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Abstract. In this work, we present an actor-based approach for se-
curity analysis of Cyber-Physical Systems at the design phase. We use
Timed Rebeca, an actor-based modeling language, to model the behavior
of components and potential attacks, and verify the security properties
using Rebeca model checking tool. We employ STRIDE model as a ref-
erence for classifying the attacks. To demonstrate the applicability of
our approach, we use a Secure Water Treatment (SWaT) system as a
case study. We analyze the architecture of the SWaT system using three
different attack schemes in which various parts of the system network
and physical devices are compromised. In the end, we identify single and
combined attack scenarios that violate security properties.

Keywords: Cyber-Physical Systems (CPS) · Cyber security · Attack
scenarios · Rebeca · Secure Water Treatment (SWaT) · Attack detection.

1 Introduction

Cyber-Physical Systems (CPS) refer to a system in which physical, computa-
tional and communication components are integrated to achieve a larger goal [1].
Generally, a CPS includes three kinds of components i.e. sensors, controllers and
actuators. Sensors are responsible to gather data about the state of a physical
process and submit them to the controllers. By analyzing the data, if the con-
trollers detect a need for some changes in the process, they apply those changes
by sending appropriate commands to the actuators [2]. Despite the advantages
of combining cyber and physical spaces, connection to the Internet makes CPS
exposed to several attacks, which may lead to undesirable changes in the physical
process [3].

To tackle CPS attacks, it is required to consider security of CPS beyond the
IT systems standard information security [4,5]. Several researchers have proposed
formal or simulation methods to analyse the security of CPS [6,7,8]. The work
presented in this paper is a step towards an actor-based approach for assessing
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the security aspects of CPS. We use Timed Rebeca as an actor-based modeling
language [9,10,11] to model the behavior of CPS components and attack scenar-
ios, and we utilize the STRIDE [12] model as a reference for classifying potential
attacks on a CPS.

As an actor-based language, Rebeca [13,14] is well-suited for modeling com-
plex behaviors in event-based asynchronous distributed systems [15]. Timed Re-
beca is supported by a model checking tool suite Afra [16] and can be used for
verifying CPS [17]. In this work, beside modeling a cyber-physical system, we
propose a model for both kinds of attacks on communication and components.
Using Timed Rebeca, an attacker is modeled as an actor to jeopardise the com-
munication, and a compromised component is modeled as an actor with possible
malfunction. In addition, we use the security threats category, STRIDE, to sys-
tematically map the reported CPS attacks in [18,19,20] to the STRIDE threat
types and identify the attacks in our models. By model checking we analyze
security of the CPS design to recognize where the potential attack scenarios
can successfully cause a failure in the system. The output counter-example gives
us the trace of events leading to a security failure which can then be used for
developing mitigation plans.

We demonstrate the applicability of this method in practice using a case
study on Secure Water Treatment (SWaT) system [21]. The natural mapping
between the communicating entities in the problem domain and actors in Rebeca
models makes the approach easy to understand and reuse [22].

The paper is organized as follows. In Section 2, we introduce Rebeca, and our
approach for security analysis is introduced in Section 3. Section 4 shows how
our attack models can be classified within the STRIDE model. In Section 5, we
describe the case study and evaluate our experimental results. Section 6 discusses
the related work and Section 7 concludes the paper and gives a summary of our
future works.

2 An Actor-based modeling language: Rebeca

Rebeca is an actor-based modeling language with formal foundation used for
modeling concurrent and reactive systems with asynchronous message pass-
ing [13,23]. A Rebeca model consists of the definition of reactive classes, each
describing the type of a certain number of actors (called rebecs, we use both
terms rebec and actor interchangeably in the Rebeca context). Each reactive
class declares the size of its message queue, a set of state variables, and the mes-
sages to which it can respond. Each rebec has a set of known rebecs to which
it can send messages. The behavior of a rebec is determined by its message
servers. Each rebec takes a message from its message queue and executes the
corresponding message server. Taking a message from the queue to execute it
can be seen as an event. Communication takes place by asynchronous message
passing, which is non-blocking for both sender and receiver.

