim-
ilarly computed episode by episode without the need to keep the sum of the
episodes. Therefore, the incremental updates in Monte-Carlo technique is as
Equation 3.5.

µn =
1

n

n∑
i=1

xi

=
1

n
(xn + (n− 1)µn−1)

= µn−1 +
1

n
(xn − µn−1)

(3.4)



3.1 Reinforcement Learning 27

N(s) = N(s) + 1

V (s) = V (s) +
1

N(s)
(Gs − V (s))

(3.5)

where N(s) indicates the number of visits to state s, Gs represents the
return resulted from state s in the current episode and V (s) is the previous
estimate of V (s). There are also two ways to count the number of visits to state
s in an episode and update the value, which are either the First time or Every
time that state s is visited in the episode. Finally, in order to avoid keeping the
whole statistics about the episodes, the number of state visits could be replaced
with a constant step size, α, and the update equation could be written as follow:

V (s) = V (s) + α(Gs − V (s)) (3.6)

Temporal-Difference (TD) learning. This set of algorithms also learns
from the experienced episodes of the interaction similarly. However, the dis-
tinct difference between MC and TD methods is that TD learns from the in-
complete episodes (trajectories) by doing bootstrapping, i.e., using an estimate
in place of actual reward, in the incremental updating. It is an online learning
method since it learns the state value under policy π in an online way, i.e., in
each step of the experience of interaction with the environment.

The simplest kind of TD learning, TD(0), uses an estimate of the return in
one step ahead and updates the state value incrementally as follows:

V (st) = V (st) + α(rt+1 + γV (st+1)− V (st)) (3.7)

where rt+1 is the received reward upon transition to st+1, then rt+1 +

γV (st+1) is the estimated target return, TD target, and subsequently rt+1 +

γV (st+1)−V (st) is the TD error. Some of the major benefits of TD compared
to MC are as follows:

• TD can learn online after every step without need to wait until the end of
episodes and is able to learn from incomplete episodes, while MC must
wait for the completed episodes.

• TD can work in continuing environments, while MC is able to work only
in terminating episodic environments. This feature makes TD proper to
changeable non-terminating environments.
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• TD works more efficiently than MC due to doing bootstrapping.

One of the main features of TD is that it converges to a solution connected
to an MDP with max likelihood. It means that it uses Markov property, finds an
MDP that fits the observations best and tries to solve it. Therefore, this feature
makes TD able to converge even on a number of repeated sample episodes,
while MC does not act in the same way. MC does not exploit Markov property,
then it could be more effective in non-Markov environments.

As mentioned before, TD(0) takes one step of the reality to make an esti-
mate of the state value, while it is possible to make TD look into more steps
of the reality and then make a better estimate. TD(n) is intended to use n-step
return (See Equation 3.8 ) for incremental updates as follows:

G(n)
st = rt+1 + γrt+2 + ...+ γn−1rt+n + γnV (st+n) (3.8)

V (st) = V (st) + α(G(n)
st − V (st)) (3.9)

TD(λ) is a way which tries to use n-step returns from all time-steps efficiently.
It uses a geometrically weighted average of all n-step returns using a constant
weight λ, 0 ≤ λ ≤ 1, which is as follows:

G(λ)
st = (1− λ)

∞∑
n=1

λn−1G(n)
st (3.10)

Then, the following equation provides Forward-view TD(λ) using weighted
average, G(λ)

s :
V (st) = V (st) + α(G(λ)

st − V (st)) (3.11)

However, Forward-view TD(λ) again suffers from the same disadvantages
as MC because it can be computed only from completed episodes. Thus, there
is another way, Backward-view TD(λ), which provides a mechanism to pro-
vide the possibility of online, every step updates from incomplete episodes to
TD(λ). It uses a simple function, Et(s), for keeping an eligibility trace for
every state that has been visited (See Equation 3.16). It uses both frequency
and recency heuristics to give credits to the states.

E0(s) = 0

Et(s) = γλEt−1(s) + 1
(3.12)
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Therefore, backward-view TD(λ) updates the state value based on one-
step TD-error and eligibility trace, which is as follows:

δt = rt+1 + γV (st+1)− V (st)

V (st) = V (st) + αδtEt(s)
(3.13)

3.1.4 Model-Free RL for Optimal Behavior

The main motivations for using model-free RL algorithms for finding the opti-
mal policy to behave could be generally described as follows [35, 42]:
First, the MDP model of the environment might be unknown, however sam-
pling experience is possible. Second, the MDP model might be known but it’s
too complex and computation-intensive to use, thus it’s more efficient to use
samples of the environment.

This section presents how core model-free RL algorithms (See Section
3.1.3) are used to figure out the optimal policy to reach a target without hav-
ing any information on how the environment works. In Section 3.1.3, it was
discussed that how the core model-free RL algorithms, Monte Carlo and TD
learning, evaluated a given policy, i.e., estimated the value function of a par-
ticular policy in an unknown MDP. In this section, we discuss how the afore-
mentioned estimation technique together with an improvement strategy could
be used to optimise the value function in an unknown MDP.

In general there are two paradigms as on-policy and off-policy learning for
learning the optimal behavior to reach an intended target. On-policy learning
finds the optimal policy through optimising the policy from which the experi-
ence samples are, while off-policy learning learns the optimal policy from the
experience samples which have been produced based on other policies, e.g.,
from the others’ behavior. The main idea behind these learning paradigms is
using a policy iteration process consisting of iterative policy evaluation and it-
erative policy improvement. In fact, at each step, the agent alternates between
policy evaluation and improvement, as first it evaluates the policy (estimate the
value function), then tries to improve the policy through a greedy approach.
This process will converge on optimal value function and policy (See Figure
3.3.

However, the important issue related to using policy iteration is that for
applying a greedy approach to improve the state value function, we need an
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Figure 3.3: Policy iteration towards optimal policy

MDP model, while we do not have access to MDP model in model-free learn-
ing. Therefore, using action-value function, Q(s, a), instead of V (s) is a way
to address the issue and make the greedy policy improvement possible (See
Equation 3.14)

π′(s) = argmax
a

Q(s, a) (3.14)

Moreover, meanwhile in order to assure the possibility of exploration,
ε-greedy, 0 < ε < 1 is used as policy improvement approach which indicates
that a greedy action, argmax

a∈A
Q(s, a), is chosen with probability 1 − ε,

otherwise a random action is selected.
Both Monte-Carlo and TD algorithms can be used in the aforementioned

policy iteration process. However due to the basic strengths of TD such as on-
line update, the capability of working in continual environments, and learning
from incomplete episodes, using TD in the policy iteration process to figure
out the optimal policy is more common and efficient. Therefore, the general
idea is using TD to evaluate Q(s, a), using ε-greedy policy improvement and
updating upon each time-step. The update is done based on Sarsa updating
rule, which considers an estimate of policy in one step ahead and updates the
Q-value of the current state in the direction of the estimate, which is as follows:

Q(s, a) = Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] (3.15)

where s′ is the next state and a′ is the action which is taken at the next
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state. Sarsa algorithm (See Algorithm 1) is the primary on-policy model-free
algorithm based on the use of TD and Equation 3.15 to find the optimal policy
to reach a target.

Algorithm 1 Sarsa Algorithm
Initialize Q-values, ∀s ∈ S, ∀a ∈ A;
while Not (end of learning) do

Initialize s;
Choose action a based on the policy derived from Q (e.g., using ε-greedy);
repeat

Take action a;
Observe s′, r;
Choose action a′ based on the policy derived from Q (e.g., using
ε-greedy);
Q(s, a) = Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)];
s← s′ a← a′;

until meeting the terminal (target) state;
end

Moreover, Sarsa can also benefit from the idea related to TD(n), consider-
ing the n-step returns, similarly and updates Q(s, a) in the direction of n-step
Q-returns. Then, backward-view Sarsa(λ) like TD(λ) uses an eligibility trace
for each pair of state and action, which is as follows:

E0(s, a) = 0

Et(s, a) = γλEt−1(s, a) + 1(st = s, at = a)
(3.16)

Upon visiting each state-action pair, its eligibility increases by one and the
eligibility of others decays. Moreover, Sarsa (λ) updates not only the Q(s, a),
which has been visited, but also all the Q-values of all other state-action pairs
in proportion to TD-error and eligibility trace (See Algorithm 2).

In addition to the on-policy learning, off-policy learning is a similar type of
learning featuring in the capability of learning from observing others’ behavior,
which is a real advantage over the on-policy learning. It is able to reuse the
previous experiences directed by old policies and even learn the optimal policy
while it follows an exploratory policy.
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Algorithm 2 Sarsa(λ) Algorithm
Initialize Q-values, ∀s ∈ S, ∀a ∈ A;
while Not (end of learning) do

Initialize S , A
Choose action A based on the policy derived from Q-values (e.g., using
ε-greedy)
repeat

Take action A
Observe S′, r
Choose action A′ based on the derived policy (e.g., using ε-greedy)
δ = r + γQ(S′, A′)−Q(S,A)

E(S,A) = E(S,A) + 1

For all s ∈ S, a ∈ A
{ Q(s, a) = Q(s, a) + αδE(s, a)

E(s, a) = γλE(s, a) }
S ← S′; A← A′

until meeting the terminal (target) state;
end

Off-policy learning uses the concept of importance sampling (i.e., the es-
timation of the expected value of a function over a different distribution) in
order to be able to learn about optimal policy while following other policies. It
evaluates target policy, π, for computing Qπ(s, a), while following a behavior
policy, µ.

Off-policy TD learning uses the TD targets derived, µ to evaluate the other
one, π. Then, the basic updating equation is re-written based on using one-step
importance sampling correction, which is as follows:

V (st) = V (st) + α[
π(at|st)
µ(at|st)

(rt+1 + γV (st+1)− V (st))] (3.17)

One of the best algorithm for off-policy learning is Q-learning, which ap-
plies off-policy learning to Q-values. It is based on TD(0) and performs in a
specific way without need to do importance sampling explicitly. In Q-learning,
the next action, At+1, is selected based on the behavior policy, µ, while an
alternative successor action based on π, A′, is also considered. It means that
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although the next action is actually chosen based on the behavior policy, the
bootstrapping is done towards the Q-value of the alternative successor action.
Therefore, the Q-value update is as follows:

Q(St, At) = Q(St, At) + α[rt+1 + γQ(St+1, A
′)−Q(St, At)] (3.18)

In the well-known type of Q-learning (See Algorithm ) the behavior policy
is, for example ε-greedy with regard to Q-values, and the target policy which
we aim to improve is greedy with regard to Q-values. In fact, Q-learning lets
both behavior and target policies improve together. Then, the target and the
simplified Q-value update are as follows:

rt+1 + γQ(St+1, A
′) = rt+1 + γQ(St+1, argmax

a′
Q(St+1, a

′))

= rt+1 + γmax
a′

Q(St+1, a
′)

(3.19)

Q(St, At) = Q(St, At) + α[rt+1 + γmax
a′

Q(St+1, a
′)−Q(St, At)] (3.20)

Algorithm 3 Q-Learning Algorithm
Initialize Q-values, ∀s ∈ S, ∀a ∈ A;
while Not (end of learning) do

Initialize S;
repeat

Choose action A based on the behavior policy (e.g., using ε-greedy);
Take action A;
Observe S′, r;
Q(S,A) = Q(S,A) + α[r + γmax

a′
Q(S′, a′)−Q(S,A)]

S ← S′

until meeting the terminal (target) state;
end

3.2 Performance Testing
Performance testing is a family of techniques which are intended to meet the
performance evaluation objectives through executing SUT under various nor-
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mal and stress execution conditions. In fact, Performance, load and stress test-
ing are often used as interchangeable terms, even though there are also some
definitions/interpretations to distinguish between them [7]. Stress testing is of-
ten considered as a type of performance testing which is intended to assess
the robustness of SUT under stress conditions such as heavy workload, and/or
limited resource availability to find performance breaking point. Load testing
mainly addresses fulfilling performance testing objectives regarding workload-
based execution conditions. Nonetheless, performance testing is mainly con-
sidered as a general term including both load and stress testing in many cases.
The performance testing objectives are related to verification of performance
requirements in many cases, and in case of missing performance criteria, the
principle of “no worse than previous” is often used [43, 44].

Common approaches for generating performance test cases, which involve
both workload-based and platform-based conditions, to measure the perfor-
mance metrics and/or detecting performance issues could be categorized as
follows:

System model analysis. Analysis of the performance model of SUT such as
Petri nets using constraint solving techniques [45], analysis of the control flow
graph of SUT using search-based techniques [46, 47], and analysis of other
types of system models like UML models using genetic algorithms [16, 48, 49,
17, 18] are examples of techniques used for generating performance test cases
based on system model analysis.

Source code analysis. Generating test workload based on data-flow analy-
sis together with symbolic execution to detect performance-related issues such
as exceeded response time [50, 51] are examples of using this type of approach.

Real usage modeling. Extraction of the usage pattern and modeling the real
users’ behavior through stochastic form-oriented models [19, 20], extraction of
workload characteristics from the recorded requests using, e.g., Extended Fi-
nite State Machine (EFSM) [52] or Markov chains [53], and workload charac-
terization using end-user clustering based on business-level attributes extracted
from usage data [54] are samples of techniques for performance testing based
on modeling the real users’ behavior.

Behavior-driven declarative techniques. Using a Domain Specific Lan-
guage (DSL) to provide declarative goal-oriented specifications of the perfor-
mance testing process together with a model-driven execution framework for
automated execution of the tests [22, 23, 24], and using a high-level Behavior-
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Driven Load Testing (BDLT) language to provide load specification in com-
bination with a declarative performance testing framework like BenchFlow
[23, 21] are examples of declarative techniques for performance testing.

Machine learning-assisted techniques. Machine learning techniques such
as supervised and unsupervised algorithms are often intended to build models
and knowledge patterns from the data, while other techniques like reinforce-
ment learning algorithms are intended to teach the agent (learner) how to solve
a problem (i.e., to accomplish an objective) through interaction with the envi-
ronment. Machine learning techniques have been frequently used for analyzing
the resulted data from the performance testing. For example, using Bayesian
Network to predict the reliability from the load testing data [55], anomaly de-
tection based on analysis of metrics data (e.g., resource usage) using clustering
techniques [56], identifying performance signature based on performance met-
rics data using supervised and unsupervised learning techniques [57, 58] are
some examples of using machine learning techniques for analysis of perfor-
mance testing data.

Machine learning techniques have also been applied to the generation of
performance test conditions in some studies. For example, using RL together
with symbolic execution to find the worst-case execution path within a SUT
in [59], a feedback-driven learning technique which extracts some rules from
the execution traces to find the performance bottlenecks, i.e., the method calls
which their execution highly affects the performance of SUT [60], a feedback-
based approach using search algorithms to benchmark an NFS server based on
changing the test workload [61], an adaptive generation of test workload based
on using pre-defined adjusting policies in [62], and using RL to find a sequence
of input values resulting in performance degradation [63] are examples of using
RL and RL-like techniques to generate the performance test conditions.

3.3 Performance Preservation
RL algorithms, according to their capability of finding the optimal policy to
accomplish an intended objective, have been frequently used for adaptive con-
trol purposes in performance preservation of software services, such as adap-
tive RL-driven performance control for cloud services [64, 65, 66] and also
software services on other execution platforms [37, 36]. Regarding the perfor-
mance preservation techniques, in particular related to our selected application
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context, real-time systems, we can classify the relevant works as runtime veri-
fication and preservation of timing requirements. Many of the verification and
preservation/control approaches are based on runtime monitoring of the prop-
erties.

Real-time Specification for Java (RTSJ) [67] was originally introduced to
provide a real-time scheduler for periodic threads with the facility of deadline
monitoring and cost enforcement. In [68] a general model as an extension to
RTSJ is introduced to support accomplishing the intended objectives of RTSJ.
Ada Ravenscar Profile [69] is a strategy to preserve the timing properties of
a Ravensacr compliant real-time system at runtime. It accomplishes this ob-
jective using three mechanisms as enforcing the timing properties that are to
remain constant, monitoring the inherently variable timing properties, and han-
dling the occurred violations of the properties. In [70, 71] an extra scheduler
on top of a real-time operating system is proposed, which takes the timing
properties including period, execution time and deadline of the tasks. It gen-
erates the real-time tasks with well-defined specification and schedules them
using the underlying scheduler of the operating system to keep the temporal
requirements satisfied.

There are also some studies on runtime enforcement for real-time embed-
ded systems. For example, a runtime enforcement solution is presented in [72]
which forces the system to reach an intended certain state by adding delay in
the system to control the behavior of the system. It uses an offline model-based
analysis to build the enforcement strategy. The solution is mainly intended to
be used for testing fault tolerance-related mechanisms. A runtime reconfigu-
ration controller, which is a command-based reconfiguration queue (CoRQ) is
presented in [73]. It provides guaranteed latencies for the operations which are
amenable to Worst-case Execution Time (WCET) guarantees.

Regarding monitoring and runtime verification, different types of tools
have been proposed in the literature. A quick overview is as follows: A
runtime model synthesis approach for timing properties of real-time systems
based on monitoring the running system through using intrusive probes is pro-
posed in [74]. The model can be used for control and verification purposes.
Meanwhile, the range of existing issues in runtime monitoring of properties
in real-time systems are discussed in [75] and a survey of different online and
offline monitoring techniques for distributed real-time systems is presented in
[76]. A runtime framework that makes an event-based model of the real-time
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system for monitoring the timing properties and detecting violations of tim-
ing constraints is presented in [77]. It composes of an annotation system for
specifying the timing assertions/constraints, a runtime recording and a checker
for detecting violations. A tool environment with the capability of runtime
monitoring, annotation, code generation, and analysis of the components to
support model-driven development of real-time embedded systems is given in
[78]. A runtime monitoring (verification) solution based on a feedback-based
control approach with the capability of time predictability and memory uti-
lization management is presented in [79]. art2kitekt is a runtime monitoring
tool suite with a distributed architecture for tracing the temporal behavior of
real-time systems [80]. GRASP [81] and Tracealyzer [82] are some other tools
for tracing, visualizing and measuring different aspects of real-time embedded
systems.

3.4 Performance Improvement
Regarding the performance improvement techniques in our third application
context, i.e., data-intensive tasks in data grid, there are a number of studies
based on using machine learning, particularly RL-based methods for resource
allocation and task scheduling, of which a quick overview is as follows:

A simplified multi-agent RL is proposed for resource allocation in a grid-
like environment in [83]. The agents do not interact with each other. Each
agent scores the resources in terms of their efficiency. For executing a new
task, the agent selects the resource with the maximum score, upon execution, it
receives a reinforcement signal and updates the score of the selected resource.
A dynamic resource allocation framework using RL together with a fuzzy rule
base, which is called DRA-FRL, is proposed in [84]. It is intended to use
RL for learning utility functions in dynamic resource allocation decisions in
unknown stochastic dynamic environments with large state space.

A multi-agent learning and coordination algorithm for distributed dy-
namic resource allocation called Actor Critic Fuzzy Reinforcement Learning
(ACFRL-2) is proposed in [85]. It extends Q-learning to the domains with
large state-action space like dynamic resource allocation in grids or computer
networks. Ordinal Sharing Learning (OSL) [86] is also a multi-agent rein-
forcement learning method for balancing the load on the nodes in large scale
grids. In OSL, the agents make decisions based on shared utility tables.
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In [87], the performance of SARSA is basically studied compared to queu-
ing models on simple scenarios of resource allocation in autonomic systems.
Fair Action Learning (FAL) [88] is another multi-agent learning for online re-
source selection in a cluster-based network. FAL finds the allocation decision
policies based on a policy search technique, however it uses Q-values to ap-
proximate the policy gradients. In [89] a gradient ascent multi-agent learning
called weighted policy learner (WPL) is proposed for distributed task alloca-
tion in various application domains such as grids and web services. It mainly
consists of two learning problems as local resource allocation and task routing
(choosing a neighbor to forward a task) problems.

A resource allocation algorithm based on using RL together with neural
network is presented in [90]. The neural network component is intended to
represent a resource interconnection network which is used to estimate the
long-term reward. The weights of the network connections are produced based
on the availability of resources. Centralized Learning Distributed Scheduling
(CLDS) [91] is also a multi-agent learning approach for task scheduling in
grids. It consists of two types of agents as one global learner agent and sev-
eral scheduler agents. The scheduler agents shares their local rewards with the
learner agent. It updates a global utility table and shares it with the scheduler
agents. They use the updated utility table for resource allocation decision-
making.



Chapter 4

Discussion, Conclusion and
Future Work

In this chapter, we discuss our results and present a summary of conclusions,
as well as a list of potential directions for future research.

4.1 Discussion and Conclusion

According to the studies in the literature, we identified room for model-free
machine learning in particular model-free RL to help tackle the challenges of
the involved tasks in the performance assurance process, i.e., performance test-
ing, preservation and improvement. Modeling is a common powerful tool to
accomplish the intended objectives in this area, nonetheless drawing a precise
and well-detailed model which gives the status of the system given execution
conditions, requires a big endeavor. Moreover, other artifacts such as source
code and system models which are also used as underlying tools in many ex-
isting techniques, might not be accessible all the time. Then, we proposed
that if the optimal policy (way) for accomplishing the intended objective in the
performance assurance task could be learned by the arbiter system (i.e., tester,
controller, or broker) instead, then the intended task could be possible without
need to access source code or performance/system models. Moreover, once the
optimal policy is learned, the learned policy could be reused in further situa-

39
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tions similar to the first learning scenarios, for example, performance testing
of SUTs with similar performance sensitivity to resources, which can be seen
on software variants, or regression load testing scenarios of one SUT.

Therefore, the main features that lead to efficiency improvement in com-
parison to common approaches which are often based on ordinary search tech-
niques are the capability of knowledge formation (in terms of Q-values and pol-
icy) during the learning, storing the gained knowledge and reusing the knowl-
edge in further similar situations. Furthermore, the possibility of selective and
adaptive control on exploration and exploitation is another strength of the pro-
posed RL-based approaches. Regarding the involved tasks within performance
assurance, a summary of the achievements is concluded as follows:

Performance testing. The proposed self-adaptive RL-driven performance
testing framework learns the optimal policy to generate test cases which meet
intended testing objective without access to models or source code of SUT.
Once it learns, it is able to reuse the learned policy on further testing cases.
For example, SaFReL, as a self-adaptive fuzzy reinforcement learning testing
agent which generates performance platform-based test cases, learns how to
tune the resource availability to reach the intended performance breaking point
for different types of SUTs in terms of their sensitivity to resources. In other
words, it learns the optimal policy to generate platform-based performance test
cases resulting in reaching the intended performance breaking point for differ-
ent types of SUTs, i.e., CPU-intensive, memory-intensive and disk-intensive
software. Once learning the optimal policy, it replays the learned policy on
further cases.

In the experimental evaluation, we aimed to address two main questions on
how efficiently and adaptively SaFReL can perform on different software pro-
grams and how the efficiency of SaFReL is affected by learning parameters. We
simulated performance behavior of 50 software programs of CPU-intensive,
memory-intensive and disk-intensive types as SUTs running on hardware with
various configurations and response time requirements (See paper B, Section
6.7). The results of the experimental evaluation show that SaFReL meets the
intended objective more efficiently in comparison to a typical performance test-
ing technique which generates performance test cases based on changing the
performance test conditions, by certain steps in an exploratory way. It leads
to a reduced cost in terms of computation time by reusing the learned policy
upon the SUTs with similar performance sensitivity. It reuses the learned pol-
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icy whenever it is useful, meanwhile, keeps the learning running in the long
term to keep the learned policy updated. Table 4.1 shows the computation time
improvement resulted from SaFReL on a homogeneous and heterogeneous set
of SUTs (i.e., with respect to the type of performance sensitivity). A homo-
geneous set of SUTs refers to a set of software programs which are similar in
terms of sensitivity to resources.

RELOAD as an adaptive reinforcement learning-driven load testing agent,
effectively figures out the effects of different transactions involved in the work-
load and learns how to tune the load of transactions to meet intended testing
objective (e.g., reaching a certain error rate). It learns the optimal policy to
generate a workload which results in meeting the intended error rate. The in-
telligent tester agent can reuse the learned policy in subsequent similar testing
scenarios on SUT such as regression load testing and leads to cost reduction
for workload generation in further situations.

In the experimental evaluation, we tried to address two research ques-
tions on how efficient the generated test workload is and how the efficiency
of RELOAD is affected by changing learning parameters. We used an e-
commerce store running on a shared WordPress hosting server with one shared
CPU, up to 512MB shared RAM and 100GB storage, as the SUT in the ex-
periments (See paper C, Section 7.4). Table 4.2, which is extracted form the
results, shows that RELOAD generates a more efficient workload (i.e., in terms
of number of users) to meet the intended objective in comparison to a typical
load testing technique. A smaller workload results in lower cost and time in
the testing. A typical load testing procedure mainly involves applying a basic
workload and increasing the load of the involved transactions (equally) by a
certain increase step.

Performance preservation. The proposed RL-based response time control

Table 4.1: Computation time improvement in SaFReL

SaFReL on a homo-
geneous set of SUTs

SaFReL on a hetero-
geneous set of SUTs

Action Selection
Strategy: ε-greedy

ε = 0.2 adaptive ε

Improvement 42% 31%
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Table 4.2: Efficiency of RL-driven load testing (RELOAD)

RL-assisted with ε-greedy

Approach ε = 0.85 ε = 0.5 ε = 0.2
decaying
ε

Typical
load
testing

Average size
of generated
workload

52 50 80 46 135

approach for PLC-based programs in our problem learns how to adjust delays
between function blocks to keep the response time requirement satisfied. In
the experimental evaluation, we tried to show how effective it can perform to
preserve the response time regarding the occurrence of deviations in temporal
behavior of constituent function blocks. It adapts well to the varying temporal
behaviors of the function blocks while meeting the response time requirements
of the programs. For example, the learning-based approach with ε-greedy, de-
caying ε, leads to a desired adaptation, prevents any medium or high deviations
from the timing requirements, and keeps the response time requirement satis-
fied.

Performance improvement. The proposed learning-based resource alloca-
tion improves the performance in terms of makespan (completion time) in our
application context, i.e., deployed data grid. The RL-based broker agents in the
proposed approach learn how to decide about resource allocation in different
situations inside the clusters to optimize the makespan (completion time) of the
submitted task sets. The proposed approach with ε-greedy, ε = 0.2 leads to
a considerable performance improvement in the experimental evaluation. The
performance improvement also gets better with the increase in the size of task
sets because the learned policy will be resulted from more observations and
more accurate to be reused during the experiments.

Threats to Validity. A number of sources of threat to the validity of the
experimental evaluation results are as follows:

Internal. The first source of threats to the results of RL-driven approaches
is the formulation of the RL technique to address the problem. Modeling of the
state space, formulation of actions and the reward function are major players
to guide the agent throughout the learning and make it learn the optimal policy.
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Another source of threats is the effect of the random selection in the action
selection strategy. Reporting the average values of the measured metrics is one
way to alleviate this threat during the experiments.

Finally, RL techniques like many other machine learning algorithms, are
influenced by their hyperparameters such as learning rate and discount fac-
tor. During the experiments conducted for the efficiency analysis of our ap-
proaches, we did not change the learning parameters, we also conducted a set
of controlled experiments to study the impact of learning parameters on the
efficiency of our approaches.

External. The assumptions on the environments in our experimental evalu-
ation experiments such as considering SUTs with combinations of three types
of performance sensitivity (i.e., CPU-intensive, memory-intensive and disk-
intensive) are mainly some sources of threats to validity of the results. For
example, regarding the example above, if the environment contains SUTs with
other types of performance sensitivity such as network-intensive programs,
then the approach needs to be reformulated slightly to support new types of
performance sensitivities.

4.2 Future Work

In the rest of the research journey, we are going to mainly focus on machine
learning-assisted testing activities. This thesis identifies room for some re-
search directions as future work, which are outlined as follows:

In major cases in this thesis, the use of simulation-based evaluation is in-
tended to show the applicability of RL-assisted approaches to the performance
assurance fields and how the involved principles of the approaches (the ideas
and heuristics) work. Meanwhile, there are also some heuristics and cus-
tomized techniques for RL techniques to facilitate the use of them in realis-
tic scaled-up environments with more complexity. Therefore, using scaling up
techniques such as using different function approximations instead of Q-tables
to deal with the problems with large MDPs and improving the learning through
using some heuristics and techniques to speed up the exploration of state space
such as applying multi-agent learning techniques could be some future direc-
tions with respect to the learning technique.

Analyzing the results of the performance testing to find out the causes of
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anomalies in the performance behavior of the system, i.e., performance bottle-
necks, could be another opportunity for future work.

The reduction of dependency on system model and source code is one of
the strengths of applying model-free RL algorithms, particularly for accom-
plishing the testing objectives on complex systems. Machine learning-enabled
systems such as deep neural network-based systems, are examples of complex
systems for which drawing a model of their behavior is difficult. Thus there
will be interesting room for using RL-assisted testing techniques, in particu-
lar for finding adversarial test cases, which result in abnormal behavior after a
slight and minor perturbation. Regarding the incorporation of machine learn-
ing components into many safety-critical applications, testing of ML-enabled
systems with regard to safety requirements is of great importance. Therefore,
RL-assisted testing of ML systems, in particular DNNs, could be an interesting
future direction.
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Abstract

Satisfying performance requirements is of great importance for performance-
critical software systems. Performance analysis to provide an estimation of
performance indices and ascertain whether the requirements are met is essential
for achieving this target. Model-based analysis as a common approach might
provide useful information but inferring a precise performance model is chal-
lenging, especially for complex systems. Performance testing is considered as
a dynamic approach for doing performance analysis. In this work-in-progress
paper, we propose a self-adaptive learning-based test framework which learns
how to apply stress testing as one aspect of performance testing on various
software systems to find the performance breaking point. It learns the optimal
policy of generating stress test cases for different types of software systems,
then replays the learned policy to generate the test cases with less required ef-
fort. Our study indicates that the proposed learning-based framework could be
applied to different types of software systems and guides towards autonomous
performance testing.
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5.1 Introduction

Nowadays, on one hand we face the increasing number of software-based ser-
vices, on the other hand, the expectations on the quality of these services are
considerably rising. In general, the properties of a software system could be
described in terms of functional and non-functional aspects. Non-functional
properties describe the quality of functional aspects of the system and repre-
sent quality attributes like performance [1]. Requirements are the main means
against which the functional and non-functional aspects of a system are as-
sessed. The non-functional requirements are often described based on the soft-
ware metrics quantifying the non-functional properties of the system. Assess-
ing the satisfaction of non-functional requirements plays a crucial role in as-
suring the user’s expected quality and even the behavioral correctness in many
systems, particularly resource-constrained, and safety critical systems.

Performance is a non-functional property indicating the operational effi-
ciency of a software system with respect to different execution conditions like
various types of workload and allocation of available resources [2]. It is mea-
sured and quantified using multiple indices such as response time, throughput,
and resource utilization. Performance analysis could be done through both per-
formance modeling and performance testing. Performance modeling generally
involves identifying the proper performance indices, building a performance
model expressing the relevant indices. Consequently, different model-driven
engineering techniques like model verification, model refactoring, and perfor-
mance tuning could be performed based on the performance model.

Performance testing is intended to ascertain whether the software system
performs well under the actual execution conditions (i.e., internal and external
factors affecting the performance) and meets the performance requirements.
Various methods have been proposed for building software performance mod-
els [3, 4, 5, 6]. Performance models might provide helpful hints of the perfor-
mance of the system and even probable bottlenecks in the architecture; how-
ever, they cannot represent the whole details of the system. For example, many
of the details of the deployment environment may be ignored in the models [7],
although they might still have significant effects on the performance of the sys-
tem. Testing the software system under stress, which is called stress testing, is
one of directions involved in performance testing. The main objective is to find
the performance breaking point, at which the systems breaks, or performance
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requirements are not met anymore. Two general views as internal and external
could be assigned to performance analysis. Analysis with internal view con-
siders internal conditions causing a performance bottleneck and consequently
affecting the performance of the system. Performance testing with external
view is evaluating/examining how the system will perform under different ex-
ternal conditions like heavier workload and limited resource availability.

In this paper, we present a learning-based self-adaptive framework for pro-
viding autonomous performance testing. The proposed smart framework is
able to learn how to apply stress testing efficiently to different types of soft-
ware systems, including CPU-intensive, memory-intensive and disk-intensive
programs, to find the performance breaking point. It basically uses model-free
reinforcement learning (RL), i.e., Q-learning with multiple experience (knowl-
edge) bases to learn the policy for finding performance breaking point of dif-
ferent types of software under test (SUT) without having performance models.

The rest of this paper is organized as follows; Section 5.2 discusses the
background concepts of RL and the motivation for proposing learning-based
testing, Section 5.3 presents the details of the proposed smart performance
testing framework, with a short discussion on its applicability and operational
performance. Section 5.4 provides a review on the background relevant ap-
proaches. The paper concludes with a conclusion and future directions of this
work-in-progress research in Section 5.5.

5.2 Motivation and Background
Performance analysis is an essential step towards performance assurance to
keep the performance requirements satisfied. Performance testing and perfor-
mance modeling are dynamic and static approaches for realizing performance
analysis. Regarding complex systems, providing a precise model of the system
and execution environment is challenging. In the context of performance test-
ing, the complexity of SUTs and the dynamism of the performance affecting
factors in execution environments are the major barriers motivating application
of learning-based performance testing.

Reinforcement learning [8] has been frequently used as one of the key ap-
proaches for building self-adaptive smart systems. RL is a semi-supervised
learning involving interaction with the environment. In RL, an agent (the
learner) continuously detects the status (state) of the environment (the system
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under control). Then, it selects an action to be applied on the environment and
in return it receives a reinforcement signal (reward signal) showing the effec-
tiveness of the action. The final objective during the learning, is to find a policy
maximizing the total long-term received reward. The agent mainly uses a strat-
egy based on a combination of trying out actions (exploration) and selecting
highly valued actions (exploitation). Q-learning [8] is a well-known model-
free algorithm in the context of RL, in which the agent learns the utility value
of the long-term reward associated to pairs of states and actions. Q-learning
is off-policy, since the agent learns the optimal policy independently of the
selected strategy for the action selection step.

5.3 Self-Adaptive Learning-Based Performance
Testing

This section presents the architecture and operating procedure of a smart frame-
work providing autonomous performance testing. It focuses on stress testing as
one of the main target fields in the scope of performance testing. It supports au-
tomated performance test case generation for different software systems with-
out having performance models. The proposed framework as a smart agent
uses reinforcement learning as its core learning mechanism. It aims at learn-
ing how to find the performance breaking point of various software systems
depending on their performance sensitivity nature. The learning mechanism
includes initial convergence and transfer learning phases.

Initial convergence. An initial experience (knowledge) convergence is achieved
upon the first learning episodes in interaction with the first SUT instance of
each type. The smart agent stores the achieved experience under three experi-
ence (knowledge) bases, i.e., experience for CPU-intensive, memory-intensive
and disk-intensive SUTs. Therefore, the experience bases initially converge
upon interaction with the first CPU-intensive, memory-intensive and disk-intensive
SUT respectively.

Transfer learning. After the initial convergence of experience bases, the
smart agent keeps the learning running to update the knowledge bases upon
observing new SUTs. It is supposed that during the transfer learning, the smart
agent mostly relies on the achieved experience, while also partly explores the
environment to keep the gained knowledge updated. Using the learnt policy
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during the interaction with SUT instances, causes the agent to generate the
stress test cases/test conditions to find the performance breaking point with less
effort (in terms of learning trials) and leads to a better efficiency. Experience
exploitation is the key concept of this phase which results in more efficiency in
test case generation. The policies learnt for CPU-, memory- and disk-intensive
programs are quite different. Then, this is where separating the experience
bases of the agent is beneficial. Upon observing a CPU-, memory- or disk-
intensive SUT, the agent activates the corresponding experience base for taking
actions on the observed SUT instance. Figure 5.1 depicts an overview of the
architecture of our smart tester agent. The details including the components,
and main steps of the learning part is as follows:

I. State Detection. Detecting the current state of the system is one of the
main steps of an RL-based algorithm. In our smart framework, four measure-
ments of the SUT and execution environment including CPU, memory and disk
utilization, and also SUT response time are used to specify the state of the sys-
tem. The state detector component receives a tuple consisting of (CPU U ,
Mem U , Disk U , Rt) as input to specify the state of the system, where
CPU U , Mem U , Desk U , Rt present the CPU, memory, disk utilization
and response time respectively. These continuous parameters form the state
space of the system, then the next step is dividing the state space into multi-
ple discrete states. The values of these parameters are classified into multiple
classes to specify the discrete states of the system, as shown in Figure 5.2.

II. Apply Action. After state detection, the agent applies one possible ac-
tion to the system. Actions are operations which change (reduce) the available
resources including CPU cores, memory and disk, and also change the factors
affecting the performance like increasing the workload. In the first prototype
of our smart framework, actions include the operations modifying the available
resources by a decreasing factor:

DecFac CPU =
{

1
4 ,

2
4 ,

3
4 , 1
}

(5.1)

DecFac MemDisk =
{
d.memory(disk)4 | d ∈

{
1
4 ,

2
4 ,

3
4 , 1
}}

(5.2)

where memory (disk) represent the current amount of available memory (disk).
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Then, the set of actions have been specified as shown in Table 5.1.

III. Compute Reward. After applying each action, the agent computes a
reward signal showing the effectiveness of the applied action. The reward is
calculated using the following utility function:

U(n) = kUr(n) + (1− k)UE (5.3)

where Ur(n) indicates to what extent the response time of the system deviates
from the acceptable region, UE represents the efficiency of the resource usage,
and k, 0 ≤ k ≤ 1 is a weighting parameter to allow the agent to prioritize
different aspects of the stress conditions.

IV. Experience Adaptation. This component receives a performance sen-
sitivity indication expressing the type of sensitivity of SUT, i.e., being CPU-
, memory- or disk-intensive. Then, it selects the corresponding experience
(knowledge) base for the stress test case generation on the observed SUT.

Smart Tester Agent

SUT

���-U

�em-U

Disk_�

�t

Performance Requirement

Action Selection

State 

Stored Experience 
(CPU-Intensive)

Actuator

Reward Computation

Input Data

Experience
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Stored Experience
(M

em
ory-Intensive)

Stored Experience 
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Actions (modification of factors affecting performance,
 e.g., resource availability)

State Detection

Figure 5.1: Architecture of the smart framework

How the learning works. The concept of the achieved experience in RL is
defined in terms of policy. A policy is defined as a mapping between the states
and actions and specifies the action which should be taken in each state. A util-
ity value, Qπ(s, a), is assigned to taking action, a, in given state s, according
to the policy π. Qπ(s, a) as the expected long-term reward of the pair (s, a) is
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Figure 5.2: States of the system

Table 5.1: set of actions

Actions
Reducing the available CPU cores by a factor in DecFac CPU
Reducing the available memory by a factor in

DecFac MemDiskReducing the available disk
No action

defined as follows [8]:

Qπ(s, a) = Eπ[Rn|Sn = s,An = a] (5.4)

Rn =

∞∑
k=0

γkrn+k+1 (5.5)

Where Sn ,An and r(n+k+1) are current state, action and future rewards re-
spectively. γ ∈ [0, 1] is a discount factor specifying to what extent the agent
gives more weight to the future reward compared to the immediately achieved
reward. Q-values are stored in a look-up table (Q-table) and considered as the
experience of the agent. The Q-values are used for deciding between actions
when the agent relies on using its experience (exploitation). The Q-values are
also updated incrementally (via temporal differencing) during the learning us-
ing Eq. 5.6. The final objective of Q-learning is finding a policy maximizing
the expected long-term reward of pairs of states and actions.

Q(sn, an) = Q(sn, an) + α[rn+1 + γmax
a′

Q(sn+1, a
′)−Q(sn, an)] (5.6)
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Learning performance. Different methods like ε-greedy with various ε-
values and Softmax can be used for action selection. They provide different
trade-offs between exploration and exploitation of the state-action space which
could impact the efficiency of the learning e.g., in terms of convergence speed.
Setting different values for learning parameters such as discount factor γ, and
learning rate α could also affect the learning performance.

How the performance test is done. In our smart framework, the agent learns
how to provide efficiently stress conditions for different types of SUTs to find
the performance breaking point, from which the performance requirement of
the SUT is not met anymore. The agent stops applying actions upon reach-
ing the breaking point. Algorithm 4 presents the operating procedure of our
learning-based performance testing framework.

Applicability. Performance-critical programs are sensitive parts in many
software-intensive systems like industrial control systems. The proposed frame-
work provides a model-free autonomous performance testing which could be
easily applied to different types of software-intensive systems. Virtualized test
environments would be a perfect infrastructure for executing this approach.
Moreover, the proposed framework would be also integrated into the simula-
tion environments which could be highly useful for testing purposes on indus-
trial software systems.

5.4 Related Work

Model-based software performance engineering is mainly based on building
a performance model of the system. Some of the specific modeling notations
used for performance modeling are Queueing Networks, Markov Process, Petri
Nets, Process Algebras and also simulation models [3, 4, 5, 6]. Pushing to-
wards automation in generating the performance model is essential to elimi-
nate the manual model generation and bring the performance analysis to early
stages in the software life cycle. There has been a substantial literature pub-
lished in the area of software performance modeling [2, 9, 10]. In the context of
testing, although performance testing tightly overlaps with performance mod-
eling in some cases, it is intended to satisfy some partially different objectives.
Performance testing, load testing and stress testing are three terms which are
used in many cases interchangeably [11].
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Algorithm 4 Learning-based Performance Testing
Initialize Q-values, Q(s, a) = 0 ∀ s ∈ S,∀ a ∈ A

Observe and identify the type of the SUT instance.
if SUT is the first instance of CPU-intensive, memory-intensive or disk-
intensive instances {
repeat

1. Detect the state of the SUT
2. Select an action based on the action selection strategy
3. Apply the selected action, re-execute the SUT
4. Detect the new state of the system regarding the selected action.
5. Receive the reward signal, rn+1

6. Update the Q-value in the corresponding experience base (Q-table)

until the initial convergence /* Initial Convergence */;
} Else{
7. Select the proper experience (knowledge) base
repeat

8. Detect the state of the SUT
9. Select an action,
an = argmaxa∈AQ(sn, a) from the experience base with probability
(1- ε) or a random action with probability ε, ε ≤ 0.2)

10. Apply the selected action, re-execute the SUT
11. Detect the new state of the system
12. Receive the reward signal, rn+1

13. Update the Q-value
until finding performance breaking point /* Transfer learning */;
}

In general, load testing has been considered as behavior assessment of a
SUT under load expected in a real-world execution context, from two per-
spectives of functional problems and violation of non-functional requirements
caused under load. Stress testing has been defined as the behavioral assess-
ment of a SUT under extreme conditions including heavy load and limited
available resources [11]. Performance testing is often considered as a more
general term which often includes both load testing and stress testing. There
are many commonalities between these types of testing. Regarding common
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and different performance test scenarios, the behavioral assessment of a SUT
from the perspective of performance-related issues and aspects generally aim
at the following objectives:
I. Measurement of performance under load and/or different resource configu-
ration. This process might overlap with performance modeling in many cases.
It can be done under expected load or stress conditions [12, 13, 14, 15].
II. Detection of functional problems under load and/or different resource con-
figuration. It can be also done under expected load or stress conditions [16, 17].
III. Detection of performance requirements violation such as violating reliabil-
ity, and robustness requirements. This process can also be done under typical
expected load or stress conditions [18].

This work-in-progress paper proposes a learning-based framework for per-
formance testing, in particular stress testing.

5.5 Conclusion
Performance analysis to provide an estimation of performance indices in dif-
ferent execution conditions is a challenge for complex software systems. In ad-
dition to static model-driven techniques, performance testing is considered as a
dynamic approach for performance analysis. Efficient automated test case/test
condition generation is a challenging activity in software testing. In this paper,
we present a self-adaptive learning-based framework to conduct stress testing
on various software systems without having the performance models of the
systems. We used Q-learning as a model-free RL algorithm in our smart test
framework. It learns the optimal policy of generating stress test cases for vari-
ous software systems. After the initial learning convergence, it uses the learnt
policy for further SUT instances and generates test cases efficiently with less
required effort. Detailed efficacy analysis of the proposed framework on dif-
ferent software systems and deploying it on a virtualized infrastructure will be
our next steps in this research.
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Abstract

Test automation brings the potential to reduce costs and human effort, but sev-
eral aspects of software testing remain challenging to automate. One such ex-
ample is automated performance testing to find performance breaking points.
Current approaches to tackle automated generation of performance test cases
mainly involve using source code or system model analysis or use-case based
techniques. However, source code and system models might not always be
available at testing time. On the other hand, if the optimal performance testing
policy for the intended objective in a testing process instead could be learned by
the testing system, then test automation without advanced performance mod-
els could be possible. Furthermore, the learned policy could later be reused
for similar software systems under test, thus leading to higher test efficiency.
We propose SaFReL, a self-adaptive fuzzy reinforcement learning-based per-
formance testing framework. SaFReL learns the optimal policy to generate
performance test cases through an initial learning phase, then reuses it during
a transfer learning phase, while keeping the learning running and updating the
policy in the long term. Through multiple experiments on a simulated environ-
ment, we demonstrate that our approach generates the target performance test
cases for different programs more efficiently than a typical testing process, and
performs adaptively without access to source code and performance models.
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6.1 Introduction

Quality assurance with respect to both functional and non-functional quality
characteristics of software becomes crucial to success of software products.
For example, an extra one second delay in load time of a storefront page can
cause 11% reduction in page views, and 16% less customer satisfaction [1].
Moreover, banking, retailing and airline reservation systems as samples of
mission-critical systems are all required to be resilient against varying con-
ditions affecting their functional performance [2, 3, 4].

Performance which has been also called “efficiency” in the classification
schemes of quality characteristics [5, 6, 7], is generally referred to as how well
a software system (service) accomplishes the expected functionalities. Perfor-
mance requirements mainly describe time and resource bound constraints on
the behavior of software, which are often expressed in terms of performance
metrics such as response time, throughput, and resource utilization.

Performance evaluation. Performance modeling and testing are common
evaluation approaches to accomplish the associated objectives such as mea-
surement of performance metrics, detection of functional problems emerging
under certain performance conditions, and also violations of performance re-
quirements [8]. Performance modeling mainly involves building a model of
the software system’s behavior using modeling notations such as queueing net-
works, Markov processes, Petri nets and simulation models [9, 10, 11]. Al-
though models provide helpful insight of the performance behavior of the sys-
tem, there are also many details of implementation and execution environment
that might be ignored in the modeling [12]. Moreover, drawing a precise model
expressing the performance behavior of the software under different condi-
tions is often difficult. Performance testing as another family of techniques is
intended to achieve the aforementioned objectives through executing the soft-
ware under the actual conditions.

Verifying robustness of the system in terms of finding performance break-
ing point is one of the primary purposes of performance testing. A performance
breaking point refers to a status of software at which the system becomes un-
responsive or certain performance requirements get violated.

Research challenge. Performance testing to find performance breaking
points, remains a challenge for complex software and execution environments.
Testing approaches mainly raise issues of automated and efficient generation
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of test cases (test conditions) resulting in accomplishing the intended objective.
Common approaches for generating the performance test cases such as using
source code analysis [13], linear programs and evolutionary algorithms on per-
formance models [14, 15, 16] and UML models [17, 18, 19, 20, 21], using use
case-based [22, 23], and behavior-driven techniques [24, 25, 26, 27] mainly
rely on source code or other artifacts, which might not always be available
during the testing.

Regarding the aforementioned issues, we propose that machine learning
techniques could tackle them. One category of machine learning algorithms
is reinforcement learning (RL), which is mainly intended to train an agent
(learner) how to solve a problem in a system through being rewarded or pun-
ished in a trial and error interaction with the system. Model-free RL is a subset
of RL enabling the learner to explore the system behavior (the behavior of the
software under test (SUT) in this case) and learn the optimal policy, to accom-
plish the objective (generating performance test cases resulting in the perfor-
mance breaking point in this case) without access to source code and a model
of the system. The learner can store the learned policy and is able to replay the
learned policy in future situations, which can lead to efficiency improvement.

Goal of the paper. Our research goal is represented by the following ques-
tion:

How can we adaptively and efficiently generate the performance test cases
resulting in the performance breaking point for different software programs
without access to the underlying source code and performance models?

Finding performance breaking point is a key purpose in robustness analysis,
which is of great importance for many types of software systems, particularly
in mission- and safety-critical domains [28]. Moreover, the question above is
worth exploring also in applications specifically, such as resource management
(scaling, provisioning and scheduling) for cloud services [29], performance
prediction [30, 31], and performance analysis of software services in other
areas [32, 33].

Contribution. In this paper, we present the design and experimental eval-
uation of a self-adaptive fuzzy reinforcement learning-based (SaFReL) perfor-
mance testing framework focusing on efficiently and adaptively generating the
(platform-based) test conditions leading to the performance breaking point for
different software programs without access to source code and performance
models. It is a smart testing framework since it is able to learn how to gen-
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erate the intended test cases efficiently for software programs with different
performance sensitivity to resources (i.e., CPU-, memory-, and disk-intensive
programs) in order to find the performance breaking point. The learning mech-
anism is based on using Q-learning with fuzzy state modeling and an adaptive
action selection strategy. Fuzzy state modeling is applied to deal with the is-
sue of uncertainty in defining sharp boundaries in state modeling. The adap-
tive action selection strategy is intended to make the learning well-adapted to
conditions. SaFReL assumes two phases of learning, i.e., initial and transfer
learning. In the initial learning phase, it learns the optimal policy to generate
the target performance test cases initially upon observing the behavior of the
first SUT. Afterwards in the transfer learning, it reuses the learned policy for
the SUTs with a performance sensitivity analogous to already observed ones
while still keeping the learning running in the long term. We demonstrate that
SaFReL works adaptively and efficiently on different sets of SUTs which are
either homogeneous or heterogeneous in terms of their performance sensitivity.

Our experiments are based on simulating the performance behavior of 50
instances of 12 well-known programs as the SUTs. Those instances are char-
acterized with various initial amounts of granted resources and different values
of response time requirements. We use two evaluation criteria, i.e., efficiency
and adaptivity, to evaluate our approach. We demonstrate the efficiency of the
approach in generating the test cases which result in reaching the intended per-
formance breaking point and also the behavioral sensitivity of the approach
to the learning parameters. In particular, the self adaptive fuzzy RL-assisted
testing approach meets the intended objective, i.e., reaches the intended per-
formance breaking point, more efficiently compared to a typical stress testing
technique which mainly generates the performance test cases based on chang-
ing the conditions, e.g., decreasing the availability of resources, by certain steps
in an exploratory way. SaFReL leads to reduced cost (in terms of computation
time) for performance test case generation by reusing the learned policy upon
the SUTs with similar performance sensitivity. Moreover, it adapts its oper-
ational strategy to various SUTs with different performance sensitivity effec-
tively while preserving the efficiency. To summarize, our contributions in this
paper are:

• A smart performance testing framework (agent) that efficiently and adap-
tively generates the performance test cases leading to the intended per-
formance breaking points for different software programs without access
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to source code or system models. It uses fuzzy RL and an adaptive ac-
tion selection strategy for generation of test cases, and implements two
phases of learning:

– Initial learning during which the agent learns the optimal policy for
the first time,

– Transfer learning during which the agent replays the learned pol-
icy in similar cases while keeping the learning running in the long
term.

• A two-fold experimental evaluation, i.e., performance (efficiency and
adaptivity) and sensitivity analysis of the approach. The evaluation is
carried out based on simulating performance behavior of various SUTs.
We also implement a performance prediction module along with our
smart tester agent to conduct the experimentation.

Structure of the paper. The rest of the paper is organized as follows: Sec-
tion 6.2 discusses the background concepts and motivations for the proposed
self-adaptive learning-based approach. Section 6.3 presents an overview of
the architecture of the proposed testing framework, while the technical details
of the constituent parts are described in Sections 6.4 and 6.5. In Section 6.6,
we explain the functions of the learning phases. Section 6.7 reports on the
experimental evaluation involving the experiments setup, the details of the per-
formance prediction module, and the experimentation’s results. Section 6.8
discusses the results, the lessons learned during the experimentation and also
the threats to the validity of the results. Section 6.9 provides a review on the
related work, and finally Section 6.10 concludes the paper and discusses some
future directions.

6.2 Motivation and Background
Performance analysis, realized through modeling or testing, is important for
performance-critical software systems in various domains. Anomalies in per-
formance behavior of a software system or violations of performance require-
ments are generally consequences of the emergence of performance bottle-
necks at the system or platform levels [34, 35]. A performance bottleneck
is a system or resource component limiting the performance of the system and
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hinders the system from acting as required [36]. The behavior of a bottleneck
component is due to some limitations associated with the component such as
saturation and contention which make the component act as a bottleneck. A
system or resource component saturation happens upon full utilization of its
capacity or when the utilization exceeds a usage threshold [36]. Capacity ex-
presses the maximum available processing power, service (giving) rate or stor-
age size. Contention occurs when multiple processes contend for accessing
a limited number of shared components including resource components like
CPU cycles, memory and disk or software (application) components.

There are various application-, platform- and workload-based causes for
emergence of performance bottlenecks [34]. Application-based causes repre-
sent issues such as defects in the source code or system architecture faults.
Platform-based causes characterize the issues related to hardware resources,
operating system and execution environment. High deviations from the ex-
pected workload intensity and similar issues such as workload burstiness are
denoted by workload-based causes.

On the other hand, detecting violations of performance requirements and
finding performance breaking points are challenging, particularly for complex
software systems. To address these challenges, we need to find how to provide
critical execution conditions which make the performance bottlenecks emerge.
The focus of performance testing in our case, is to assess the robustness of the
system and find the performance breaking point.

The effects of internal causes (i.e., application/architecture-based ones)
could vary due to continuous changes and updates of the software, i.e., Con-
tinuous Integration/Continuous Delivery (CI/CD), and even vary for different
platforms (execution environments) and under different workload conditions.
Therefore, the complexity of SUT and a variety of affecting factors make it
hard to build a precise performance model expressing the effects of all types
of factors at play. This is a major barrier motivating the use of model-free
learning-based approaches like model-free RL in which the optimal policy
for accomplishing the objective could be learned indirectly through interac-
tion with the environment (SUT). In our problem statement, we consider SUTs
(with all involved affecting factors) as the varying environment, and the test-
ing system learns the optimal policy to achieve the target, which is finding an
intended performance breaking point, without access to a model of the envi-
ronment. The testing system explores the behavior of the environment through
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varying the platform-based (and workload-based in future work) test condi-
tions, stores the learned policy and is able to later reuse the learned policy
in similar situations, i.e., other SUTs with similar performance sensitivity to
resource restriction. This is the interesting feature of the proposed learning ap-
proach which is supposed to lead to productivity benefits in terms of reduction
of the testing system’s effort, i.e., saving computation time.

Regarding the aforementioned challenges and strong points of the model-
free learning-based approach, we hypothesize that in a CI/CD process based
on agile software development, performance engineers and testers can save
time and resources by using SaFReL for performance (stress) testing of various
releases or variants. SaFReL provides an agile efficient performance test case
generation technique (See Section 6.7 and Section 6.8 for efficiency evaluation)
while eliminating the need for source code or system model analysis.

6.2.1 Reinforcement Learning

The model-free learning-based performance testing proposed in this paper is
an interactive testing framework which involves an initial learning phase, and
a subsequent transfer learning phase during which the learned policy can be
reused for further SUTs with similar performance sensitivity. SaFReL is able
to detect where it should use the previously learned policy and where it should
change the strategy, update its policy and adapt to new situations, which means
being self-adaptive to SUTs.

Reinforcement learning (RL) [37] is an interactive semi-supervised learn-
ing which has been frequently applied to building self-adaptive smart systems.
It involves continuous interaction between the agent (learner) and the environ-
ment or the system which is controlled. The system/environment in our case is
the SUT. The agent continuously senses the state of the system (at each time
step). The state is modeled in terms of response time and resource utilization.
Then, it takes an action, which is modifying the available resources capacity.
After taking the action, it receives a reinforcement signal as a scalar reward
which shows the effectiveness of the applied action to guide the agent towards
the objective which is finding the intended performance breaking point. Figure
6.1 shows the interaction between the agent and the system which is the SUT
in our case. The agent in an RL problem tries to find a policy which maximizes
the total cumulative reward over the time. It uses an action selection strategy
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based on a combination of trying out the available actions, i.e., exploration,
and relying on the previously achieved experience to select the highly-valued
actions, i.e., exploitation. For applying an RL-based approach to a problem, it
is generally supposed that the environment is non-deterministic and also sta-
tionary upon transitions between the states of the system.

Software
Under
Test

(system)

Tester 
Agent

action an

reward rn

state snsn+1

rn+1

Figure 6.1: Interaction between agent and SUT in RL

Q-learning [37] is a well-known family of model-free RL algorithms in
which a utility value of the long-term cumulative reward associated to the pairs
of states and actions (state-actions) is learned. It is off-policy which means
that the agent learns the optimal policy regardless of how the agent explores
the environment. After learning the optimal policy, in the transfer learning
phase, the agent replays the learned policy while keeping the learning running,
i.e., occasionally exploring the action space and trying out different actions.

6.3 Architecture

This section provides an overview of the architecture of the proposed smart
performance testing framework, SaFReL (see Figure 6.2). The entire interac-
tion of the smart framework with each SUT, as a learning episode, consists of
a number of learning trials. The steps of learning in each trial and the compo-
nents involved in each step are described as follows:

1. Fuzzy State Detection. The fuzzification, fuzzy inference, and rule base
components in Figure 6.2 are involved in state detection. The agent uses the



82 Paper B

values of four quality metrics, i.e., 1) response time, and utilization improve-
ments of 2) CPU, 3) memory, and 4) disk, to identify the state of the system,
i.e., the SUT. In other words, the state expresses the status of the system rel-
ative to the target, i.e., the intended performance breaking point. In our case,
these quality metrics are used to model (represent) the state space of the sys-
tem. An ordinary approach for state modeling in RL problems is dividing the
state space of the system into multiple mutually exclusive discrete sets. Each
set represents a discrete state. At each time, the system must be at one distinct
state. The relevant challenges of such crisp categorization, i.e., defining dis-
crete states, include knowing how much a value is suitable to be a threshold
for categories of a metric, and how we can treat the boundary values between
categories. Instead of crisp discrete states, using fuzzy logic and defining fuzzy
states can help address these challenges. We use fuzzy classification as a soft
labeling technique for presenting the values of the metrics used for modeling
the state of the system. Then, using a fuzzy inference engine and fuzzy rule
base, the agent detects the fuzzy state of the system. More details about the
fuzzy state detection of the agent are presented in Section 6.4.

2. Action Selection and Strategy Adaptation. After detecting the fuzzy state
of the SUT, the agent takes an action. The actions are operations modifying
the factors affecting the performance, i.e., the available resource capacity, in
the current prototype. The agent selects the action according to an action se-
lection strategy which it follows. The action selection strategy determines to
what extent the agent should explore, i.e., to try out the available actions, and
to what extent it should rely on the learned policy and select the action ac-
cordingly, i.e., to select a high-value action which has been tried and assessed
before. The role of this strategy is guiding the action selection of the agent
throughout the learning and is of importance for efficiency of the learning. In
order to obtain desired efficiency, a proper trade-off between the exploration
of the state action space and exploitation of the previously learned policy is
critical. In our proposed framework, the smart agent is augmented by a strat-
egy adaptation characteristic, as a meta-learning feature, which is responsible
for dynamically adapting the degree of exploration and exploitation in various
situations. This feature makes SaFReL able to detect where it should rely on
the previously learned policy and where it should make a change in the strategy
to update its policy and adapt to new situations. New situations mean acting
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on new SUTs which are different from the previously observed ones in terms
of performance sensitivity to resources. Software programs have different lev-
els of sensitivity to resources. SUTs with different performance sensitivity
to resources, e.g., CPU-intensive, memory-intensive or disk-intensive SUTs,
will react to changes in resource availability differently. Therefore, when the
agent observes a SUT which is different from the previously observed ones
in terms of performance sensitivity, the strategy adaptation tries to guide the
agent towards doing more exploration than exploitation. An indication of the
resource sensitivity of SUT, i.e., being CPU-intensive, memory-intensive or
disk-intensive, is an input to the strategy adaptation mechanism (see Figure
6.2). The components corresponding to action selection, stored experience
which indicates the learned policy, and strategy adaptation are shown as yel-
low components in Figure 6.2. More details about the set of actions and the
mechanism of strategy adaptation are described in Section 6.5.

3. Reward Computation. After taking the selected action, the agent receives
a reward signal which indicates the effectiveness of the applied action to ap-
proach the target, i.e., finding the performance breaking point. The red block
in Figure 6.2, i.e., reward computation component, calculates the reward (rein-
forcement) signal (see Section 6.5) for the applied actions.

Smart Tester Agent

Software
Under
Test

CPU Utilization Improvement

Memory Utilization Improvement

Disk Utilization Improvement

Response Time

Performance Requirement

Fuzzification  Fuzzy
Inference

Rule Base

(Sn, μn )

Actuator
Actions 

Reward Computation

Input Data

Performance Sensitivity (CPU, Mem, Disk)

Stored
Experience

Action
Selection

Strategy 
Adaptation

Figure 6.2: SaFReL architecture
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6.4 Fuzzy State Detection

The state space of the system in our learning problem is modeled by quality
measurements, i.e., CPU, memory and disk resource utilization improvement
and response time of the SUT, as shown in Figure 6.3. Due to the uncertainty in
defining sharp boundaries for the categories defined over the values of quality
measurements, and to address this issue and preserve the desired precision of
the model, fuzzy classification is applied to specify the categories. Therefore,
the aggregate states of the system are fuzzy states which are inferred according
to a fuzzy inference engine and a rule base [38, 39] (Figure 6.2). The system
can be in one or more fuzzy states at the same time with different degrees of
certainty. The details about the fuzzification of quality measurements, fuzzy
inference to identify the state of the system, and the required steps and op-
erations including fuzzy rules, fuzzy operators, and implication method, are
described in Section 6.4.1.

6.4.1 Fuzzy State Space Modeling

As described in the previous section, a set of quality measurements, i.e., CPU,
memory and disk utilization improvements and response time of the SUT,
represent the state of the system. The values of these measurements are not
bounded, then for simplifying the inference and also the exploration of the
state space, we normalize the values of these parameters to the interval [0, 1]
using the following functions:

RTn =
2

π
tan−1(

RT ′n
RT q

) (6.1)

CUIn =
1

CUI ′n
MUIn =

1

MUI ′n
DUIn =

1

DUI ′n
(6.2)

where RT ′n, CUI ′n, MUI ′n, and DUI ′n are the measured values of the re-
sponse time, CPU, memory and disk utilization improvements at time step n
respectively and RT q is the response time requirement. CUI ′n as the CPU
utilization improvement is the ratio between the CPU utilization at time step
n and its initial value (at the start of learning), that is, CUI ′n = CUn

CUi . Like-
wise, those are, MUI ′n = MUn

MUi and DUI ′n = DUn

DUi . Using the normalization
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function in Eq. 6.1, when RT ′n = RT q the normalized value of the response
time, RTn is 0.5, and for RT ′n > RT q the normalized values will be toward
1 and for RT ′n < RT q the normalized values will be toward 0. A tuple as
(CUIn,MUIn, DUIn, RTn) consisting of the normalized values of quality
measurements is the input to the fuzzy state detection.

Fuzzification. Input fuzzification involves defining fuzzy sets and corre-
sponding membership functions over the values of the quality measurements.
A membership function is characterized by a linguistic term. A fuzzy set L is
defined as L = {(x, µL(x))| 0 < x, x ∈ R} where a membership function
µL(x) defines membership degrees of the values as µL : x → [0, 1]. Figure
6.3 shows the membership functions defined over the value domains of quality
measurements. As shown in Figure 6.3, trapezoidal membership functions are
used for High and Low fuzzy sets and a triangular counterpart for the Normal
fuzzy set on the response time. In Figure 6.3, where RT q is the requirement,
a normal (medium) fuzzy set over the values of response time implies a small
range around the requirement value as normal response time values. Moreover,
in this case the ranges of membership functions were selected empirically and
could be updated based on the requirements.

D
U
I 

CUI

MU
I  

Low

High

Hi
gh

Lo
w

Low

H
igh

RT

HighLow
Normal

RTq

Figure 6.3: Fuzzy representation of quality measurements

Fuzzy Rules. After fuzzification of inputs, fuzzy rules based on domain
knowledge, facilitate making inference at the next step, i.e., inferring the pos-
sible states that the system assumes. The fuzzy rules, as shown in Eq. 6.3, con-
sist of two parts, i.e., antecedent and consequent. The former is a combination
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of linguistic terms of the input parameters (normalized quality measurements)
and the consequent is a fuzzy set with a membership function showing to what
extent the system is in the associated state.

Rule 1: If CUI is High AND MUI is High AND DUI is Low AND

RT is Normal, then State is HHLN.
(6.3)

Fuzzy Operators. When the antecedents of the rules are made of mul-
tiple linguistic terms, which are associated to fuzzy sets, e.g., ”High, High,
Low and Normal”, then fuzzy operators are applied to the antecedent to ob-
tain one number showing the support or activation degree of the rule. Two
well-known methods for the fuzzy AND operator are minimum(min) and
product(prod). In our case, we use method min for the fuzzy AND opera-
tion. It shows that given a set of input parameters A, the degree of support for
rule Ri is given as τRi = min

j
µL(aj) where aj is an input parameter in A and

L is its associated fuzzy set in the rule Ri.
Implication Method. After obtaining the membership degree for the an-

tecedent, the membership function of the consequent is reshaped using an im-
plication method. There are also two well-known methods for implication pro-
cess including minimum(min) and product(prod) which truncate and scale
the membership function of the output fuzzy set respectively. The member-
ship degree of the antecedent is given as input to the implication method. We
use method min as implication method in our case. Based on the number
of fuzzy sets specified over the values of the quality measurements and the
possible combinations of them, which are associated to values of quality mea-
surements, we define 24 rules in our rule base to define fuzzy states of the
system (SUT). Then, the most effective rule, i.e., with the maximum support
degree, is selected to determine the final fuzzy state of the system (Sn, µn).
Figure 6.4 shows a representation of the fuzzy states of the system. Each of
them represents one state for the system based on the fuzzy values (linguistic
terms) assigned to quality measurements (CPU, memory and disk utilization
improvement, and response time). Regarding the presentation of fuzzy states,
L, H and N stand for Low, High and Normal terms respectively.
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Figure 6.4: Fuzzy states of the system (SUT)

6.5 Adaptive Action Selection and Reward Com-
putation

Actions. In SaFReL, the actions are the operations changing the platform-
based factors affecting the performance, i.e., the available resources such as
computation (CPU), memory and disk capacity. In the current prototype, the
set of actions contains operations reducing the available resource capacity with
finely tuned steps which are as follows:

ACn ={no action} ∪ {(CPUn − y) | y ∈ CDF}
∪ {(Memn − k) | k ∈MDFn}
∪ {(Diskn − k) | k ∈MDFn}

(6.4)

CDF = {1
4
,
2

4
,
3

4
, 1} (6.5)

MDFn = {(x× Mem(Disk)n
4

) | x ∈ {1
4
,
2

4
,
3

4
, 1}} (6.6)
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where ACn, CPUn, Memn and Diskn represent the set of actions, the cur-
rent available computation (CPU), memory and disk capacity at time step n
respectively. The list of actions is as shown in Table 6.1.
Strategy Adaptation. The agent can use different strategies for selecting the

actions. ε-greedy with different ε-values and Softmax are well-known meth-
ods for action selection in RL algorithms. They are intended to provide a right
trade-off between exploration of the state action space and exploitation of the
learned policy. In SaFReL, we use ε-greedy as the action selection strategy
and the proposed strategy adaptation feature acts as a simple meta-learning
algorithm which is intended to make changes to the ε value dynamically to
make the action selection strategy well-adapted to new situations (new SUTs).
Upon observing a SUT instance with a performance sensitivity different from
the already observed ones, it adjusts the value of the parameter ε to direct the
agent toward more exploration. On the other hand, upon interaction with SUT
instances that are similar to the previous ones, the parameter ε is adjusted to
increase exploitation. SaFReL detects the similarity between SUT instances
by calculating cosine similarity between the performance sensitivity vectors of
SUT instances, as shown in Eq. 6.7.

similarity(k, k − 1) =
SV k SV k−1

‖SV k‖‖SV k−1‖

=

∑3
i=1 SV

k
i SV

k−1
i√∑3

i=1 (SV
k
i )

2
√∑3

i=1 (SV
k−1
i )

2

(6.7)

where SV k represents the sensitivity vector of the kth SUT instance and SV ki
represents the ith element of vector SV k. The sensitivity vector contains the
values of the resource sensitivity indicators of the SUT instance.

Table 6.1: Actions in SaFReL

Actions
Operation Decrease
Reducing memory / disk capacity by a factor in MDFn
Reducing computation (CPU) capacity by a factor in CDF
No action -
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Reward Signal. The agent receives a reward signal indicating the effec-
tiveness of the applied action in each learning step to guide the agent toward
reaching the objective, which is finding the intended performance breaking
point. We derive a utility function as a weighted linear combination of two
functions indicating the response time deviation and resource usage, which is
as follows:

Un = βUrn + (1− β)UEn (6.8)

where Urn represents the deviation of response time from the response time
requirement, UEn indicates the resource usage, and β, 0 ≤ β ≤ 1 is a parameter
intended to prioritize different aspects of stress conditions, i.e., response time
deviation or limited resource availability. Urn is defined as follows:

Urn =

{
0, RTn ≤ RT q
(RTn−RT q)
(RT b−RT q)

, RTn > RT q
(6.9)

where RT q is the response time requirement and RT b is the threshold
defining the performance breaking point, i.e., the performance breaking point
is reached when this threshold is exceeded. UEn represents the resource uti-
lization in the reward signal, and is a weighted combination of the resource
utilization values. It is defined using the following equation:

UEn = SenCCUI ′n + SenMMUI ′n + SenDDUI ′n (6.10)

where CUI ′n, MUI ′n, and DUI ′n represent CPU, memory and disk utilization
improvements respectively, and SenC , SenM and SenD are the performance
sensitivity indicators of the SUT, and assume values in the range [0, 1].

6.6 Performance Testing using Self-Adaptive Fuzzy
Reinforcement Learning

In this section, we describe details of the procedure of SaFReL to generate the
performance test cases resulting in reaching the performance breaking points
for various types of SUTs. The tester agent learns how to generate the tar-
get test cases for different types of software without access to source code or
system models. The procedure of SaFReL, which includes initial and transfer
learning phases, is as follows:
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The agent measures the quality parameters and identifies the state- mem-
bership degree pair (Sn, µn) through the fuzzy state detection, where Sn is the
fuzzy state of the system and µn indicates the membership degree, i.e., to what
extent the system has assumed that state. Then, according to the action selec-
tion strategy, the agent selects one action, an ∈ An based on the previously
learned policy or through exploring the state action space. The agent takes the
selected action and re-executes the SUT. In the next step, after the re-execution
of the SUT, the agent detects the new state of the SUT, (Sn+1, µn+1) and re-
ceives a reward signal, rn+1 ∈ R, indicating effectiveness of the applied action.
After detecting the new state and receiving the reward, it updates the stored ex-
perience (learned policy). The whole procedure is repeated until meeting the
stopping criterion, which is reaching the performance breaking point, (RT b).
The experience of the agent is defined in terms of the policy which the agent
learns. A policy is a mapping between each state and action and specifies the
probability of taking action a in a given state s. The purpose of the agent in
the learning is to find a policy which maximizes the expected long-term reward
achieved over the further learning trials, which is formulated as follows [37]:

Rn = rn+1 + γrn+2 + ...+ γkrn+k+1 =

∞∑
k=0

γkrn+k+1 (6.11)

where γ is a discount factor specifying to what extent the agent prioritize
future rewards compared to the immediate one. We use Q-learning as a model-
free RL algorithm in our framework. In Q-Learning, a utility value Qπ(s, a) is
assigned to each pair of state and action, which is defined as follows [37]:

Qπ(s, a) = Eπ[Rn|sn = s, an = a] (6.12)

The q-values, Qπ(s, a), form the experience base of the agent, on which
the agent relies for the action selection. The q-values are updated incremen-
tally during the learning. According to using fuzzy state modeling, we include
the membership degree of the detected state of the system, µsn, in the typical
updating equation of q-values to take into account the impact of the uncertainty
associated with the fuzzy state, which is as follows:

Q(sn, an) = µsn[(1− α)Q(sn, an) + α(rn+1 + γmax
a′

Q(sn+1, a
′))] (6.13)

where α, 0 ≤ α ≤ 1 is the learning rate which adjusts to what extent the new
utility values affect (overwrite) the previous q-values. Finally, the agent finds
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the optimal policy which suggests the action maximizing the utility value for a
given state s:

a(s) = argmax
a′

Q(s, a′) (6.14)

The agent selects the action based on Eq. 6.14 when it is supposed to exploit
the learned policy. SaFReL implements two learning phases, i.e., initial and
transfer learning.

Initial learning. Initial learning occurs during the interaction with the first
SUT instance. The initial convergence of the policy takes place upon the initial
learning. The agent stores the learned policy (in terms of a Q-table, i.e., a table
containing q-values). It repeats the learning episode multiple times on the first
SUT instance to achieve the initial convergence of the policy.

Transfer learning. SaFReL goes through the transfer learning phase, after
the initial convergence. During this phase, the agent uses the learned policy
upon observing SUT instances with similar performance sensitivity to the pre-
viously observed ones, while keeping the learning running, i.e., updating the
policy upon detecting new SUT instances with different performance sensitiv-
ity. Strategy adaptation is used in the transfer learning phase and makes the
agent adapt to various SUT instances. Algorithms 5 and 6 present the proce-
dure of SaFReL in both initial learning and transfer learning phases.

6.7 Evaluation

In this section, we present the experimental evaluation of the proposed self-
adaptive fuzzy RL-based performance testing framework, SaFReL. We assess
the performance of SaFReL, in terms of efficiency in generating the perfor-
mance test cases resulting in the intended performance breaking points and
adaptivity to various types of SUT programs, i.e., how well it can adapt its
functionality to new cases while preserving its efficiency. We also evaluate the
sensitivity of SaFReL to the learning parameters. The goal of the experimental
evaluation is to answer the following research questions:

• RQ1. How efficiently can SaFReL generate the test cases leading to the
performance breaking points for different software programs compared
to a typical testing procedure?
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Algorithm 5 SaFReL: Self-adaptive Fuzzy Reinforcement Learning-based
Performance Testing
Required: S,A, α, γ;
Initialize q-values, Q(s, a) = 0 ∀s ∈ S, ∀a ∈ A and ε = υ , 0 < υ < 1;
Observe the first SUT instance;
repeat

Fuzzy Q-Learning (with initial action selection strategy, e.g., ε-greedy, ini-
tialized ε)

until initial convergence;
Store the learned policy;
Start the transfer learning phase;
while true do

Observe a new SUT instance;
Measure the similarity;
Apply strategy adaptation, i.e., adjust the degree of exploration and
exploitation (e.g., tuning parameter ε in ε-greedy);
Fuzzy Q-Learning with adapted strategy (e.g., new value of ε);

end

• RQ2. How adaptively can SaFReL act on various software programs
with different performance sensitivity?

• RQ3. How is the efficiency of SaFReL affected by changing the learning
parameters?

The following sub-sections describe the proposed setup for conducting the ex-
periments, the evaluation metrics, and the analysis scenarios designed for an-
swering the above research questions.

6.7.1 Experiments Setup

In this study, we implement the proposed smart testing framework (agent)
along with a performance simulation module which simulates the performance
behavior of SUT programs under different execution conditions. The simula-
tion module receives the resource sensitivity values and based on the amounts
of resources demanded initially and the amounts of them which are granted
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Algorithm 6 Fuzzy Q-Learning

repeat
1. Detect the fuzzy state-degree pair (Sn, µn) of the SUT;
2. Select an action using the action selection strategy (e.g., ε-greedy: select
an = argmaxa∈AQ(sn, a) with probability (1-ε) or a random ak, ak ∈ A
with probability ε);
3. Take the selected action, re-execute the SUT;
4. Detect the new fuzzy state-degree (Sn+1, µn+1) of the system;
5. Receive the reward signal, Rn+1;
6. Update the q-value of the pair of previous state and applied action
Q(sn, an) = µsn[(1− α)Q(sn, an) + α(rn+1 + γmax

a′
Q(sn+1, a

′))]

until meeting the stopping criteria (reaching performance breaking point);

after taking each action, estimates the program throughput using the following
equation proposed by Taheri et al in [40]:

Thrj =

CPUg
j

CPUi
j
SenCj +

Memg
j

Memi
j
SenMj +

Diskgj
Diskij

SenDj

SenCj + SenMj + SenDj
× ThrNj (6.15)

where CPU ij , Memi
j and Diskij the amounts of CPU, memory and disk re-

sources demanded by program j at the initial state and CPUgj , Memg
j and

Diskgj are the amounts of resources granted to program j after taking an ac-
tion, which modifies the resource availability. SenCj , SenMj and SenDj rep-
resent the CPU, memory and disk sensitivity values of program j, and ThrNj
represents the nominal throughput of program j in an isolated, contention free
environment. The response time of the program is calculated as RTj = 1

Thrj
in the simulation module. Figure 6.5 presents the implementation structure
including SaFReL along with the implemented performance simulation mod-
ule. In our implementation, the performance simulation module simulates the
performance behavior of the SUT program and the testing agent interacts with
the simulation module to capture the quality measures which are used for state
detection.

Table 6.2 shows the list of programs and the corresponding resource sen-
sitivity values used in the experimentation, the table data obtained from [40].
The collection listed in Table 6.2 includes various CPU-intensive, memory-
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Figure 6.5: Implementation structure

intensive and disk-intensive types of programs and also the programs with
combined types of resource sensitivity. The SUTs are instances of the pro-
grams listed in Table 6.2 and are characterized with various initial amounts of
resources and also different values of response time requirements. Two anal-
ysis scenarios are designed to answer the evaluation research questions. The
first one focuses on efficiency and adaptivity evaluation of the framework on
various SUTs. In the second analysis scenario, the sensitivity of the approach
to changes of the learning parameters are studied. The efficiency and adaptivity
are measured (evaluated) according to following specification:

• Efficiency is measured in terms of number of learning trials required by
the tester agent to achieve the target, i.e., reaching the intended perfor-
mance breaking point. Number of learning trials is an indicator of the
required computation time to generate the proper test case leading to the
performance breaking point.

• Adaptivity is evaluated in terms of number of additional learning trials,
i.e., computation time, which are required to re-adapt the learned policy
to new observations for achieving the target.
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Table 6.2: Programs and the corresponding sensitivity values used for experimental
evaluation [40]

Programs Resource Sensitivity Values
(SenC , SenM and SenD)

Build-apache (0.96, 0.04, 0.00)
n-queens (0.97, 0.00, 0.00)
John-the-ripper (0.96, 0.00, 0.00)
Apache (0.97, 0.03, 0.00)
Dcraw (0.48, 0.04, 0.00)
X264 (0.41, 0.02, 0.00)
Unpack-linux (0.18, 0.09, 0.35)
Build-php (0.97, 0.07, 0.00)
Blogbench (0.11, 0.81, 0.18)
Bork (0.00, 0.53, 0.20)
Compress-gzip (0.00, 0.00, 0.47)
Aio-stress (0.00, 0.30, 0.80)

6.7.2 Experiments and Results

Efficiency and Adaptivity Analysis

To answer RQ1 and RQ2, the performance of SaFReL is evaluated based on its
efficiency in generating the performance test cases leading to the performance
breaking points of different SUTs and its adaptation capability to new SUTs
with performance sensitivity different from previously observed ones. There-
fore, we examine the efficiency of SaFReL (in the transfer learning phase) com-
pared to a typical common testing process for this target, which involves gen-
erating the performance test cases based on step-based changing of the avail-
ability of resources in an exploratory way, which is called typical stress testing
hereafter. We select two sets of SUT instances: i) one including SUTs similar
in the aspect of performance sensitivity to resources, i.e., similar wrt. the pri-
marily demanded resource, (homogenous SUTs); and ii) the other set contains
SUT instances different in performance sensitivity (heterogeneous SUTs). The
SUT instances assume different initial amounts of CPU, memory and disk re-
sources, and response time requirements. The amounts of resources, i.e., CPU,
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memory and disk capacity, were initialized with different values in the range
[1, 10] cores, [1, 50] GB, [100, 1000] GB respectively. The response time re-
quirements range from 500 to 3000 ms. The intended performance breaking
point for the SUT instances is defined as the point in which the response time
exceeds 1.5 times the response time requirement.

In the efficiency analysis, we set the learning parameters, i.e., learning rate
and discount factor to 0.1 and 0.5, respectively. We study the impacts of dif-
ferent variants of ε-greedy algorithm as the action selection strategy on the
efficiency and adaptivity of the approach during the analysis. We investigate
three variants of ε-greedy, i.e., ε = 0.2, ε = 0.5, and decaying ε, and also the
proposed adaptive ε selection method.

Learning setup. First, we need to set up the initial learning. For choosing a
proper a configuration for the action selection strategy in the initial learning, we
evaluate the performance of different variants of ε-greedy algorithm, in terms
of the number of required learning trials for initial convergence (Figure 6.6).
For the initial convergence, we run the initial learning on the first SUT 100
times, i.e., 100 learning episodes. Table 6.3 presents a quick summarized view
of the results, i.e., the average required learning trials regarding using different
variants of ε-greedy. As shown in Figure 6.6 and Table 6.3, using ε-greedy with
ε = 0.2 results in the fastest initial convergence, i.e., lowest average required
trials.

After the initial convergence which occurs once, SaFReL is ready to act on
various SUTs and is expected to be able to reuse the learned policy to meet
the intended performance breaking points on further SUT instances, while still
keeping the learning running. In fact, the optimal policy learned in the initial

Table 6.3: Initial convergence of SaFReL in the initial learning regarding using different
variants of action selection strategy

SaFReL - Initial Learning
Action Selection Strategy:
ε-greedy

ε = 0.85 ε = 0.5 ε = 0.2
decaying
ε

Average number of learn-
ing trials (initial conver-
gence)

22 22 11 16
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Figure 6.6: Initial convergence of SaFReL in 100 learning episodes during the initial
learning

learning is not influenced by the used action selection strategy, since Q-learning
is an off-policy algorithm [37], i.e., the learner finds the optimal policy inde-
pendently of how the actions have been selected (action selection strategy).
For the sake of efficiency, we choose the one that resulted in the fastest conver-
gence.

In the following sections, first we investigate the efficiency of SaFReL com-
pared to a typical stress testing procedure, when acting on homogeneous and
heterogeneous sets of SUT instances, then its capability to adapt to new SUTs
with different performance sensitivity while keeping its efficiency.

I. Homogeneous set of SUTs. We select CPU-intensive programs and make
a homogeneous set of SUT instances during our analysis in this step. We
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simulate the performance behavior of 50 instances of the CPU-intensive pro-
grams, i.e., Build-apache, n-queens, John-the-ripper, Apache, Dcraw, Build-
php, X264, and vary both the initial amounts of resources granted and the
response time requirements. Figure 6.7 shows the efficiency of SaFReL on
a homogeneous set of CPU-intensive SUTs compared to a typical stress test-
ing procedure regarding using ε-greedy with different values of ε. Table 6.4
presents the average number of trials/steps for generating the target perfor-
mance test case in the proposed approach and the typical testing procedure. As
shown in Figure 6.7, it keeps the number of required trials for ≈ 94% of the
SUTs below the average number of required steps in the typical stress testing.
Table 6.5 shows the resulting improvement in the average number of required
trials/steps for meeting the target, i.e., reduction in the required computation
time, compared to the typical stress testing process.

In the transfer learning, the agent reuses the learned policy based on the
allowed degree of policy reusing according to its action selection strategy in
the transfer learning. As shown in Table 6.4, it implies that in the transfer
learning the agent does fewer trials (based on the degree of allowed policy
reusing) to meet the target on new cases, which leads to a higher efficiency.
According to Table 6.5, on a homogeneous set of SUTs, more policy reusing
leads to higher efficiency (more computation time improvement).

Table 6.4: Average number of trials/steps for generating the target performance test case
on the homogeneous set of SUTs

SaFReL with ε-greedy

Approach ε = 0.5 decaying ε ε = 0.2

Typical
stress
testing

Average number of
trials/steps

10 10 7 12

II. Heterogeneous set of SUTs. In this part of the analysis, to complete the
answer to RQ1 and and also answer RQ2, we examine the efficiency and adap-
tivity of SaFReL during the transfer learning on a heterogeneous set of SUTs
which includes various CPU-intensive, memory-intensive and disk-intensive
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Figure 6.7: Efficiency of SaFReL on a homogeneous set of SUTs in the transfer learning

ones. We simulate the performance behavior of 50 SUT instances from the
list of the programs in Table 6.2. We evaluate the efficiency of SaFReL on
the heterogeneous set of SUTs compared to the typical stress testing procedure
regarding using ε-greedy with ε = 0.2, 0.5, and decaying ε (Figure 6.8). As
shown in Figure 6.8 the transfer learning algorithm with a typical configuration
of the action selection strategy, such as ε = 0.2, 0.5 and decaying ε, which im-
poses a certain degree of policy reusing based on the value of ε does not work
well. It does not outperform the typical stress testing, but also slightly degrades
in some cases of ε. When the smart agent acts on a heterogeneous set of SUTs,
blind replaying of the learned policy (i.e., just based on the value of ε) is not
effective, and the tester agent needs to know where it should do policy reusing
and where it requires more exploration to update the policy.

As described in Section 6.5, to solve this issue, i.e., to improve the perfor-
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Table 6.5: Computation time improvement on the homogeneous set of SUTs

SaFReL
Action Selection Strategy: ε-greedy ε = 0.5 decaying ε ε = 0.2

Improvement in the number of trials 16% 16% 42%

mance of SaFReL when it acts on a heterogeneous set of SUTs, it is augmented
with a simple meta-learning feature enabling it to detect the heterogeneity of
the SUT instances and adjust the value of parameter ε, adaptively. In general,
it implies that when the smart tester agent observes a SUT instance which is
different from the previously observed ones wrt the performance sensitivity, it
changes the action selection strategy to doing more exploration and upon de-
tecting a SUT instance with the same performance sensitivity as the previous
ones, it makes the action selection strategy strive for more exploitation. As il-
lustrated in Section 6.5, the strategy adaptation module which fulfills this func-
tion, measures the similarity between SUTs at two levels of observations, then
based on the measured values, adjusts the value of parameter ε. The thresh-
old values of similarity measures and the adjustments for parameter ε in the
experimental analysis are described in Algorithm 7.

Algorithm 7 Adaptive ε selection

if similarityk,k−1 ≥ 0.8 then
if similarityk,k−2 ≥ 0.8 then
ε← 0.2

else
ε← 0.5

end if
else if similarityk,k−1 < 0.8 then
ε← 0.5

end if

Figure 6.9 shows the efficiency of SaFReL regarding the use of similarity
detection and the adaptive ε-greedy action selection strategy on a heteroge-
neous set of SUTs. Regarding the use of adaptive ε selection, SaFReL makes a
considerable improvement and is able to keep the number of required trials for
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Figure 6.8: Efficiency of SaFReL on a heterogeneous set of SUTs regarding the use of
typical configurations of ε-greedy

reaching the target on approximately≈ 82% of SUTs below the corresponding
average value in the typical stress testing. Meanwhile, the average number of
learning trials is totally lower than the typical stress testing procedure. Table
6.6 presents the average number of trials/steps for generating the target perfor-
mance test case in SaFReL and the typical stress testing when they act on a
heterogeneous set of SUTs. Table 6.7 shows the corresponding resulting im-
provement in the computation time respectively.

To answer RQ2, we investigate the adaptivity of SaFReL on the heteroge-
neous set of SUTs regarding the use of different variants of action selection
strategy including adaptive ε selection (Figure 6.10). As shown in Figure 6.10,
the number of required learning trials versus detected similarity is used to de-
pict how adaptive SaFReL can act on a heterogeneous set of SUTs regarding
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Table 6.6: Average number of trials/steps for generating the target performance test case
on the heterogeneous set of SUTs

SaFReL with ε-greedy

Approach ε = 0.5
decaying
ε

ε = 0.2
adaptive
ε

Typical
stress
testing

Average number
of trials/steps

18 17 18 11 16

Table 6.7: Computation time improvement on the heterogeneous set of SUTs

SaFReL
Action Selection Strat-
egy: ε-greedy

ε = 0.5 decaying ε ε = 0.2
adaptive
ε

Improvement in the
number of trials

No No No 31%

the use of different configurations of ε. It shows that SaFReL with adaptive ε is
able to adapt to changing situations, e.g., a mixed heterogeneous set of SUTs.
In other words, on around≈ 75% of SUTs which are completely different from
the previous ones (i.e., with similarityk,k−1 < 0.8) it still keeps the number
of required trials to meet the target below the average value of the typical stress
testing. It implies that it can act adaptively, i.e., reusing the policy wherever it
is useful and doing more exploration wherever it is required.

Sensitivity Analysis

To answer RQ3, we study the impacts of the learning parameters including
learning rate (α) and discount factor (γ), on the efficiency of SaFReL on both
homogeneous and heterogeneous sets of SUTs. For conducting sensitivity
analysis, we implement two sets of experiments that involve changing one
learning parameter while keeping the other one constant. For the experiments
running on a homogeneous set of SUTs, we use ε-greedy with ε = 0.2 as the
well-suited variant of action selection strategy with respect to the results of ef-
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Figure 6.9: Efficiency of SaFReL on a heterogeneous set of SUTs regarding the use of
adaptive ε-greedy action selection strategy

ficiency analysis (See Figure 6.7) and on the heterogeneous set of SUTs, we
use adaptive ε selection (See Figure 6.9). During the sensitivity analysis ex-
periments, to study the impact of the learning rate changes, we set the discount
factor to 0.5. While examining the impact of the discount factor changes, we
keep the learning rate fixed to 0.1. Figure 6.11 shows the sensitivity of SaFReL
to changing learning rate and discount factor parameters when it acts on a ho-
mogeneous set of SUTs (CPU-intensive). Figure 6.12 depicts the results of the
sensitivity analysis of SaFReL on a heterogeneous set of SUTs.

6.8 Discussion

Efficiency and Adaptivity Analysis. Using multiple experiments, we studied
the efficiency of SaFReL compared to a typical stress testing procedure, on
both a set of homogeneous and heterogeneous SUTs regarding the use of dif-
ferent action selection strategies.

The results of the experiments running on a set of 50 CPU-intensive SUT
instances as a homogeneous set of SUTs, Figure 6.7 and Tables 6.4 and 6.5,
show that using ε-greedy, ε = 0.2 as action selection strategy in the transfer
learning leads to desired efficiency and an improvement in the computation
time compared to the typical stress testing. It causes SaFReL to rely more on
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Figure 6.10: Adaptivity of SaFReL on a heterogeneous set of SUTs regarding the use
of different variants of action selection strategy

reusing the learned policy and results in computation time saving. The existing
similarity between the performance sensitivity of SUTs in a homogeneous set
of SUTs makes the strategy of policy reusing successful in this type of testing
situations.

Furthermore, we studied the efficiency of SaFReL on a heterogeneous set
of 50 SUTs containing different CPU-intensive, memory-intensive and disk-
intensive ones. The results of the analysis illustrate that choosing an action
selection strategy without considering the heterogeneity among the SUTs does
not lead to desirable efficiency. The typical variants of ε-greedy action selec-
tion strategy, do not work successfully compared to the typical stress testing.
As shown in Figure 6.8 and Table 6.6 and 6.7, using a fixed strategy with-
out considering the heterogeneity between SUTs could not perform efficiently.
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Figure 6.11: Sensitivity of SaFReL to learning rate and discount factor on the homoge-
neous set of SUTs

Then, we augmented our fuzzy RL-based approach with an adaptive action se-
lection strategy which is a heterogeneity-aware strategy for adjusting the value
of ε. It measures the similarity between the performance sensitivity of the
SUTs and adjusts the ε parameter. As shown in Figure 6.9, using the adaptive
ε-greedy, addressed the issue and led to an efficient generation of the target per-
formance test case and a computation time improvement. It makes the agent
able to reuse the learned policy according to the conditions, which means that
it uses the learned policy wherever it is useful and does more exploration wher-
ever it is required.

At the last part of the efficiency and adaptivity analysis, we extended our
analysis by measuring the adaptivity of SaFReL when it performs on a hetero-
geneous set of SUTs. As shown in Figure 6.10, with the use of the adaptive
ε-greedy, SaFReL is able to adapt to changing testing situations while preserv-
ing the efficiency.

Sensitivity Analysis. The results of the sensitivity analysis experiments on
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Figure 6.12: Sensitivity of SaFReL to learning rate and discount factor on the heteroge-
neous set of SUTs

the homogeneous set of SUTs show that adjusting the learning rate to lower
values such as 0.1 leads to better efficiency. Furthermore, regarding the sen-
sitivity analysis of SaFReL to the discount factor on a homogeneous set of
SUTs, the experimental results depict that lower values of the discount factor
are suitable choices for the desired operation that we expect. However, the re-
sults of the sensitivity analysis on the heterogeneous set of SUTs do not show
a considerable effects on the average efficiency of SaFReL when it acts on a
heterogeneous set of SUTs regarding the use of adaptive ε-greedy.

Lessons Learned. The experimental evaluation of SaFReL depicts how
machine learning can guide performance testing towards being automated and
one step further, i.e., being autonomous. Common approaches for generat-
ing performance test cases mostly rely on source code or system models, but
such development artifacts might not always be available. Moreover, draw-
ing a precise model of a complex system which predicts the state of the sys-
tem upon given performance-related conditions requires a solid endeavor. This
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makes room for machine learning, particularly model-free learning techniques.
Model-free RL is a machine learning technique enabling the learner to explore
the environment (the behavior of the SUT in this case) and learn the optimal
policy to accomplish the objective (finding the intended performance breaking
point in this case) without having a model of the system. The learner stores
the learned policy and is able to replay the learned policy in further suitable
situations. This important characteristic of RL leads to a reduction in the effort
of the learner to accomplish the objective in further cases and consequently
leads to improved efficiency. Therefore, the main features that lead SaFRel to
outperform an exploratory (search-based) technique are the capability of stor-
ing knowledge during the exploration and reusing the knowledge in suitable
situations, and the possibility of selective and adaptive control on exploration
and exploitation.

In general, automation, reduction of computation time and cost, and less
dependency on source code and models are profound strengths of the pro-
posed RL-assisted performance testing. Regarding applicability, according to
the aforementioned strengths and the results of the experimental evaluation,
the proposed approach could be beneficial to performance testing of software
variants in software product lines, evolving software in continuous Integra-
tion/Delivery process and regression performance testing process.

Changes in Future Trends. With the emergence of serverless architecture,
which incorporates third-party backend services (BaaS) and/or runs the server-
side logic in state-less containers which are fully-managed by providers (FaaS),
a slight shift in the objectives of performance evaluation, particularly perfor-
mance testing on cloud-native applications is expected. Within the serverless
architecture, the backend code is run without the need to manage and provision
the resources on servers. For example in FaaS, scaling, including the resource
provisioning and allocation, is automatically done by the provider whenever it
is needed, to preserve the response time requirement of the application. In gen-
eral, regarding the capabilities of new execution platforms and deployment ar-
chitectures, the objectives of performance testing might be slightly influenced.
Nevertheless, it is still crucial for a wide range of software systems.

Threats to Validity. Some of the main sources of threat to the validity of
our experimental evaluation results are as follows:

Internal. There are a number of threats to internal validity of the results.
The first source of threats is the formulation of the RL technique to address
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the problem, which is very important for successful learning. Modeling the
state space, actions and also the reward function are major players to guide
the agent throughout the learning and make it learn the optimal policy. For
example, boundaries defined in discrete states modeling are a threat to internal
validity. To mitigate this threat, we used fuzzy labeling technique to deal with
the issue of uncertainty in defining sharp values for boundaries. Regarding the
actions, the formulation of actions affects the granularity of the exploration
steps, thus we tried to define actions in a way to provide reasonable granularity
for the exploration steps.

Another threat is the effect of the random selection in the action selection
strategy. To alleviate this threat, we reported the average values of metrics
during our experiments.

Finally, RL techniques like many other machine learning algorithms, are
influenced by their hyperparameters such as learning rate and discount factor.
During our efficiency and adaptivity analysis experiments, we did not change
the learning parameters, we also conducted a set of controlled experiments to
study the influence of learning parameters on the efficiency of our approach.

External. Model-free RL learns the optimal policy to achieve the target
through interaction with the environment. Our approach was formulated based
on an environment containing SUTs with three types of performance sensitiv-
ity, i.e., CPU-intensive, memory-intensive and disk-intensive, and our results
are derived from the experimental evaluation of our approach on this envi-
ronment. If the environment contains SUTs with other types of performance
sensitivity such as network-intensive programs, then the approach needs to be
reformulated slightly to support new types of performance sensitivities.

6.9 Related Work
Measurement of performance metrics under typical or stress test execution
conditions, which involve both workload and platform configuration aspects
[41, 42, 43, 44, 45], detection of performance-related issues such as functional
problems or violations of performance requirements which emerge under cer-
tain workload or resource configuration conditions [46, 47, 48, 24] are common
objectives of different types of performance testing.

Different approaches have been proposed to design the target performance
test cases for accomplishing performance-related objectives such as finding in-
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tended performance breaking points. Performance test conditions involve both
workload and resource configuration status. A general high-level categoriza-
tion of main techniques for generating the performance test cases is as follows:

Source code analysis. Deriving workload-based performance test condi-
tions using data-flow analysis and symbolic execution are examples of tech-
niques for designing fault-inducing performance test cases based on source
code analysis to detect performance-related issues such as functional problems
(like memory leaks) and performance requirement violations [49, 47].

System model analysis. Modeling the system behavior in terms of perfor-
mance models like Petri nets and using constraint solving techniques [14], us-
ing the control flow graph of the system and applying search-based techniques
[15, 16], and using other types of system models like UML models and using
genetic algorithms [17, 18, 19, 20, 21] to generate the performance test cases
are examples of the techniques based on system model analysis for generating
performance test cases.

Behavior-driven declarative techniques. Using a Domain Specific Lan-
guage (DSL) to provide declarative goal-oriented specifications of performance
tests and model-driven execution frameworks for automated execution of the
tests [25, 26, 27], and using a high-level behavior-driven language inspired
from Behavior-Driven Development (BDD) techniques to define test condi-
tions [24] in combination with a declarative performance testing framework
like BenchFlow [26] are examples of behavior-driven techniques for perfor-
mance testing.

Modeling the realistic conditions. Modeling the real user behavior through
stochastic form-oriented models [22, 23], extracting workload characteristics
from the recorded requests and modeling the user behavior using, e.g., ex-
tended finite state machine (EFSM) [50] or Markov chains [51], sandboxing
services and deriving a regression model of the deployment environment based
on the data resulting from sandboxing to estimate the service capacity [45],
end-user clustering based on the business-level attributes extracted from usage
data [52] are examples of techniques based on modeling the realistic conditions
to generate the performance test cases.

Machine learning-enabled techniques. Machine learning techniques such
as supervised and unsupervised algorithms mainly work based on building
models and extracting patterns (knowledge) from the data. While, some other
techniques such as RL algorithms are intended to train the learner agent to
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solve the problems (tasks). The agent learns an optimal way to achieve an ob-
jective through interacting with the system. Machine learning has been widely
used for analysis of data resulting from the performance testing and also for
performance preservation. For example, anomaly detection through analysis
of performance data, e.g., resource usage, using clustering techniques [53],
predicting reliability from the testing data using Bayesian Networks [54], per-
formance signature identification based on performance data analysis using
supervised and unsupervised learning techniques [55, 56], and also adaptive
RL-driven performance control for cloud services [57, 58, 59] and software
on other execution platforms [60]. Machine learning has been also applied to
the generation of performance test cases in some studies. For example, using
symbolic execution in combination with an RL algorithm to find the worst-case
execution path within a SUT [61], using RL to find a sequence of input work-
load leading to performance degradation [62], and a feedback-driven learning
to identify the performance bottlenecks through extracting rules from execution
traces [63]. There are also some adaptive techniques, which are slightly analo-
gous to the concept of RL, for generating performance test cases. For example,
an adaptive workload generation which adapts the workload dynamically based
on some pre-defined adjustment policies [48], and a feedback-driven approach
which uses search algorithms to benchmark an NFS server based on varying
workload parameters to find the workload peak rate which satisfies the target
response time confidence level.

6.10 Conclusion
Performance testing is a family of techniques commonly used as part of perfor-
mance analysis, e.g., estimating performance metrics or detecting performance
violations. One important goal of performance testing, particularly in mission-
critical domains, is to verify the robustness of the SUT in terms of finding
performance breaking point. Model-driven techniques might be used for this
purpose in some cases, but drawing a precise model of the performance be-
havior of a complex software system under different application-, platform-
and workload-based affecting factors is difficult. Furthermore, such modeling
might disregard important implementation and deployment details. In software
testing, source code analysis, system model analysis, use-case based design
and behavior-driven techniques are some common approaches for generating
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performance test cases. However, source code or other artifacts might not be
available during the testing.

In this paper, we proposed a fuzzy reinforcement learning-based perfor-
mance testing framework (SaFReL) that adaptively and efficiently generates
the target performance test cases resulting in the intended performance break-
ing points for different software programs, without access to source code and
system models. We used Q-learning augmented by fuzzy state modeling and
an action selection strategy adaptation which resulted in a self-adaptive au-
tonomous tester agent. The agent can learn the optimal policy to achieve the
target (reaching the intended performance breaking point), reuse its learned
policy when deployed to test similar software, and adapt its strategy when tar-
geting software with different characteristics.

We evaluated the efficiency and adaptivity of SaFReL through a set of
experiments based on simulating performance behavior of various SUT pro-
grams. During the experimental evaluation, we tried to answer how efficiently
and adaptively SaFReL can perform testing of different SUT programs com-
pared to a typical stress testing approach. We also performed a sensitivity
analysis to explore how the efficiency of SaFReL is affected by changing the
learning parameters.

We believe that the main strengths of using the intelligent automation of-
fered by SaFReL are 1) efficient generation of test cases and reduction of com-
putation time, and 2) less dependency on source code and models. Regarding
applicability, we believe that SaFReL could be beneficial to the testing of soft-
ware variants, evolving software during the (CI/CD) process and regression
performance testing. Applying some heuristics and techniques to speed up the
exploration of the state space like using multiple cooperating agents, and also
extending the proposed approach to support workload-based performance test
cases are further steps to continue this research.
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and Cesare Pautasso. Behavior-driven load testing using contex-
tual knowledge-approach and experiences. In Proceedings of the
2019 ACM/SPEC International Conference on Performance Engineering,
pages 265–272. ACM, 2019.

[25] Vincenzo Ferme and Cesare Pautasso. A declarative approach for perfor-
mance tests execution in continuous software development environments.



116 Bibliography

In Proceedings of the 2018 ACM/SPEC International Conference on Per-
formance Engineering, pages 261–272. ACM, 2018.

[26] Vincenzo Ferme and Cesare Pautasso. Towards holistic continuous soft-
ware performance assessment. In Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering Companion,
pages 159–164. ACM, 2017.

[27] Jürgen Walter, Andre van Hoorn, Heiko Koziolek, Dusan Okanovic,
and Samuel Kounev. Asking what?, automating the how?: The vi-
sion of declarative performance engineering. In Proceedings of the 7th
ACM/SPEC on International Conference on Performance Engineering,
pages 91–94. ACM, 2016.

[28] Kim Fowler. Mission-critical and safety-critical systems handbook: De-
sign and development for embedded applications. Newnes, 2009.

[29] Brendan Jennings and Rolf Stadler. Resource management in clouds:
Survey and research challenges. Journal of Network and Systems Man-
agement, 23(3):567–619, 2015.

[30] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin
Recht, and Ion Stoica. Ernest: efficient performance prediction for large-
scale advanced analytics. In 13th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 16), pages 363–378, 2016.

[31] Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, Alexander
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Abstract

Load testing with the aim of generating an effective workload to identify per-
formance issues is a time-consuming and complex challenge, particularly for
evolving software systems. Current automated approaches mainly rely on an-
alyzing system models and source code, or modeling of the real system usage.
However, that information might not be available all the time or obtaining it
might require considerable effort. On the other hand, if the optimal policy for
generating the proper test workload resulting in meeting the objectives of the
testing can be learned by the testing system, testing would be possible without
access to system models or source code. We propose a self-adaptive reinforce-
ment learning-driven load testing agent that learns the optimal policy for test
workload generation. The agent can reuse the learned policy in subsequent
testing activities such as meeting different testing targets. It generates an effi-
cient test workload resulting in meeting the objective of the testing adaptively
without access to system models or source code. Our experimental evalua-
tion shows that the proposed self-adaptive intelligent load testing can reach the
testing objective with lower cost in terms of the workload size, i.e., the number
of generated users, compared to a typical load testing process, and results in
productivity benefits in terms of higher efficiency.
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7.1 Introduction

Performance is an important quality characteristic, which plays a key role in the
success of software products, particularly in mission-critical domains where
quality assurance of both functional and non-functional aspects of the behavior
is of great importance. For example, enterprise applications (EAs) [1] with
Internet-based user interfaces such as e-commerce websites are examples of
systems whose success are subject to the performance assurance. EAs are often
the core part of the corporate business organizations and their performance is a
prerequisite for acceptable execution of business functions [2].

Performance, which is also called efficiency in some classifications of qual-
ity attributes [3, 4, 5], generally describes how well the system accomplishes its
functionality. It presents time and resource bound aspects of a system’s behav-
ior which are often indicated by some common performance metrics (indica-
tors) such as throughput, response time, and resource utilization. Performance
assurance could be accomplished through conducting various analyses with
different objectives, at different stages of the software development process.
Performance analysis is conducted to meet the primary objectives, I) evaluat-
ing (measuring) performance metrics, II) detection of the functional problems
emerging under specific execution conditions such as heavy workload, and
III) detection of the violations of non-functional requirements [6]. The per-
formance analysis is often performed under both typical and stress (extreme)
execution conditions. The execution condition features different aspects of the
execution environment like the resource availability and the workload under
which the system operates.

Performance requirements violations often occur due to the emergence of
performance bottlenecks [7, 8]. A performance bottleneck is generally defined
as a system or resource component which limits the performance and hinders
the system from performing as required [9]. Various application-, platform-
and workload-based causes can lead to the emergence of performance bottle-
necks [7].

Performance modeling and testing are the common approaches for con-
ducting performance analysis. Modeling techniques using modeling notations
such as queueing networks, Markov processes, and Petri nets, lead to a model
of the system’s behavior which is generally used to measure the performance
metrics [10, 11, 12]. Performance testing as another family of techniques is
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supposed to meet the objectives of performance analysis by executing the soft-
ware under various realistic conditions.

Although models provide helpful insight of the performance of a system,
there are still many details of the implementation and the execution environ-
ment that might be ignored in the modeling [13]. Moreover, drawing a precise
model expressing the performance behavior under different and varying condi-
tions is often impossible. Common testing approaches such as the techniques
using source code analysis [14], system model, e.g., performance and UML
model, analysis [15, 16, 17, 18, 19, 20] and also use case-based [21, 22] and
behavior-driven [23, 24, 25, 26] performance testing approaches mostly rely
on source code or system models. Nonetheless, those artifacts might not be
available.

In this paper, we propose a self-adaptive model-free reinforcement learn-
ing load testing approach, which generates an efficient test workload result-
ing in the target performance breaking point without access to system model
or source code. Performance breaking point refers to an execution condition
under which the system becomes unresponsive or certain performance-related
requirements are violated. In this study, the objective of testing is to meet a
certain error rate threshold in received responses from a software under test
(SUT). This work is a complementary system to our previously developed ma-
chine learning-assisted performance testing framework [27] called SaFReL.
SaFReL [27] is a smart stress testing framework generating platform-based
stress test conditions resulting in the target performance breaking points for
different software programs without access to source code or system model; in
the current paper, we address the generation of workload-based test conditions
resulting in target performance breaking points.

We present the architecture and operational procedure of an intelligent re-
inforcement learning (RL)-assisted load testing agent which is able to learn
the optimal policy to generate an efficient workload resulting in meeting an in-
tended error rate threshold. Specifically, it uses Q-learning as the core learning
algorithm with an adaptive action selection strategy to improve the learning
performance. The proposed intelligent agent uses a load generator/runner tool
like Apache JMeter to execute the workload on the SUT. We present a two-
fold experimental evaluation, i.e., efficiency and sensitivity analysis, of the
proposed approach on an e-commerce store as SUT. We demonstrate the effi-
ciency of the proposed approach in generating the test workload which results
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in the target error rate threshold and also the behavioral sensitivity of the ap-
proach to the learning parameters which influence the learning mechanism. In
particular, the adaptive RL-assisted approach generates a more accurate and
smaller workload (in terms of number of users) to meet the intended objec-
tive in comparison to a typical load testing technique which mainly involves
applying a basic workload containing all the business transactions of the SUT,
and increasing the load of the involved transactions (equally) upon a number of
increase steps. In summary, generating an efficient test workload resulting in
meeting the testing objective while reducing the dependency on system models
and source code is the main achievement of using model-free RL to drive load
testing in our proposed approach.

The rest of this paper is organized as follows: Section 7.2 discusses the
motivation for applying model-free reinforcement learning to the problem and
the primary concepts of RL. Section 7.3 presents the architecture and tech-
nical details of the proposed RL-assisted load testing approach. Section 7.4
presents the evaluation experiments and discusses the results. Section 7.5 gives
an overview of the related work. The conclusion and future research directions
are presented in Section 7.6.

7.2 Motivation and Background
Performance testing involves assessing the performance behavior of software/ap-
plication under test (SUT) under stress or typical execution conditions. A typ-
ical load testing procedure involves running load generator tools (e.g., Apache
Jmeter [28]) for a certain period of time and increasing the workload gradu-
ally or in some discrete steps. A typical workload is often configured as a set
of concurrent (virtual) users doing some operations on the SUT which mimics
the behavior of real users of the system. Any anomalies in the performance be-
havior of the system could be mainly a consequence of emerging bottlenecks
at the level of platform or application [7, 8]. As mentioned, a bottleneck can be
a system or resource component which makes the system fail or not perform as
required [9]. It can happen due to the full utilization of the component capacity,
exceeding a usage threshold or occurrence of contention [9].

Possible defects in source code or architecture and the issues related to
platform resources and execution environment are often the root causes of
emergence of bottlenecks. The application-based causes might vary during
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the continuous integration/delivery (CI/CD) process and the platform-based
ones might vary during the execution and also act differently under different
workload conditions. Therefore, drawing a model which expresses the effects
of all involved causes, is not easily possible. This issue is a motivation that
makes room for model-free machine learning techniques such as model-free
reinforcement learning (RL) [29] in which an intelligent agent can learn the
optimal policy of achieving the intended objective without access to the model
of the environment or the system which is under test. It is able to act to achieve
the intended objective in an adaptive way to varying conditions. Furthermore,
the learned policy can be reused in further stages of the testing. Based on
these capabilities of model-free RL, in this paper, we aim at generating the
workload-based test conditions resulting in reaching a target error rate thresh-
old in responses of SUT without access to source code or system models.

7.2.1 Reinforcement Learning

Reinforcement learning is a learning technique that is mainly based on the
interaction between the agent and the system (environment) of the problem. It
has been widely used to build self-adaptive intelligent systems.

RL generally expresses how an agent learns the right behavior towards
meeting the intended objective through being rewarded or punished in a trial
and error interaction with the environment. At each step of the interaction, the
agent observes the state of the system which is SUT in our case. It takes one
possible action. The system undergoes changes upon receiving actions. The
agent receives a reward signal showing how good the action was to accomplish
the objective which was intended. The overall goal of the agent during the
learning is modeled in terms of maximizing the cumulative long-term reward.
In a model-free RL, the agent generally learns a policy to achieve this goal, i.e.,
maximizing the cumulative reward. It uses an action selection strategy to inter-
act with and apply actions to the system. The action selection is often based on
trying the available actions, i.e., exploration of the action space, or relying on
the previously learned policy which leads to selecting highly-valued actions,
i.e., exploitation of the action.

Q-learning [29] as a family of off-policy model-free RL algorithms focuses
on learning a utility value of the pairs of states and actions. It is off-policy,
which means that the learning takes place regardless of how the agent has cho-
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sen the actions. The agent learns the optimal policy to achieve the target by
learning the utility values and finding the optimal utility function. The learned
policy is replayed by the agent while the agent generally keeps the learning
running. It means that in addition to using experienced high-value actions,
the agent sometimes explores the action space and tries out available different
actions to keep the learned policy updated.

7.3 Reinforcement Learning-Assisted Load Test-
ing

In this section, we present an overview of the architecture of our proposed RL-
driven load testing solution and describe the technical details of the learning
procedure. In summary, the proposed self-adaptive intelligent load testing fea-
tures as follows:
How it addresses the problem. The proposed approach presents an adaptive
smart load tester to accomplish the objectives of load testing, under different
and varying execution conditions (e.g., different platform configurations) with-
out access to system model or source code.
How it works. The proposed load tester learns the optimal policy to generate
an efficient workload, in terms of a combination of workload sensitive and in-
sensitive transactions, to reach the intended error rate threshold. The learned
policy can be reused in further situations (stages) of testing, e.g., reaching dif-
ferent objective values of performance testing metrics, while the agent keeps
the learning running in the long term.
How it learns. We use Q-learning, a model-free reinforcement learning algo-
rithm [29], as our core learning technique. Fig. 7.1 shows the architecture of
the proposed intelligent load testing solution. The main steps of each learning
cycle of the RL-assisted load tester agent are detecting state, taking actions and
computing reward (See Section ??). We have formulated these steps of the RL
algorithm as follows:

State Detection. Average response time and error rate, as two common
performance metrics in load testing, are used to model the state of SUT. The
agent measures these metrics at each learning trial and identifies the state of
SUT. The values of these metrics are classified into some categories and labeled
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Figure 7.1: Architecture of RL-driven load testing solution

with the discrete classes as Low, Normal and High for response time and Low
and High for error rate, then the combinations of those classes form the discrete
states of the system, as shown in Fig. 7.2.

Actions. At each learning trial, the tester agent takes one of the possi-
ble actions after detecting the state of SUT. We define actions as adjusting the
workload in terms of changing the load of the involved transactions, i.e., the
numbers of users running the transactions. The list of the involved transactions
is application-specific. Running each transaction, for example a transaction on
a web application, involves sending a batch of requests from the client to the
server. Many of the load generator tools such as Apache JMeter have the func-
tionality of recording the involved requests in running a transaction of a SUT,
to make an executable test plan for testing the SUT.
In our case, before the start of the learning, the set of involved requests in run-
ning each transaction of the SUT is extracted through recording an ordinary
usage of the SUT by a user. Each transaction might also have some functional
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dependency, i.e., some certain transactions are required to be done before that.
Therefore, the whole set of involved requests including prerequisites in doing
each transaction are extracted separately. Table 7.1 lists some of the common
transactions for an online shop application which is used as SUT in our study.
For example, the functional prerequisites for transaction Add to cart, are doing
login, accessing the search page, and selecting the product. Therefore, each
transaction of the workload is considered together with its functional depen-
dencies.

Then, the set of actions is defined as follows:

ActionList = {∪ actionk, 1 ≤ k ≤ |List of Transactions|} (7.1)

actionk = {∪ (WTj
n ) |WTj

n =W
Tj

n−1, if j 6= k,

WTj
n =W

Tj

n−1 +
W

Tj

n−1
3

, if j = k,

Tj ∈ List of transactions,

1 ≤ j ≤ |List of Transactions|}

(7.2)

where Tj indicates a transaction of the SUT. WTj
n indicates the load of the

transaction Tj at time step (learning cycle) n, i.e., the number of users run-
ning this transaction. Running this transaction includes running the operations
which are prerequisite to the transaction. For example, running transaction
Taddtocart, includes the operations Login page, Login, Search page, Select
product and, Add to cart. The modified workload in each action runs for a
certain period which can be defined empirically.

Reward Signal. After taking the selected action and running the modified
workload, the tester agent receives a reward signal which shows how effective
the applied action was to lead to meeting the target, i.e., reaching the intended
error rate threshold. We define a function to represent the reward signal as
follows:

rn =
(Ravn − Ravn−1)

Ravn
+

(ermaxn − ermaxn−1 )

ermaxn

(7.3)

whereRavn andRavn−1 indicate the average response time of the SUT at step
n and step n − 1 of the learning, while ermaxn and ermaxn−1 represent the maxi-
mum error rate hit at step n and step n− 1 of the learning respectively.
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Table 7.1: Common transactions in an online shop

Operation Description
Home Access to home page
Sign up page Access to Sign up page
Sign up Register and add a new user
Login page Access to login page
Login Sign in at the system
Search page Access to search page
Select product See the details of the selected

product
Add to cart Add the selected product to the

cart
Payment Access to payment page
Confirm Confirm the order (payment)
Log out Log out

Learning Procedure. In RL, the agent is intended to learn the optimal
policy to accomplish the objective of the problem. Policy decides which ac-
tion to be taken by the agent, given a certain state. In model-free RL, there
are generally two approaches to realize this: learning the policy directly and
indirectly. In Q-learning algorithm, the agent learns an optimal utility func-
tion, i.e., action-value function Q∗(s, a), from which the optimal policy can
be obtained. The optimal action-value function, Q∗(s, a), gives the expected
long-term reward (return), given state s, taking an arbitrary action a and then
following the optimal policy, which is as follows:

Q∗(s, a) = argmax
π

Eπ[Rn|sn = s, an = a] (7.4)

Rn =

∞∑
k=0

γkrn+k+1 (7.5)

where γ is a discount factor for future rewards and Rn is the discounted long-
term return in terms of cumulative reward. In general, the optimal policy selects



7.3 Reinforcement Learning-Assisted Load Testing 131

the action maximizing the expected return given starting from state s. More-
over, according to the definition of Q∗(s, a), given Q∗, the optimal action for
state s, a∗(s) is obtained as:

a∗(s) = argmax
a′

Q∗(s, a
′
) (7.6)

In order to obtain optimal policy, Q-values are stored (Q-table) and considered
as the experience of the agent. During the learning, the Q-values are updated
incrementally according to Eq. 7.7:

Q(sn, an) = (1− α)Q(sn, an) + α[rn+1 + γmax
a′

Q(sn+1, a
′
) (7.7)

where α, 0 ≤ α ≤ 1 adjusts the rate of learning which controls the impact of
new Q-values on the previous ones.

Learning phase. The research problem of this study, i.e., generating an ef-
ficient workload to reach an intended load testing objective, can be considered
as a sequential decision-making problem and RL learning could be a beneficial
solution to this problem, since the SUT (environment) and execution platform
is supposed to be initially unknown to the tester agent. Then, in RL learning,
the problem is formulated in terms of a Markov Decision Process (MDP) and
the agent finds (learns) the optimal policy to generate an efficient workload
to reach the intended error rate through solving the MDP. One of the basic
paradigms in solving an MPD is finding an optimal policy through policy and
value iterations techniques. The value iteration technique has been used in this
study. Algorithms 8 and 9 present the procedure of the proposed RL-driven
intelligent load testing.

Applicability. The proposed solution generates a proper workload to meet
the intended objective more efficiently than a typical load testing procedure. It
means that it generates a more accurate, fine-grained and smaller target work-
load (in terms of the number of users) in comparison to a typical load test-
ing process, which results in saving more time and cost in the testing. This
achievement is beneficial to various testing situations such as stress testing
where a heavy workload is often applied to meet the objectives and regression
load testing where testing scenarios are required to be repeated after applying
any changes. The pay-as-you-go cost of many of the commercial load gener-
ation tools is based on the number of generated virtual users. Therefore, The
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Figure 7.2: States of SUT in the proposed RL-based load testing

efficient generated workload by the proposed RL-driven approach could lead
to considerable cost and time-saving in the testing process. Moreover, the pro-
posed intelligent agent is able to reuse the learned policy in further similar test-
ing scenarios, for example, reaching different values of error rate, i.e., transfer
learning. It reuses the learned policy during the transfer learning, while it also
keeps the learning running to keep the learned policy updated upon changes in
the environment. Reusing the learned policy could also result in cost saving
in terms of reducing the required effort for generating the proper workload in
further situations.

7.4 Results and Discussion

This section discusses the results of the experimental evaluation of our pro-
posed intelligent RL-assisted load testing. The purposes of the evaluation ex-
periments are to assess the proposed approach in terms of how efficient it per-
forms in meeting the intended objective of the testing and how sensitive its
behavioral performance is to the learning parameters. We use the size of the
generated workload as a key performance indicator (KPI) for evaluating the ef-
ficiency of the approach in comparison to a typical load testing procedure. We
show how the learning-assisted approach can perform efficiently in an adaptive
way in different situations without access to the system model or source code
of the SUT.
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Algorithm 8 Adaptive Reinforcement Learning-Driven load Testing
Required: S,A, α, γ;
Initialize q-values, Q(s, a) = 0 ∀s ∈ S, ∀a ∈ A and ε = υ , 0 < υ < 1;
while Not (initial convergence reached) do

Q-Learning (with initial action selection strategy, e.g., ε-greedy, initialized
ε)

end
Store the learned policy;
Adapt the action selection strategy to transfer learning, i.e., tune parameter ε
in ε-greedy;
while true do

Q-Learning with adapted strategy (e.g., new value of ε);

end

Algorithm 9 Q-Learning

repeat
1. Detect the state (Sn) of the SUT;
2. Select an action (See Eq. 7.1) according to the action selection strategy,
e.g., ε-greedy: select an = argmaxa∈AQ(sn, a) with probability (1-ε) or
a random ak, ak ∈ A with probability ε;
3. Take the selected action: Tune the workload and run the modified work-
load on the SUT;
4. Detect the new state (Sn+1) of the SUT;
5. Compute the reward, Rn+1;
6. Update the Q-value of the pair of previous state and taken action
Q(sn, an) = (1− α)Q(sn, an) + α[rn+1 + γmax

a′
Q(sn+1, a

′
)]

until meeting the stopping criteria (reaching the intended error rate);

7.4.1 Evaluation Setup

In this study, we implement our approach based on using ε-greedy as an action
selection strategy with four configurations as ε = 0.2, 0.5, 0.85 and decaying ε
in which the value of ε decreases gradually during the learning. ε-greedy is one
of the well-known methods for action selection in RL algorithms. The action
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selection strategy is intended to provide a right trade-off between exploration
of the state-action space and exploitation of the learned policy. In ε-greedy, the
value of ε adjusts the degree of exploration versus exploitation, as it leads the
agent to select a high-value action based on its learned policy with probability
(1-ε) or a random possible action with probability ε, given a certain state. We
use Apache JMeter 5.1.1 as an actuator to execute the test workload. The
intelligent tester agent designs the test workloads and Apache JMeter executes
them. In the proposed learning approach, we set the response time requirement
and error rate threshold for classifying the states of the SUT to 500ms and 0.5

respectively, which could be also determined empirically based on the SUT
requirements.

In the experimental evaluation, as SUT, we use an e-Commerce store (on-
line shop) created by WordPress themes and deployed on a shared WordPress
hosting server with one shared CPU, up to 512MB shared RAM and 100GB
storage. The SUT supports 11 common business use cases that have been de-
scribed in Table 7.1. The objective of the testing scenario in our experiments
is reaching an intended level of error rate, which is 40%, in our analysis sce-
narios.

We evaluate the proposed approach through two analysis scenarios, i.e ef-
ficiency, and sensitivity analysis. In the efficiency analysis, we study the effi-
ciency of the proposed approach in generating a target test workload meeting
the intended objective. We compare the efficiency of the approach with a typ-
ical load testing approach. A typical load testing procedure for accomplishing
the aforementioned objective involves applying a basic workload that contains
all the transactions with the same number of users per each, then applying
an increase of 33% to the load of each transaction equally upon a number of
steps. The performance of the proposed approach in terms of size of the gen-
erated workload, i.e., the number of users, during multiple executions of the
learning algorithm (learning episodes) is demonstrated. During the sensitivity
analysis, we study the performance sensitivity of the approach to the learning
parameters such as learning rate and discount factor through systematically
controlled experiments which involve changing one parameter while keeping
the other ones constant.
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7.4.2 Experiments and Results

Efficiency Analysis. In the efficiency analysis, we set the learning rate and dis-
count factor to 0.1 and 0.5 respectively. Moreover, the performance-related
status of the hosting server, i.e., the resource availability, remains unknown
to the intelligent load tester. Each experiment starts with running a baseline
workload and trials indicate the number of steps that the workload was modi-
fied (taken actions) by the intelligent agent. We run each experiment 10 times.

Figure 7.3 shows the efficiency of the self-adaptive RL-assisted load test-
ing in terms of size of the generated workload meeting the intended error
rate threshold compared to a typical load testing procedure regarding using
ε-greedy with different values of ε. The adaptive RL-assisted learns the opti-
mal policy to generate an efficient test workload meeting the objective. It stores
the experienced trajectory during the learning and is also able to exploit it in
further situations. Despite all the varying conditions on the hosting, it tries to
adapt test workload well to meet the intended objective. As shown in figure
7.3, the proposed approach is able to meet the error rate threshold with less
number of generated users than typical load testing, which means lower cost
and time in the testing. Table 7.2 presents the average size of the generated
workload and the number of required learning trials or steps for generating the
target workload.

The performance of the adaptive RL-assisted approach regarding using dif-
ferent settings in ε-greedy action selection strategy is described as follows:
ε-greedy with ε = 0.2. It makes the intelligent agent mainly rely on the stored
experience rather than exploring new actions. It might slow down the learning
convergence and consequently reduce the adaptivity in a highly varying envi-
ronment which more exploration is needed. This issue is also observable in
terms of some high spikes in figure 7.3.
ε-greedy with ε = 0.5. This configuration provides a balance between the ex-
ploitation of the learned policy and the exploration of new actions. It gives a
better efficiency than ε = 0.2 strategy in terms of size of the generated work-
load.
ε-greedy with ε = 0.85. It guides the intelligent agent towards doing more
exploration which makes the performance of the approach closer to a search-
based technique. It leads to a fairly good efficiency especially for highly
changeable environments.
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Table 7.2: Average size of the generated workload and the number of required trials

RL-assisted with ε-greedy

Approach ε =

0.85
ε = 0.5 ε = 0.2

decaying
ε

Typical
load
testing

Average work-
load size

52 50 80 46 135

Average num-
ber of trials

16 26 16 9 5

ε-greedy with decaying ε. This setting decreases ε gradually during the
learning time. It makes the agent explore new actions more during the early
stages of the learning and do more exploitation of the learned policy in the later
steps of the learning. It provides the most promising efficiency in terms of both
the size of the generated workload and the required trials for generating the
target workload.

Figure 7.4 shows the output of the learning trials in a learning episode (for
example using ε-greedy with ε = 0.85) and presents how the RL-assisted ap-
proach finds an efficient workload reaching the intended error rate in a number
of learning trials.

Sensitivity Analysis. In this analysis, we study the behavioral sensitivity of
the proposed approach to the learning parameters, i.e., learning rate (α) and
discount factor (γ). We select ε-greedy with decaying ε as the action selec-
tion strategy, as it led to the most promising result in the efficiency analysis
scenarios. We examine the effects of learning rate (α) and discount factor
(γ) on the behavioral performance of the approach in a systematic way. Fig-
ure 7.5 shows the behavioral performance of the proposed approach regarding
changing the values of learning rate and discount factor parameters. In the
sensitivity analysis, we consider α = 0.1 and γ = 0.5 as the baseline values
and in four controlled experiments, we study the effects of changing the values
of these parameters. First, we set the learning rate to 0.5 and 0.9 respectively
while keeping the value of discount factor to 0.5, then in the second set of ex-
periments we set the discount factor to 0.1 and 0.9 respectively, while fixing
the learning rate at 0.1. As shown in figure 7.5, setting the learning rate to a
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Figure 7.3: Size of the generated workload in the executions of learning-assisted and
typical load testing approaches
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Figure 7.4: Output of learning trials in a learning episode

higher value such as 0.9, which causes faster updates in the stored Q-table of
the agent, appears to work slightly better in adaptation to highly changeable
environments. It leads to a smooth and partially equal performance during the
learning episodes. Meanwhile, changing the values of the discount factor pa-
rameter does not show a considerable effect on the performance trend of the
intelligent agent.

7.5 Related Work

Measuring performance metrics under different execution conditions including
various workload and platform configurations [30, 31, 32], detecting different
performance-related issues such as functional problems or violations of perfor-
mance requirements which emerge under certain workload or resource config-
uration conditions [33, 34, 35] are often common objectives of different types
of performance testing.

Different approaches to generate the test workload have been proposed in
the literature. An overview of the used techniques for generating the test work-
load is presented as follows:
Analyzing system model. Analysis of a performance model of SUT in terms of
Petri nets using constraint solving techniques [36], using genetic algorithms to



7.5 Related Work 139

1 2 3 4 5
Workload size 40 34 33 34 34
# Trials 6 1 0 1 1

0

10

20

30

40

50

60

W
o

rk
lo

a
d

 S
iz

e
 

Learning episode

Learning rate = 0.9, Discount factor =0.5

1 2 3 4 5
Workload size 33 45 36 49 33
# Trials 0 12 3 13 0

0

10

20

30

40

50

60

W
o

rk
lo

a
d

 S
iz

e
 

Learning episode

Learning rate = 0.5, Discount factor =0.5

1 2 3 4 5
Workload size 37 34 35 33 33
# Trials 4 1 2 0 0

0

10

20

30

40

50

60

W
o

rk
lo

a
d

 S
iz

e
 

Learning episode

Learning rate = 0.1, Discount factor =0.9

1 2 3 4 5
Workload size 35 35 36 35 37
# Trials 2 2 3 2 4

0

10

20

30

40

50

60

W
o

rk
lo

a
d

 S
iz

e
 

Learning episode

Learning rate = 0.1, Discount factor =0.1

Figure 7.5: Behavioral sensitivity of the RL-assisted approach to the learning parame-
ters

generate test load based on the control flow graph of SUT [15, 16], applying
genetic-based algorithms to other types of system models such as UML mod-
els to generate stress test load [17, 18, 19, 20] are samples of the techniques
proposed in this category.
Analyzing source code. Generating the test load using analysis of SUT data-
flow and symbolic execution [37, 34] are examples of using source code anal-
ysis to generate test load and find performance-related issues.
Modeling real usage. Extracting the usage pattern of real users and modeling
their behavior based on form-oriented models [21, 22], extracting workload
characteristics and modeling the user behavior based on Extended Finite State
Machines [38] and Markov chains [39] through monitoring submitted requests
to SUT, and workload characterization through users clustering based on the
business-level attributes extracted from usage data [40] are examples of the
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techniques used for modeling the realistic workload.
Declarative methods. Using a declarative Domain Specific Language (DSL)
to specify the performance testing process and a model-driven test execution
framework [24, 25, 26], and also using a specific behavior-driven language,
to specify load testing process in combination with a declarative performance
testing framework like BenchFlow [23, 25] are examples of declarative tech-
niques for performance and load testing.
Machine learning-assisted methods. Machine learning techniques such as su-
pervised and unsupervised algorithms are often intended to build models and
knowledge patterns from the data, while in other techniques like reinforcement
learning algorithms, the intelligent agent learns the way to accomplish an ob-
jective through interaction with the environment. Machine learning techniques
have been frequently used for analyzing the resulted data from the load testing,
using Bayesian Network to predict the reliability from the load testing data
[41], anomaly detection based on analysis of metrics data, e.g., resource us-
age, using clustering techniques [42], identifying performance signature based
on performance metrics data using supervised and unsupervised learning tech-
niques [43, 44] are some examples of using machine learning techniques for
analysis of load testing data. Machine learning techniques have also been ap-
plied to the generation of performance test conditions in some studies. For
example, RL together with symbolic execution has been applied to finding the
worst-case execution path within a SUT in [45], and a feedback-driven learn-
ing technique which extracts some rules from the execution traces to find the
performance bottlenecks, i.e., the method calls which their execution highly
affects the performance of SUT [46]. Nonetheless, RL algorithms have been
widely used in performance preservation of software services, such as an adap-
tive RL-driven performance control for cloud services [47, 48, 49] and also
software services on other execution platforms [50, 51]. Regarding generating
performance test conditions, a few studies have used some adaptive techniques,
which are slightly analogous to the concept of RL, to generate the test work-
load. A feedback-based approach using search algorithms to benchmark an
NFS server based on changing the test workload in [52], and an adaptive gen-
eration of test workload based on using some pre-defined adjusting policies in
[35] are some examples related to the generation of performance test condi-
tions.
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7.6 Conclusion
User behavior models, system models, and source code are some common
sources of information in load testing techniques for generating test workloads
to find performance issues. Nonetheless, those artifacts might not be available
all the time during the testing. In this paper, we proposed an adaptive model-
free RL-driven load testing approach to accomplish the load testing objectives.
We presented the architecture and operational procedure of the proposed smart
load testing agent, which is able to learn the optimal policy to generate an effi-
cient workload to reach the intended objective, without access to source code or
system models. The agent reaches the intended objective with a fine-grained
and smaller workload (in terms of the number of users) in comparison to a
typical load testing process and results in time and cost savings in the testing
process which is of great importance to many testing activities such as stress
and regression load testing. The proposed approach uses Q-learning as the
core learning mechanism with an adaptive action selection strategy to adapt
the learning to further situations in the testing process. In other words, it learns
the optimal policy and is also able to reuse it in subsequent similar testing sce-
narios, for example, reaching different values of error rate. Policy reuse results
in further cost savings by reducing the required effort for workload generation.

In general, the generation of an efficient test workload while reducing de-
pendency on source code, system and user behavior models and reduction of
the required effort for workload generation in further situations, are the main
strengths of the proposed RL-driven load testing. The value and benefit of the
proposed intelligent load testing solution can particularly become more obvi-
ous in the provided benefits to stress and regression testing, and the possibility
of testing independently of system and user behavior models which is benefi-
cial to testing of complex and evolving software systems.
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and Cesare Pautasso. Behavior-driven load testing using contex-
tual knowledge-approach and experiences. In Proceedings of the
2019 ACM/SPEC International Conference on Performance Engineering,
pages 265–272. ACM, 2019.

[24] Vincenzo Ferme and Cesare Pautasso. A declarative approach for perfor-
mance tests execution in continuous software development environments.
In Proceedings of the 2018 ACM/SPEC International Conference on Per-
formance Engineering, pages 261–272. ACM, 2018.

[25] Vincenzo Ferme and Cesare Pautasso. Towards holistic continuous soft-
ware performance assessment. In Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering Companion,
pages 159–164. ACM, 2017.

[26] Jürgen Walter, Andre van Hoorn, Heiko Koziolek, Dusan Okanovic,
and Samuel Kounev. Asking what?, automating the how?: The vi-
sion of declarative performance engineering. In Proceedings of the 7th
ACM/SPEC on International Conference on Performance Engineering,
pages 91–94. ACM, 2016.



146 Bibliography

[27] Mahshid Helali Moghadam, Mehrdad Saadatmand, Markus Borg,
Markus Bohlin, and Björn Lisper. Machine learning to guide performance
testing: An autonomous test framework. In 2019 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pages 164–167. IEEE, 2019.

[28] Apache. JMeter. Available at https://https://jmeter.
apache.org/, Retrieved October, 2019.

[29] Richard S Sutton and Andrew G Barto. Reinforcement learning: An in-
troduction. MIT press, 2018.

[30] Daniel A Menascé. Load testing, benchmarking, and application perfor-
mance management for the web. In Int. CMG Conference, pages 271–
282, 2002.

[31] Varsha Apte, TVS Viswanath, Devidas Gawali, Akhilesh Kommireddy,
and Anshul Gupta. Autoperf: Automated load testing and resource usage
profiling of multi-tier internet applications. In Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering,
pages 115–126. ACM, 2017.

[32] Anshul Jindal, Vladimir Podolskiy, and Michael Gerndt. Performance
modeling for cloud microservice applications. In Proceedings of the
2019 ACM/SPEC International Conference on Performance Engineering,
pages 25–32. ACM, 2019.

[33] Lionel C Briand, Yvan Labiche, and Marwa Shousha. Stress testing real-
time systems with genetic algorithms. In Proceedings of the 7th annual
conference on Genetic and evolutionary computation, pages 1021–1028.
ACM, 2005.

[34] Pingyu Zhang, Sebastian Elbaum, and Matthew B Dwyer. Automatic
generation of load tests. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, pages 43–
52. IEEE Computer Society, 2011.

[35] Vanessa Ayala-Rivera, Maciej Kaczmarski, John Murphy, Amarendra
Darisa, and A Omar Portillo-Dominguez. One size does not fit all: In-test

https://https://jmeter.apache.org/
https://https://jmeter.apache.org/


Bibliography 147

workload adaptation for performance testing of enterprise applications.
In Proceedings of the 2018 ACM/SPEC International Conference on Per-
formance Engineering, pages 211–222. ACM, 2018.

[36] Jian Zhang and Shing Chi Cheung. Automated test case generation for the
stress testing of multimedia systems. Software: Practice and Experience,
32(15):1411–1435, 2002.

[37] Cheer-Sun D Yang and Lori L Pollock. Towards a structural load testing
tool. In ACM SIGSOFT Software Engineering Notes, volume 21, pages
201–208. ACM, 1996.

[38] Mahnaz Shams, Diwakar Krishnamurthy, and Behrouz Far. A model-
based approach for testing the performance of web applications. In Pro-
ceedings of the 3rd international workshop on Software quality assur-
ance, pages 54–61. ACM, 2006.
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Abstract

Timing requirements such as constraints on response time are key character-
istics of real-time systems and violations of these requirements might cause a
total failure, particularly in hard real-time systems. Runtime monitoring of the
system properties is of great importance to check the system status and mitigate
such failures. Thus, a runtime control to preserve the system properties could
improve the robustness of the system with respect to timing violations. Com-
mon control approaches may require a precise analytical model of the system
which is difficult to be provided at design time. Reinforcement learning is a
promising technique to provide adaptive model-free control when the environ-
ment is stochastic, and the control problem could be formulated as a Markov
Decision Process. In this paper, we propose an adaptive runtime control using
reinforcement learning for real-time programs based on Programmable Logic
Controllers (PLCs), to meet the response time requirements. We demonstrate
through multiple experiments that our approach could control the response time
efficiently to satisfy the timing requirements.
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8.1 Introduction

Real-time control programs implemented on Programmable Logic Controllers
(PLCs) are key parts of many time-critical industrial control systems like those
in the railway domain. The timing properties in these systems include period of
tasks, deadline, worst-case execution time or response time. From the perspec-
tive of timing analysis, schedulability analysis methods, statistical and formal
timing analysis are common analysis techniques to provide a response time
estimation of real-time programs [1, 2, 3]. Static analysis-based approaches,
in some cases, might not be practical for complex real-time systems. Even if
they are feasible, the results might not be valid due to unpredictable factors in
runtime and the difference between analysis environment and the realistic one
[4].

Generally, there is often a strict set of timing requirements such as dead-
lines and limits on response time for real-time programs in mission-critical
contexts. Correctness of functionality of real-time systems highly depends on
satisfying the timing requirements as important features of these systems. Any
serious deviation in temporal behavior of real-time programs due to unpre-
dicted runtime events like asynchronous message-passing and runtime change-
able priorities, particularly in complex systems, might cause a total failure in
the function of system. Thus, providing more robustness against unpredicted
varying conditions during runtime is of great importance. In general, robust-
ness could be defined as to which degree the system is tolerable against in-
correct inputs or unexpected stressed conditions [5]. In a real-time program,
robustness could be defined as the ability to adapt to the varying conditions
while satisfying the timing requirements.

An adaptive runtime control in addition to the scheduling capabilities could
lead to more robustness in real-time control systems, to cope with chang-
ing runtime conditions and unpredicted states [6]. Runtime monitoring could
check if the system adheres to the predefined requirements like timing con-
straints. A control approach based on runtime monitoring could help preserve
these timing properties by applying runtime control operations. Adaptive con-
trol strategies are considered as one of the promising solutions to improve ro-
bustness through providing adaptation to the varying conditions in dynamic
environments. Reinforcement learning (RL) has been frequently applied to ad-
dress the adaptive control strategy in dynamic environments, in case the envi-
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ronment is stochastic, and the control problem can be formulated as a Markov
Decision Process (MDP).

In this paper, we propose a self-adaptive response time control for real-time
programs in PLC-based systems using reinforcement learning. In our previous
work [7], we presented the initial idea on how a learning-based solution can
be used to provide assurance of timing properties; here in this work we extend
that initial idea and provide an industrial evaluation of our proposed approach.
We present the evaluation experiments of the proposed approach on sample
programs inspired from our collaboration with Bombardier Transportation in
Sweden. The proposed approach formulates the response time control problem
as an MDP and uses Q-learning as a model-free RL to provide adaptive control
of response time while meeting the timing requirement. We show the effi-
cacy of the proposed approach through multiple experiments based on simulat-
ing real-time programs in a PLC-based control system. Our approach mostly
keeps the programs adhering to the response time constraints despite the oc-
curred time deviations during the run time. Based on the evaluation results, the
proposed approach with ε-greedy, ε = 0.5, and α = 0.1 and γ = 0.5 provided
better satisfaction of the response time threshold without any programs ending
with medium or high deviation.

The rest of this paper is organized as follows; Section 8.2 discusses briefly
the motivation and background concepts of RL. The technical details of the
proposed approach are discussed in Section 8.3, while Section 8.4 presents
the evaluation experiments and results. Section 8.5 provides a review of the
related works and background techniques. Conclusions and future directions
are provided in Section 8.6.

8.2 Motivation and Background

8.2.1 Motivation

Runtime monitoring is considered as a principal means for real-time systems.
Providing an adaptive control for satisfying the timing requirements such as
constraints on response time/execution time based on runtime monitoring could
improve the robustness of the system. Model-driven control approaches may
require precise knowledge of the system and environment. The complexity
of real-time systems, for example, intricate temporal dependencies between
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real-time tasks and the dynamism of the environment are major barriers which
motivate towards model-free learning-based control. Learning-based control
can find an adaptive control policy to varying conditions regardless of having
a precise model of the environment. Reinforcement learning-based control
techniques have been used for runtime control of non-functional properties to
satisfy the performance and timing requirements in many application contexts.

Reinforcement learning [8] is a learning mechanism working based on in-
teraction with the environment. In RL, the agent senses the state of the envi-
ronment continuously, takes a possible action and in return, receives a reward
signal from the environment which shows the desirability and effectiveness of
the applied action. During the learning, the agent follows a policy which max-
imizes the long-term received reward. The agent learns this policy through an
action selection strategy which is based on selecting an action randomly (explo-
ration) or selecting an action with a high utility value (exploitation). Q-learning
[8] is a model-free RL algorithm in which the agent learns the value function
of the long-term expected reward associated to the pairs of states and actions.
It is an off-policy learning as the optimal policy is learnt independently of the
action selection strategy being used by the agent. Once the learning converges,
the agent replays the learned policy.

8.2.2 PLC-Based Industrial Control Programs

Many of the real-time industrial control systems like those ones in the trans-
portation domain, are implemented based on IEC 61131-3 [9] which is one
of the main programming language standards for programmable controllers.
According to the proposed software structure in IEC 61131-3, Programmable
Organization Units (POU) are the building blocks of a PLC program. They are
hardware-independent and programmable in a flexible fashion facilitating the
reusability and modularization in this context.

There are mainly three unified types of POUs: program, function block
and function. A function block has its own data record to remember the state
of the information, while a function always produces the same result based on
the same input. A program may consist of zero or multiple function and func-
tion blocks. A real-time task can execute one or multiple programs or a set of
function blocks. Timer function blocks are widely used as one of the main con-
stituent POUs in PLC-based real-time programs. Their basic functions involve
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providing their output after a preset controllable/programmable time interval.
There are three types of timers as standard PLC timer blocks, i.e., TP (Timer
Pulse), TON (Timer On-Delay) and TOF (Timer Off-Delay). Timer TP is a
pulse generator which supplies a constant pulse on output upon detecting a ris-
ing edge at input. TON supplies the value of input at output with a delay upon
detecting a rising edge at input. TOF has an inverse functionality to TON. Fig-
ure 8.1 shows a schema sample from a real-time control program in Function
Block Diagram format, as an integration of multiple functions and function
blocks. The number of POUs in each control program depends on the com-
plexity of the program. The time delay of timer function blocks in time-critical
programs are the target entities supposed to be tuned in urgent conditions by
our control approach to satisfy the response time requirements.

8.3 Adaptive Response Time Control Using
Q-Learning

In this section, we present the technical details of the proposed runtime re-
sponse time control using reinforcement learning for real-time programs run-
ning on PLC-based systems. This control method is incorporated into the con-
trol scan program which is responsible for executing the building blocks and
preserving their execution orders within real-time programs. Timer function
blocks are one of the standard function blocks which are widely used and play
a key role in many time-critical industrial control programs.

The proposed control strategy is supposed to use the capability of tuning
the time delay of timer function blocks to control the response time of real-
time programs. The main objective of the proposed runtime response time

Figure 8.1: A schema sample from a PLC-based control program
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control is to meet the response time requirements in abnormal conditions when
time deviations happen, by optimally tuning the time delay parameters. The
proposed approach uses Q-Learning as a model-free RL to learn the optimal
tuning of delay parameters to preserve the program responsive within the target
response time threshold. The learning task in the proposed control approach
mainly involves the following steps:

1) Detecting the State of the system. Based on the interactive characteristic
of the reinforcement learning, the control agent/controller observes the state of
the program at discrete time steps. After each execution cycle, the controller
measures the execution time until the current time point. The actual execu-
tion time until the end of the nth function block execution, ETn, is classified
under four classes. This is done based on the amount of compliance with the
desired/target execution time until the end of the nth function block (e.g., from
requirements/constraints), Tn, calculated as follows:

Tn =

n∑
i=1

T fi (8.1)

Where T fi is the desired response time of the ith function block. The class
values representing the state of the program, s, are Required, Low, Medium
and High, as shown in Figure 8.2. They represent the acceptable state, and
the states with low, medium and high deviation, respectively. We defined the
acceptable state based on a target execution time characterized by a tolerance
region [Tn, T

′
n] where T ′n = Tn + τ . where τ in ms is defined based on the

characteristics of the system.
2) Selecting a Control Action. We defined the control actions as tuning

operations for the time delay of the next running function block, Dn+1
f . For

providing a safety margin, we also considered a required minimum delay, Dm,
for function blocks. Then, the time delay of function blocks could not be set to
a value less than Dm. Regarding the minimum time delay, we specified a set
of control actions for tuning the time delay as follows:

Actions = {(1− fd)Dn+1
f + fdDm : fd ∈ K} (8.2)

K = {0, 1
5
,
2

5
,
3

5
,
4

5
, 1} (8.3)

Where fd is a decreasing factor.
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Figure 8.2: States of the program

3) Receiving the Reward signal and updating the stored experience. After
applying the selected action, the system will go to the next state and the con-
troller will receive a reward signal representing the effectiveness of the applied
action. We derived a utility function based on a Normal probability density
function with µ = Tn and σ = Tn/10 which is as follows:

rn =

 1
Tn
10

√
2π
e
− 1

2 (
ETn−Tn

Tn
10

)2

, Tn < ETn

1, ETn ≤ Tn
(8.4)

The computed reward values will be in the range (0, 1].
The final objective of the learning is to find a policy π, a mapping between

the states and actions, which maximizes the expected long-term reward defined
as follows [8]:

Rn = rn+1 + γn+2 + ...+ γkrn+k+1 (8.5)

Where γ ∈ [0, 1] is a discount factor specifying the importance of future re-
wards compared to the immediate reward. The long-term expected return of
selecting action a in state s, based on policy π, is specified by a utility value
Qπ(s, a) defined as follows [8]:

Qπ(s, a) = Eπ[Rn|Sn = s,An = a] (8.6)

The Q-values stored in a look-up table, Q-table, form the experience of the
agent. The controller relies on Q-values to make decision on actions. During
the learning, the Q-values are updated incrementally via temporal differencing.
The agent updates the associated Qπ(s, a) for each experienced (s, a) through
the following rule:

Q(sn, an) = Q(sn, an) + α[rn+1 + γmax
a

Q(sn+1, a)−Q(sn, an)] (8.7)
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Where α ∈ [0, 1] is the learning rate parameter. It specifies to what extent
new information impacts the q-values. The all steps of the adaptive control
procedure are described in Algorithm 10. Eventually, after multiple learning
cycles, the controller finds the optimal policy of selecting the action which
maximizes the q-value in a given state.

Learning performance. Different action selection strategies could be used
during the learning. The agent can use a random action selection method or
select greedily an action with the highest utility value according to the Q-table.
ε-greedy is an action selection strategy which allows the agent to make a trade-
off between the exploration and exploitation in the action space. In ε-greedy,
with probability ε, a random action is selected and with probability 1 − ε, an
action based on the utility value is selected. However, RL-based approaches
might generally suffer slow convergence due to the need for exploring the state
space. To alleviate this effect, we also introduced an initial control mapping in
Q-table by specifying some invalid pairs of state and action to guide the agent
not to explore specific actions in a specific state. For example, when it is in
acceptable state, no need to change the time delay parameter.

Algorithm 10 Adaptive Response Time Control in PLC-based Real-time
programs
Required: S, A, ε, α, γ, φ (invalid state-action pairs)
Initialize Q-values, Q(s, a) = −1 if (s, a) ∈ φ else 0 ∀s ∈ S, ∀a ∈ A
1. Detect the current state of the program, sn
2. Select an action using the action selection policy
(e.g., ε-greedy: select an = argmaxa∈AQ(sn, a) with probability (1- ε) or a
random action with probability ε)
3. Apply the selected action, let the system continue running and execute the
next function block
4. Detect the new state of the system
5. Compute the reward (reinforcement) signal
6. Update the Q-value by:
Q(sn, an) = Q(sn, an) + α[rn+1 + γmax

a
Q(sn+1, a)−Q(sn, an)]

7. Repeat for every observed state at the start of each function block execution
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8.4 Results and Discussion
This section presents the results of the early stage evaluation experiments ad-
dressing the performance of the proposed approach in terms of meeting the
predefined response time threshold. The main objective of the experiments is
to assess to which degree the learning-based control can work adaptively on
varying conditions and untimely behavior of function blocks in a realistic en-
vironment.

8.4.1 Evaluation Setup

In this study, we implemented the proposed approach based on three action se-
lection strategies. We incorporated it into an environment which simulates mul-
tiple real-time programs consisting of various timer function blocks. The simu-
lation environment emulates the temporal behavior of the function blocks, their
responses in realistic environments and the corresponding control scan pro-
gram for controlling the execution order of the function blocks. The learning-
based control has been integrated into the control scan thread to provide a run-
time control of the response time of real-time programs.

The proposed approach has been evaluated through two analysis scenar-
ios. In the first scenario, concerning response time analysis, the performance
of the learning-based control based on using three action selection algorithms
has been studied. In this scenario, the performance of the proposed approach
after 100 learning episodes (interaction with various real-time programs) has
been demonstrated. The real-time programs have been characterized with dif-
ferent numbers of function blocks, predefined response time requirements and
minimum required delay time (safety margin). The second analysis scenario,
sensitivity analysis, analyzes the sensitivity of the learning-based approach to
the learning parameters. This scenario involves investigating the effects of the
learning parameters by systematically changing the values of one parameter
while keeping the other one constant.

8.4.2 Experiments and Results

Timing Analysis. In the timing analysis scenario, the efficacy of the learning-
based approach was evaluated in terms of adaptation to changeable behavior
while meeting the timing requirement. The simulated real-time programs have
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different numbers of function blocks in the range [5, 25]. The predefined re-
sponse time requirements of function blocks and associated safety margins
in ms have been initialized with values in the range [1000, 6000] and [1000,
2000], respectively. A maximum deviation at most equal to 25 percent of the
upper bound of the response time requirement was allowed during the simula-
tion. The default acceptable tolerance value was considered as 500ms. Time
deviations were injected into the programs randomly. Figure 8.3 shows a ran-
dom pattern for injecting time deviations to function blocks within three pro-
gram samples. ε-greedy was used in the proposed approach as an action selec-
tion strategy with ε = 0.1, ε = 0.5 and ε = 0.9. The ε-value determines to
what extent exploration and exploitation are weighted during the action selec-
tion procedure. Figures 8.4 and 8.5 show the observed response time plots of
real-time programs after applying the learning-based control approach based
on different values of ε parameter in the action selection strategy. Clearly,
the learning-based control approach tries to adapt well to the varying temporal
behaviors of the function blocks while meeting the response time thresholds
of the programs. Results in Figures 8.4 and 8.5 describe the efficacy of the
learning-based control approach based on the number of programs ended with
medium or high deviations from the timing requirements and also the achieved
average deviations.

According to the results, the performance of the proposed approach with
different action selection strategies is described as follows:

1) ε-greedy with ε = 0.1 makes the controller trust most on its stored expe-
rience, rather than exploring new actions. The learning-based approach based

Figure 8.3: Pattern of time deviations
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on this action selection strategy, showed less efficiency in terms of optimizing
the response time and also the number of programs which ended with medium
or high deviations. In this case, the experience of the controller has not been
extended well and needs more exploration to be improved.

2) ε-greedy with ε = 0.9 provides more opportunities towards the explo-
ration of the action space. It provided partially better performance in terms of
optimizing the response time and preventing the programs from exceeding the
predefined thresholds with medium or high deviations compared to ε-greedy
with ε= 0.1.

3) ε-greedy with ε = 0.5 provides a trade-off between the exploration and
exploitation of the action space. It showed a better adaptation to the varying
conditions and tried to preserve the response time close to the requirement
threshold. In some cases where a sharp satisfaction of the timing requirement is
needed, e.g., airbag control systems of automotive products, this is the desired
performance which is required.

4) ε-greedy with decaying ε, is an action selection strategy during which
the ε parameter gradually decreases. It causes more exploration during the first
steps of the learning and more exploitation at the last steps. Using this strategy,
the performance controller first explores the action space, then tends towards
using the achieved experience. The learning-based approach based on ε-greedy
with decaying ε, showed the most promising results, i.e., it outperformed the
other ε-strategies both in terms of optimizing response time and preventing
medium or high deviations from the predefined timing thresholds.

Sensitivity Analysis. The behavior of the proposed learning-based control
approach could be impacted by the learning parameters including learning rate
(α) and discount factor (γ). In the sensitivity analysis, two sets of experiments
were done to study the effects of varying learning parameters. Each set of
experiments involves changing the value of one parameter while keeping the
other one constant. ε-greedy with ε = 0.5 was used as a baseline action selec-
tion strategy during the sensitivity analysis experiments. Table 8.1 shows the
performance of the learning-based approach regarding the number of real-time
programs which ended with medium or high deviations from the predefined
response time thresholds and also the achieved average deviation in response
time, during the sensitivity analysis experiments. In Table 8.1 the bold column
represents the baseline parameter setting which was used in each sensitivity
analysis experiment. We set the learning rate to 0.1 and the discount factor to
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0.5 at the first and second experiments, respectively.
It seems that setting the learning rate to 0.1, which provides a slower learn-

ing, leads to good performance, particularly in adaptation to varying behav-
iors and preventing the real-time programs from exceeding the timing thresh-
olds. Increasing the learning rate towards 0.5, which aims at balancing between
learning new information and saving previous experience, causes improvement
in optimizing the response time of the programs. The proposed approach also
does not show as much performance improvement as when we set the discount
factor to values other than 0.5.

8.5 Related Work
We classify the relevant works on timing properties of real-time systems under
modeling, verifying and some approaches to preserve and satisfy the timing
requirements. Many of the verification and preservation/control approaches
are based on runtime monitoring of the properties. Real-time Specification for
Java (RTSJ) was introduced to provide a real-time scheduler with the facility of
monitoring deadlines and enforcing the execution cost [10]. Mezzetti et al [11]
used the Ada Ravenscar Profile for preserving the timing properties of real-time
systems. Saadatmand et al [12, 13] developed an extra scheduler taking the
temporal properties including period, execution time and deadline of the tasks
and scheduled them using the underlying scheduler of the operating system. A
model synthesis approach for timing properties of real-time systems based on
monitoring the running system was proposed in [14]. A runtime framework
for monitoring the runtime constraints such as timing constraints and detecting
the violations of timing properties was presented in [15]. The related issues on
runtime monitoring of properties in real-time systems were discussed in [16].
Goodloe et al [6] surveyed different runtime monitoring techniques including
off-line and on-line techniques for distributed real-time systems, in particular
hard real-time systems. Das et al [17] presented a tool environment which pro-
vided runtime monitoring, animating the development and analysis of the com-
ponents to support model-driven development of real-time embedded systems.
In [18] a runtime monitoring approach for checking the system properties in
embedded systems was presented. It used a control method to coordinate the
time predictability and memory utilization in the monitoring solution.
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Table 8.1: Impacts of varying learning parameters on the performance of control ap-
proach

LR-based performance
control using ε= 0.5,
Discount factor γ=0.5

LR-based performance
control using ε= 0.5,
Learning rate α=0.1

α= 0.1 α=0.5 α=0.9 γ=0.1 γ=0.5 γ=0.9
#RT programs with
highly exceeded
predefined threshold
(Uncontrolled
Condition)

0(10) 0(6) 0(3) 3(8) 0(10) 0(7)

Average deviation
(Uncontrolled
Condition)

-1228
(5731)

-6475
(5378)

-4395
(5455)

-1052
(5484)

-1228
(5731)

-1210
(5744)

8.6 Conclusion

Runtime monitoring of system properties remains as a principal need for real-
time systems. A runtime control approach based on runtime monitoring could
improve robustness of the system. In this paper, we present an adaptive run-
time response time control based on reinforcement learning for PLC-based
real-time programs, to satisfy the timing requirements. In this study, we formu-
late the control problem as an MDP and apply Q-learning to provide a control
technique to preserve the response time according to the timing requirements.
We evaluate the efficacy of the approach through multiple experiments. The
learning-based approaches generally require multiple learning trials to con-
verge and stabilize the learned policy. Regarding this issue and the charac-
teristics of soft and hard real-time systems, it is supposed that the proposed
learning-based approach in its incremental learning fashion could be used in
soft real-time systems. While the controller with the converged policy, after
training based on simulation environment, could be integrated into the hard
real-time systems. Furthermore, the result values (the tuned values) of the
control policy could be used as a feedback to correct the initial model of the
system. Future directions of this study will be evaluating the efficacy of the ap-
proach in the industrial platforms, improving the training time and adaptation
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precision of the approach by modeling the state space as fuzzy state space and
using cooperative agents to speed up the learning.
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Abstract

Scheduling is one of the important problems within the scope of control and
management in grid and cloud-based systems. Data grid still as a primary
solution to process data-intensive tasks, deals with managing large amounts
of distributed data in multiple nodes. In this paper, a two-phase learning-based
scheduling is proposed for data-intensive tasks scheduling in cluster-based data
grids. In the proposed approach, a hierarchical multi agent system, consisting
of one global broker agent and several local agents, is applied to scheduling
procedure in the cluster-based data grids. At the first step of the proposed
approach, the global broker agent selects the cluster with the minimum data
cost based on the data communication cost measure, then an adaptive policy
based on Q-learning is used by the local agent of the selected cluster to sched-
ule the task to the proper node of the cluster. The impacts of three action
selection strategies have been investigated in the proposed approach, and the
performance of different versions of the approach regarding different action
selection strategies, has been evaluated under three types of workloads with
heterogeneous tasks. Experimental results show that for dynamic workloads
with varying task submission patterns, the proposed learning-based schedul-
ing gives better performance compared to four common scheduling strategies,
Queue Length (Shortest Queue), Access Cost, Queue Access Cost (QAC) and
HCS, which use regular combinations of primary parameters such as, data
communication cost and queue length. Applying a learning-based strategy pro-
vides the scheduling with more adaptability to the changing conditions in the
environment.
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9.1 Introduction
Grid computing is a distributed computing system, which enables the inte-
grated and collaborative use of many heterogeneous resources owned by differ-
ent organizations. It is still used for computation- and data-intensive process-
ing. Data grid deals primarily with data-intensive applications. Many scientific
and engineering problems require to access and process large amounts of dis-
tributed data [1, 2, 3]. In many application environments, there is a complex of
heterogeneous tasks, which are quite different in terms of their sizes and their
processing requirements. Studies show that the variability of task sizes is an
important factor, which highly affects the performance of the scheduling [4].
Using adaptive control strategies in dynamic environments with varying con-
ditions may be a proper solution to deal with changing features of the problem
environment. Adaptive control is a type of control dealing with time-varying
parameters. It does not need a priori knowledge about the uncertain parameters
and involves a control method changing itself.

Learning automata is a machine-learning field considered as an adaptive
control method [5]. Generally, in learning automata, the current action is se-
lected based on the experiences collected from the environment. It may be in
the domain of reinforcement learning (RL), if the environment is stochastic
and can be modelled as a Markov Decision Process (MDP). In a grid system,
the state of the system can be described by a random process, Xtn , specifying
the state of the system as a function of time. The state space of the system is
known, and the scheduling of submitted tasks is conducted according to the
current state of the system. Therefore, the random process describing the sys-
tem is a Markov process and satisfies the Markov property as follows:

P
(
Xtn = j |Xtn−1

= in−1, Xtn−2
= in−2, . . .

)
= P

(
Xtn = j |Xtn−1

= in−1
)

(9.1)
The state describing process is memoryless to the visited states in the past and
to the time spent in each state. Overall, the process of task scheduling can be
considered as an MDP in which various types of RL-based control scheduling
can be applied to the system. In this paper, the issue of task scheduling in a
cluster-based data grid using an adaptive learning-based scheduling is studied.

In the past decade, there has been a plenty of well-studied works on im-
mediate task scheduling in grid systems. Several of the scheduling strategies
were mainly intended for computation-intensive task scheduling in computa-
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tional grids. In addition to primary immediate task scheduling algorithms such
as Opportunistic Load Balancing (OLB), Minimum Completion Time (MCT),
Minimum Execution Time (MET), Switching Algorithm (SA), and K-Percent
Best (KPA) [6, 7, 8], several different scheduling strategies have been also
proposed such as a hybrid (GA/TS) independent task scheduling [9] for com-
putational grids, a coloured petri net model for independent task scheduling
in computational grids [10], a probabilistic task scheduling algorithm based
on a discrete time Markov chain [11], an independent task scheduling based on
Imperialist Competition Algorithm for grid systems [12] and a combined meta-
heuristic (PSO with gravitational emulation local search) scheduling [13].

Regarding the ever-increasing needs for processing data-intensive tasks in
scientific communities, several types of data-aware task scheduling strategies
such as, HCS (Hierarchical Cluster Scheduling) [14], DIANA (data intensive
and network aware scheduling) [15], RBHS (rank-based hybrid scheduling)[16],
ASJS (adaptive scoring job scheduling) [17], CSS (Combined Scheduling Strat-
egy) [18] and various scheduling strategies using meta-heuristic algorithms
were proposed. Min-Min, Max-Min and Sufferage [7], RASA [19], FPLTF
[20], and RRTS as the combination of Round Robin and Dynamic Time Slice
(DTS) [21] are also some of the primary algorithms for batch mode scheduling
of computation-intensive tasks. Regarding the dynamic workloads with a large
complex of heterogeneous tasks, varying submission patterns and high hetero-
geneity of resources, the adaptive scheduling deserves to be used in many grid
and cloud-based systems.

Reinforcement learning, as an important class of learning automata is a
sort of learning based on iterative interaction with environment and analysis of
the received reward signal. The learning is based on a type of trial-and-error
search and delayed reward. RL is quite different from supervised learning, the
most common learning in machine learning. Supervised learning is based on
learning from training examples provided by an expert supervisor. But in an
interactive environment, it is often impossible to have sufficient examples of
desired behaviours covering all the state space. In these situations, it is highly
beneficial if the learner is able to learn from its experiences. It is the exact
benefit which is gained from reinforcement learning [22].

In general, reinforcement learning can be considered as an effective way of
solving many types of optimal control problems, particularly the MDP ones.
So, many of the optimal control solving methods are considered as reinforce-
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ment learning solutions. However, many of them require partially complete
knowledge of the environment. Three primary classes of reinforcement learn-
ing are Dynamic Programming (DP), Monte Carlo methods, and Temporal-
Difference (TD) learning. DP methods need an accurate model of the envi-
ronment and are computation-intensive. Monte Carlo solutions do not require
complete knowledge of the environment and are simpler to be applied, but are
not effective for step-by-step learning. The TD methods are free of model and
well suited for incremental learning. It takes advantages of DP and Monte
Carlo methods and learns directly from experiences without need for model
[22]. Q-learning is one of the well-known algorithms in the category of rein-
forcement learning. It is an off-policy TD algorithm with early convergence.
The efficiency of reinforcement learning has been shown in many dynamic ap-
plication environments such as traffic control systems [23, 24], wireless sensor
networks [25] and distributed control domains [26].

In this paper, a two-phase scheduling acting based on data awareness and
using Q-learning algorithm was proposed for data-intensive task scheduling
in a cluster-based data grid. In this study, a hierarchical multi-agent system
consisting of two levels of broker agents was applied to the task scheduling
in the cluster-based data grid. There is a global broker at the first level of the
system, which makes decisions based on the data communication cost to select
a suitable cluster. Then, at the second level the local brokers use a learning-
based strategy to select the proper processing node.

Most of the previous studies used different parameters of data access cost,
queue length or different combinations of them as primary optimization strate-
gies for task scheduling in data grids. In this study, along with data communi-
cation cost, a Q-learning-based method has been used to improve the schedul-
ing adaptation to dynamic changes and to high variability of submitted tasks.
Exploiting an adaptive control method showed better performance than other
common scheduling strategies for dynamic workloads with different task sub-
mission patterns.

This paper is organized as follows: In Section 9.2 a further overview of
related works is presented. Section 9.3 discusses the learning concepts used in
the proposed scheduling and presents the proposed two-phase learning-based
scheduling for cluster-based data grids. Section 9.4 describes the simulation
environment, evaluation scenarios and experimental results. Section 9.5 dis-
cusses performance evaluation of the proposed scheduling in comparison with
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other task schedulings. Section 9.6 concludes the paper and presents some
directions for further study.

9.2 Related Work
There are a number of related works for using RL-based methods in task
scheduling in grids. In [27] a simple reinforcement learning was used for
resource selection in a grid-like environment. In the proposed method, the
learner keeps a score indicating the efficiency of the resource for each possible
resource selection action. For scheduling a new submitted task, it selects the
resource with the maximum score. Then, it receives a reinforcement signal and
calculates a reward signal for the resource that has been selected. The simple
proposed learning-based selection was applied to a distributed resource allo-
cation in grid systems, but there was no explicit interaction between learners.
The agents just learnt from expected response time of jobs as a reinforcement
signal.

In [28] and [29] a dynamic resource selection called DRA-FRL was pre-
sented, which used RL in conjunction with a fuzzy rule base. A new RL-
based method, Actor Critic Fuzzy Reinforcement Learning (ACFRL-2), was
proposed to extend the application of RL to domains with large state-action
space like dynamic resource allocation in grids or computer networks. Using
RL in dynamic resource allocation is difficult, because the size of state space
will increase dramatically with the number of resource types. In [30] a multi-
agent reinforcement learning method called Ordinal Sharing Learning (OSL)
was proposed to realize a learning-based coordination between agents with the
aim of load balancing in large scale grids. The proposed learning was based on
using an ordinal information sharing system with limited communication. In
OSL, the agents make decisions based on shared utility tables.

In [31] a table-based RL called Sarsa was used for resource allocation in
autonomic systems for a simple scenario where the state space is small. In [32]
a multi-agent learning called Fair Action Learning (FAL) was proposed for on-
line resource selection in a distributed sequential resource allocation problem
(DSRAP). DSRAP refers to a resource allocation problem in a cluster-based
network. FAL is a policy gradient ascent algorithm to learn the local deci-
sion policy. In [33] a decision-making framework of agents was proposed. It
consists of two learning problems: local resource allocation and task routing
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problem (choosing a neighbor to forward a task). In [33] a gradient ascent
learning called Weighted Policy Learner (WPL) was proposed for a distributed
task allocation in various applications like grids and web services.

In [34] an RL-based resource allocation combined with Artificial Neural
Network (ANN) was proposed. This RL-based algorithm uses an ANN com-
ponent to estimate the long-term reward through various iterations. In [35]
an RL-based task scheduling in grid called Centralized Learning Distributed
Scheduling (CLDS) was presented. It is a multi-agent scheduling consisting of
one learner agent and several scheduler agents. In this scheduling, the sched-
uler agents submit their local rewards to the learner agent. The learner agent
updates its global utility table and shares the updated utility table with the
scheduler agents. The schedulers make decisions based on the updated utility
table.

In this study, a two-phase adaptive task scheduling based on data-awareness
and reinforcement learning for cluster-based data grids is proposed. It applies
a hierarchical multi-agent system consisting of two levels of broker agents to
task scheduling in a cluster-based data grid. The broker agent at the first level
of the system makes decisions based on the data communication cost to select
a suitable cluster. Then, at the second level, the local brokers use Q-learning
to select the proper processing node. The proposed scheduling uses learning in
conjunction with minimizing data communication cost.

9.3 Adaptive Scheduling Based on Reinforcement
Learning

In large-scale grid systems, due to high variability and heterogeneity of sub-
mitted tasks and resource types, it is reasonable to have an adaptive scheduling
to easily adapt to different changing conditions. To meet these requirements,
an adaptive RL-based scheduling algorithm may be suited for this application
environment. In the following, a brief discussion on the primary concepts of
Q-learning as a model-free offline policy is presented, then the details of the
proposed scheduling are described.
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9.3.1 Q-Learning: A Model-Free Reinforcement Learning

Reinforcement learning addresses learning from the experiences. It states how
an agent can learn an optimal policy to reach its goals by sensing the environ-
ment, taking possible actions and receiving consequent reward. In the standard
RL, the agent continually monitors the environment. It observes the current
state of the environment and selects an action based on its experiences to be
applied to the environment. The selected action may affect/change the current
state. The agent receives a reinforcement signal in a form of scalar reward as a
result of the selected action and state transition.

In order to reach a learning goal, the agent is responsible to find a policy
mapping states to actions in a way which maximizes the long-term cumula-
tive reward. Generally, the reinforcement learning problem is formulated as
a Markov Decision Process which is described by a tuple S, A, T , r, where
S is the state space of the environment, A is the set of possible actions, T is
the transition function which specifies the transition probability in state s by
action a, and r is the reward function specifying the immediate reward after a
transition to a new state from state s by taking action a.

In general, for learning the optimal policy, the goal of the learner is to
maximize the total reward. If the model of environment is completely known,
the optimal policy can be derived by DP method. But, in many problems, the
model environment is unknown and there is no accurate knowledge of the en-
vironment. In these conditions, RL learns the optimal policy by trial-and-error
experiences in the state space. Q-Learning is an RL algorithm which learns an
action-value function, Q, estimating the long-term action-value. The learned
action-value simply approximates the optimal action-value, independent of the
policy being followed. All the Q-values are stored in a Q-table. At each step
of learning, the Q-value is updated by

Q (st, at)← Q (st, at) + α
[
rt+1 + γmax

a
Q (st+1, a)−Q (st, at)

]
(9.2)

where α ∈ [0, 1] is the learning rate which specifies to what extent the agent
learns new information and, γ ∈ [0, 1] is the discount factor specifying the
weight of future rewards in the action-value update and, r is the immediate
reward [22]. Value 1 for the learning rate means that the agent considers only
the latest information while value 0 causes the agent not to learn anything. A
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value of 0 for discount factor shows that the agent only considers the current
reward, while approaching value 1 will make the agent try for acquiring a long-
term high reward. The normal procedural form of Q-Learning is shown in Fig.
9.1.

Q-learning will learn the optimal policy regardless of the policy that the
agent follows for action selection. Since it learns the optimal policy by any
policy which is followed, it is called off-policy TD learning [22]. In many
straightforward implementations of Q-learning, the learner chooses the action
with maximum Q-value at each step. To enhance the performance of learning,
an exploration strategy is usually added to the algorithm. One of the standard
ways is to introduce an additional value, epsilon, 0 < ε < 1. A value, between
0 and 1, is generated randomly, if it is less than epsilon, a random action is
chosen (exploration), otherwise the action with maximum Q-value is selected
(exploitation). Randomly choosing the next action in conjunction with giving
a higher probability to the actions that currently have higher Q-values may be
another way to improve the exploration of the learning.

The convergence of Q-learning is also rather fast. It means that with a total
number of transitions on the order of Nlog(N), where N is the number of
states, the agent can obtain the optimal policy [36].

Figure 9.1: Q-Learning algorithm
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9.3.2 A Two-Phase Adaptive Scheduling Based on Data Aware-
ness and Reinforcement Learning

In data grids, reducing data access cost plays an important role to decrease
the tasks completion time and improve performance of scheduling. Data ac-
cess cost is the required time to access data to process tasks. The model of
computing data access cost in a cluster-based data grid is defined as follows:

If task Ti is scheduled on node Sj , the data communication cost for access-
ing required data of Ti from Sj is given by [14]

DCCTi

Sj
=

∑
For all FlK in Ri

|Flk|/BjK (9.3)

where Ri is the list of required replicas/data files to process the task, FlK is
the kth data replica in Ri, |Flk| is the size of the replica, BjK is the network
bandwidth between node S and the source node of the kth replica. According
to the cluster-based topology of the data grid, the required data may be moved
to node Sj from various nodes in other clusters or within the same cluster. The
model of data communication cost can be defined as follows:

DCCTi

Sj
= Inter CTi,Sj

+ Intra CTi,Sj
(9.4)

where Inter CTi,Sj
is the data communication cost for accessing the required

replicas residing in different clusters from the origin cluster of Ti and Intra CTi,Sj

is the data communication cost for the required replicas which reside in the lo-
cal cluster. The wide-area links between clusters are usually much slower than
local networks within a cluster. Thus, the cost of data communication between
clusters is more than the cost of data communication within a cluster. As a re-
sult, reducing the number of data communications between clusters for access-
ing distributed data is of great importance for data-intensive task scheduling in
cluster-based grid systems.

The proposed algorithm is an immediate task scheduling based on a two-
step decision process in which the first step is to select the cluster which con-
tains the node(s) with the lowest data communication cost. The decisive factor
of total data communication cost would be the cost of data communication
among different clusters. At the next step, to improve the scheduling adap-
tation to the dynamic environment including dynamic workloads with vary-
ing task intervals, and high heterogeneity of submitted tasks and resources, an
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adaptive reinforcement learning-based task assignment policy using Q-learning
is used to select a proper node in the selected cluster with the minimum data
communication cost.

The proposed adaptive scheduling applies a hierarchical multi-agent sys-
tem to the scheduling process. It consists of one global broker agent at the first
level and several local broker agents at the second level within the clusters.
The global broker selects the proper cluster with minimum data communica-
tion cost, then the local broker inside the selected cluster exploits an adaptive
task assignment policy based on Q-learning for selecting the proper processing
node. Fig. 9.2 shows the general structure of the proposed scheduling. The lo-
cal broker observes the current state, selects a proper node as a possible action,
then receives the reward, and updates the Q-values.

The state of the environment is specified by a tuple (ns1, ns2, ..., nsn)

where nsn represents the number of tasks (waiting and underprocessing) at
node sn of the local cluster. The possible actions are specified by a set of
{as1, as2, ..., asn} where asn represents the action of selecting node sn. The
reward function is defined by

reward =
1

Completiontime
(9.5)

where,Completiontime is the required time for the completion of a scheduled
task. In the Q-learning based method, different action selection strategies can
be used. In this study, two types of action selection methods will be used
and investigated. One of them is a two-phase exploration-exploitation strategy
based on the size of the submitted task set. The other one is ε-greedy algorithm.
The completion time (response time) of task Ti on Sj , can be computed using
the following equation:

CTTi

Sj
=WTi

+DACTi

Sj
+ PTi

(9.6)

where WTi is the waiting time in the queue (queuing latency) to get the pro-
cessing service, DACTi

Sj
is the data access cost for task Ti, and PTi

is the
processing time of the data files. In the grid environment, in order to avoid
data collision, the performance isolation for data transfer through connecting
links should be guaranteed. Data access cost regarding waiting time for getting
permission to transfer data is defined as follows:

DACTi

Sj
= DCCTi

Sj
+ Delay DTTi

(9.7)
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where Delay DTTi
is the delay of data transfer in network links and DCCTi

Sj

is the data communication cost. Fig. 9.3 shows the steps of the proposed
learning-based scheduling.

Figure 9.2: The structure of the proposed scheduling

Figure 9.3: Two-step learning-based task scheduling
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9.4 Evaluation

In this study, OptorSim [3, 37], an open source data grid simulator, was used to
simulate the proposed two-step learning-based scheduling with different action
selection strategies and to perform the experimental evaluation. The purpose
is to assess its performance compared with four baseline scheduling strategie
sunder different workload patterns and analyze the effects of learning configu-
ration parameters on the performance of the proposed scheduling. OptorSim,
a java-based simulation tool developed under the European data grid project,
supports simulation of data grids with different topologies, scheduling algo-
rithms and various replication mechanisms.

In this study, the proposed adaptive scheduling has been implemented with
three action selection strategies, and incorporated as anew scheduling into Op-
torSim. The performance of the scheduling is evaluated during three scenarios
with three types of workloads, i.e., simple, random and CMS Data Challenge
2004 [3]. In each type of workload, several task sets with different number of
tasks are submitted to the grid. The performance of the proposed scheduling
algorithms is compared based on the makespan of the submitted task sets.

In the first step, through each scenario, the performance of the proposed
scheduling using three action selection and three replication strategies under a
specific type of workload was evaluated in terms of makespan. The first action
selection strategy is a two-phase exploration-exploitation acting based on the
size of the submitted task set. The other two action selection strategies use
ε-greedy algorithm with ε = 0.2 and ε = 0.5 respectively.

At the next step, the sensitivity of the proposed scheduling algorithm to
varying the learning parameters, i.e., learning and discount rates, is examined
and the effects of the learning parameters on the scheduling performance are
investigated.

The experiment environment including implementation details, the proper-
ties of simulation environment, performance and sensitivity analysis scenarios
and simulation results will be described in the following Sections.

9.4.1 Simulation Environment

In OptorSim, data grid can be implemented with different topologies. The
topology of the simulated cluster-based data grid and its structural properties
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are given in Fig. 9.4. It consists of 3 clusters and 27 nodes in which 13 nodes
have both computing and storage elements. The processing properties of the
computing elements of all nodes are the same. The capacity of queue in com-
puting elements was 200. A central node (node 17) is considered as a master
storage node for storing master copies of all files. In the simulation environ-
ment, some nodes may have neither computing nor storage elements. They are
used as network nodes. Connecting links between various nodes have differ-
ent bandwidths. The network bandwidth between clusters is 500Mb/s and the
band-width inside a cluster is 1000Mb/s for connections between nodes and
first level switches, and is 2000Mb/s for connections between switches.

During the experiments, there were 300 initial files distributed randomly to
the nodes of the grid. The size of a single file was 1GB. During the simulation,
tasks were randomly selected from 30 task types based on the selection proba-
bility of each type. Each task type had the same probability of being selected.
Each type of tasks requires different number of files.

In order to simulate the conditions of a real application environment and
to provide high variability for submitted tasks, the distribution of task size was
considered as Pareto, a heavy-tailed distribution. In this distribution, most of
the task types had small size, i.e., required only a few number of files, and the
remaining few types were of large size.

At the first step of evaluation, three scenarios using three types of work-
loads were arranged to evaluate the performance of the proposed learning-
based scheduling in comparison to four baseline scheduling strategies. In each
scenario, several sets of tasks with different numbers of tasks from 100 to 1200
were submitted to the data grid according to a specific submission pattern stated
in the scenario.

Tasks were placed in the nodes according to the selected scheduling imme-
diately after their arrival. Three replacement mechanisms such as Least Re-
cently Used (LRU), Least Frequently Used (LFU) and Eco Model Optimizer
(Binomial) were also used to manage the storage space for storing new repli-
cas in the nodes during the task execution. LRU replicates the new required
replica. It deletes the oldest file if there is no enough storage space for the
new replica. LFU replicates the new replica while deleting the least frequently
accessed file if there is no enough space. Eco Model Optimizer (Binomial)
is a built-in replication optimizer in OptorSim which replicates the data file if
deleting the least valuable file is economically beneficial according to binomial
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Number	of	clusters	=	3,	Number	of	sites	=	27
Number	of	sites	with	computing	elements	=	13
Number	of	sites	with	storage	elements	=	14
Storage	space	of	the	central	node	=	300	GB
Storage	space	of	other	nodes	=	10	GB
Bandwidth	--		WAN:	500	Mb/s,	LAN:	1000	Mb/s,	2000	Mb/s
Number	of	task	types	=	30
Number	of	initial	files	=	300
Size	of	a	single	file	=	1	GB	

Grid	and	Job	Configuration	Parameters

Figure 9.4: Topology of the simulated cluster-based data grid

prediction function.
At the second step of experimental evaluation, a sensitivity analysis sce-

nario under CMS DC04 workload pattern regarding using LFU replication
strategy is performed to examine how the learning parameters can affect the
performance of the proposed learning-based scheduling.

9.4.2 Experimental Results

For the purpose of performance evaluation, we designed a number of experi-
ments to examine how the proposed scheduling can work under different work-
loads and also how its performance can be affected by the values of learning pa-
rameters, i.e., learning and discount rates. In this study, the performance of the
proposed learning-based scheduling was compared with four baseline schedul-
ing algorithms including Queue Length (Shortest Queue), Access Cost, Queue
Access Cost (QAC) and HCS during three performance analysis scenarios un-
der different types of workloads. The mechanism of each baseline scheduling
algorithm is as follows:

Queue Length schedules the task to the node with the shortest waiting
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queue. In Access Cost, the task is assigned to the node with the lowest data
communication cost for accessing the required data which is unavailable in the
processing node. Queue Access Cost uses a combination of queue length and
data communication cost to schedule tasks. HCS scheduling [14] uses a two-
step decision making mechanism based on data transfer cost and the length of
waiting queue, in order to decide the host processing node of the submitted
task.

In each performance analysis scenario, the behaviours of scheduling al-
gorithms are examined under a variety of task sets with different numbers of
tasks that are submitted according to a submission pattern. In the experiments
of performance analysis scenarios, three types of action selection strategy were
used in the proposed learning-based scheduling and the performance of the pro-
posed scheduling using different action selection strategies was compared with
baseline scheduling algorithms. The first version of the proposed scheduling
uses a two-phase exploration-exploitation strategy acting based on the number
of tasks in the submitted task set. In this strategy, the random action selection,
i.e., exploration, is used for the first half of the tasks in the task set. Afterwards,
the exploitation strategy, which selects the action with the highest Q-value, is
used for the second half of the tasks. The ε-greedy algorithm with ε = 0.2 and
ε = 0.5 was used as the action selection strategy in the second and the third
version of the proposed scheduling. The ε-greedy algorithm is one of the stan-
dard ways to make trade-off between exploration and exploitation in the action
selection. The proposed scheduling in the performance analysis experiments is
run with the configuration of learning rate α = 0.1, and discount rate γ = 0.5.

9.4.3 Performance Analysis

Scenario 1. In this scenario, a simple workload pattern was used to evaluate
performance of scheduling algorithms. In the simple workload, tasks are sub-
mitted at regular intervals until all tasks have been submitted. A fixed interval
between tasks is set by parameter delay in the simulation environment. In this
scenario, the tasks of each task set were submitted according to a simple sub-
mission pattern. The parameter of delay between tasks was set to 1000ms.
The performance of the proposed learning-based scheduling with different ac-
tion selection strategies was compared with baseline scheduling algorithms in
terms of makespan of the task sets. Fig. 9.5 shows the behavior of evaluated
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scheduling algorithms in terms of makespan under different task sets regarding
using LRU, LFU, and Eco Model Optimizer replication strategies respectively.
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Figure 9.5: Scheduling algorithms’ makespan regarding the simple workload

Scenario 2. In the second performance evaluation scenario, the tasks were
submitted according to a random workload pattern. Random workload uses
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uniformly random values for task intervals. The random intervals are between
zero and twice the task delay parameter. In this scenario, the parameter of
delay was set to 1000ms as well. Fig. 9.6 shows the makespan of the various
task sets scheduled by different scheduling algorithms while LRU, LFU and
Eco Model Optimizer were used as replication algorithms respectively.
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Figure 9.6: Scheduling algorithms’ makespan regarding the random workload
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Scenario 3. In the third performance evaluation scenario, CMSDC04 pat-
tern was applied to task submission. This workload pattern uses a Gaussian
distribution for submitted tasks. Fig. 9.7 presents the makespan of the various
task sets scheduled by the algorithms with regard to the use of LRU, LFU, and
Eco Model Optimizer as replication strategies.
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Figure 9.7: Scheduling algorithms’ makespan regarding the CMS DC04 pattern
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9.4.4 Sensitivity Analysis

The behavior of the learning-based scheduling can be affected by varying the
learning rate (α) and discount rate (γ) as learning parameters. Two experi-
ments were performed to analyze the effects of learning parameters on the per-
formance of learning-based scheduling. The sensitivity analysis experiments
are done with the second type of the proposed learning-based scheduling which
uses ε-greedy with ε = 0.2, under CMS DC04 workload pattern and regarding
LFU replication. Each experiment involves varying the values of one of the
learning parameters, while keeping the other one constant. The first experi-
ment characterizes the effects of learning rate (α) and the second one involves
analyzing the effects of discount rate (γ) on the performance of learning-based
scheduling. To examine the results of varying learning parameters, the discount
rate (γ) was set to 0.5 in the first experiment and we set the learning rate (α)

to 0.1 during the second experiment. Fig. 9.8 shows the impacts of varying
learning parameters on makespan values of scheduling algorithms.

9.5 Discussion

The makespan plots of scheduling performance during the performance analy-
sis experiments generally demonstrate lower values of makespan for submitted
task sets which were allocated resources by learning-based scheduling than
baseline scheduling algorithms. Consequently, the performance analysis re-
sults show that the learning-based algorithm adapts well to the workload pat-
tern and status of the environment by scheduling tasks to the proper host nodes.

In the first scenario, simple workload was used for evaluating the perfor-
mance of the proposed scheduling, using LRU, LFU, and Eco Model Optimizer
replication strategies. In this scenario, according to Fig. 9.5, the learning-based
scheduling algorithms mainly scheduled the task sets with lower makespan
than other base-line algorithms. The learning-based algorithm which uses ε-
greedy with ε = 0.2 gives the lowest makespan for task sets, specifically with
increase in the size of task sets. The performance improvement caused by all
versions of the learning-based scheduling were more considerable when Eco
Model Optimizer has been used as replication strategy. On the other hand, un-
der the simple workload pattern, the data grid will not face critical conditions
like spikes in the number of submitted tasks.
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Figure 9.8: Learning parameters’ impact on the learning-based scheduling performance

Consequently, during the simple workload, the scheduling performance of
the algorithms are generally close to each other.

In the second scenario, a random submission pattern was used for per-
formance evaluation of scheduling algorithms. Using random workload, all
versions of the learning-based scheduling led to lower makespan for different
submitted task sets than base-line scheduling algorithms. The learning-based
scheduling using ε-greedy with ε = 0.22 led to the lowest makespan for sub-
mitted task sets among all versions of the proposed scheduling. The learning-
based scheduling using ε-greedy with ε = 0.2 results in the most improvement
regardless of the replication strategy used in the experiment. In general, the
learning-based scheduling primarily acts adaptively to the changes and per-
forms independently of replication strategies. During the random workload,
the effectiveness of the learning-based scheduling ability to adapt to the status
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of the grid and to learn the optimal policy is presented more than the sim-
ple workload. It led to a considerable performance improvement in terms of
makespan measure.

In the third performance evaluation scenario, CMS DC04 pattern was used
as task submission patter for the task sets. CMS DC04 uses a Gaussian distri-
bution model for the tasks submitted over one day. During the experiments of
the third performance evaluation scenario, the learning-based scheduling algo-
rithms also worked better than other scheduling algorithms, regardless of the
replication strategy. The amount of performance improvement mainly rises,
specifically with increase in the size of task sets. With the CMS DC04 work-
load pattern, the learning-based scheduling which uses ε-greedy with ε = 0.2

also gave the most improvement among the other versions of the proposed
scheduling.

Generally, in all the performance analysis experiments with the learning
configuration of learning rate α = 0.1 and discount rate γ = 0.5, the learning-
based scheduling which uses ε-greedy with ε = 0.2 led to the most perfor-
mance improvement. Using ε = 0.2 provides more exploitation than other
action selection strategies and let the learner uses its learned experiences more.

With ε = 0.2 the local brokers act primarily based on the achieved expe-
rience stored in the Q-table, i.e., they select actions based on the Q-values. It
implies that with a high probability, the learner selects an action with the high-
est utility value among the experienced actions, rather than a random action.
Therefore, the contribution of the experience is more than simple exploration in
the action selection. This lets the learners use their experience more than using
random selection and exhibit a good play of learned policy for task schedul-
ing. Almost, all experiments showed that the performance improvement of the
learning-based scheduling using ε-greedy with ε = 0.2 is more considerable
when there is an increase in the size of task sets; this is because the broker acts
based on the learned policy which has been converged during more number
of learning steps. In other words, the experience of the broker will be more
accurate during the experiments with task sets of larger size.

Simulation results of the performance analysis experiments demonstrate
that the learning-based scheduling can outperform other baseline scheduling
strategies particularly under different workloads with changing features in dy-
namic environments. It can well adapt to the changing conditions given limited
knowledge of the environment. It is also presented that using an action selec-
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tion strategy with more tendency to exploitation leads to more performance
improvement in the learning-based scheduling of different workloads.

In the sensitivity analysis experiments, the effects of varying learning pa-
rameters, i.e., learning and discount rates on the performance of learning-based
scheduling are examined. The learning rate controls how fast the learner learns
the policy, i.e., to what extent the new utility value affects the Q-value. The
discount rate shows to what extent the learner concerns itself with maximizing
the future rewards. Setting the learning rate to a high value causes the learner
to consider only the new information and using a high value for the discount
rate makes the learner take into account the future rewards strongly.

According to the simulation results of the sensitivity analysis in Fig. 9.8,
the baseline learning configuration of learning rate α = 0.1 and discount rate
γ = 0.5 leads to the best performance in terms of makespan for the selected
learning-based scheduling. Since the problem environment is stochastic, set-
ting the learning rate to a low value like 0.1 and using a balance between
impacts of immediate and future rewards by setting the discount rate to 0.5,
provides the best performance for the learning-based scheduling.

9.6 Conclusion and Future Work
In grid systems, heterogeneity of submitted tasks and workload unpredictabil-
ity are some of the important barriers to task scheduling in changing environ-
ments. Thus in order to improve the performance of task scheduling in dy-
namic environments, in this study, a two-step adaptive task scheduling based
on data awareness and reinforcement learning was proposed for cluster-based
data grids. The proposed adaptive scheduling consists of one global broker
agent and several local broker agents inside the clusters. At the first step of
the proposed scheduling, the global broker selects the cluster with minimum
data communication cost. At the second step, in order to make the scheduling
adaptive to changing features of the environment, a reinforcement learning-
based task assignment policy based on Q-learning is used by the local brokers
to select a proper node in the cluster selected at the first step. According to
the experimental results, the proposed learning-based scheduling gives better
performance, in comparison with other scheduling strategies. The performance
improvement of the proposed learning-based scheduling is more considerable
with increase in the number of tasks in varying workloads. Setting the learning
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rate to a rather low value and putting a balance between the immediate and
future rewards provide the best learning configuration for the learning-based
scheduling in cluster-based data grids.

Applying cooperative multi-agent systems with cooperative learning to schedul-
ing problems could be further directions for future study in the scope of apply-
ing machine learning techniques to control and management problems in grids
and cloud-based environments.
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