Rebeca comes with a formal semantics that makes it suitable for model check-
ing purposes. Additionally, the language supports temporal logic to specify de-
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sired properties. Timed Rebeca [9,11] is an extension of Rebeca where computa-
tion time and network delay can be modeled. In Timed Rebeca, each rebec has
its own local clock, but there is also a notion of global time based on synchro-
nized distributed clocks of all rebecs. Messages that are sent to a rebec are put
in its message bag together with their arrival time, and their deadline. Meth-
ods are executed atomically, but the passing of time during the execution of
methods can be modeled. Timed Rebeca is used for modeling and analyzing of
distributed systems in different ways. In [24], schedulability analysis of wireless
sensor networks is performed, different design decisions and routing algorithms
in Network on Chips are analyzed in [25], and faults are discovered and reported
in the mobile ad-hoc network protocols in [26]. In [27], Sirjani, Lee and Khames-
panah showed how Timed Rebeca can be used for formal verification of CPS,
and in [28] it is shown how a CPS can be modeled using Timed Rebeca.

Afra tool [16] is an IDE with a dedicated model checker, Rebeca Model
Checker (RMC), for verifying Rebeca family models. The tool provides devel-
opment environment for models, property specification, model checking, and
counter-example visualization.

3 Methodology

As depicted in Figure 1, the proposed method for CPS security analysis includes
the following steps: (1) the Rebeca model of the CPS is developed from the
system design specifications, (2) the potential attack scenarios against the system
are modeled, (3) the security properties are defined in terms of assertions or
temporal logic, and (4) Afra is used to identify the events trace that leads to a
security failure. The above steps are elaborated in the following subsections.

System Design

Security
Requirements

Security Objectives

Afra
RMC

Unsatisfied Properties
Counter-Examples

Events Trace 
Successful Attack

Security Properties
LTL, TCTL or
Assertions 

Rebeca Model
System and Attack

Modeling

CPS Specification

Satisfied Properties

Actor Modeling Security Analysis

Fig. 1: The overview of the actor-based security analysis process.

3.1 Building the Rebeca model of the Cyber-Physical System

We consider each CPS component and physical processes as an actor. We re-
alise four types of actors in our Rebeca model, controllers, sensors, actuators
and physical processes. Generally, the interaction scenarios between these actors
follow a closed-loop feedback. Sensor observes the physical component’s status,
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and sends the sensed data to the controller denoting the state of the physical
component. Based on the received sensed data, the controller sends the control
command to the actuator, and the actuator performs the actual physical change.
The Rebeca model of a CPS includes reactive classes corresponding to the four
categories of actors. In real cases, we may have different kinds of actors belonging
to each category (e.g., temperature sensors, speed sensors, etc.), and each kind
may be defined by a distinct reactive class.

Generally, the continuous behavior of physical components is expressed using
differential equations like in Hybrid Automata [29]. Here, we abstract the con-
tinuous behavior and only model the discrete jump transitions among the states
(states are called control modes in hybrid automata). We model the progress of
time in each state using a delay statement in Timed Rebeca. In each actor rep-
resenting a physical component, we use state variables to model different states.
For example, different water levels of the low, medium, and high in a tank are
modeled using state variables. Although increasing and decreasing the water
level is a continuous behavior, we only model the change in the states after a
certain amount of time using a delay statement. When a message for increasing
or decreasing the water level is received from an actuator, the value of the state
variable is set accordingly after a certain amount of time.

3.2 Attack Modeling

According to the malicious behaviour on communication channels and compo-
nents three cases are considered as follows: (1) attacker targets the communi-
cation channel between two components through injecting malicious messages,
(2) attacker manipulates the internal behavior of one or more components e.g.
through malicious code injection, and (3) one or more attackers perform a coordi-
nated attack to launch malicious behaviour on both the communication channels
and the components. To illustrate these cases, we define three attack schemes.

Scheme-A: Attack on Communication indicates a situation in which
an attacker injects malicious messages into the communication channels between
the controller and its associated sensor or actuator. These messages may mis-
lead the receiver and cause a system security failure. For example, as depicted in
Figure 2(a), attacker compromises the channel between the sensor and the con-
troller, and injects a malicious data message that shows a state different from
the real state of physical process. Note that the controller is not aware of the
communication interruption, thus accepts the injected data and gives the faulty
command to the actuator. Actuator performs the unintended action and may
modify the physical process.

In the Rebeca model, a separate reactive class is defined to model the at-
tacker’s behavior in this scheme. This reactive class includes at least one message
server to send malicious message(s), e.g. the sensed data message, to the target
channel(s) at an appropriate time. To perform exhaustive security check, a set
of Rebeca models is built that contains one or more attacker actors that tar-
get different channels at different injection times during CPS operation. These
Rebeca models are inputs of executing CPS security analysis.
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Fig. 2: Three attack schemes in Rebeca model for security analysis of CPS.

Scheme-B: Attack on Components indicates a situation in which a num-
ber of components are compromised and do not function correctly. Attackers may
have direct access to the components and perform physical attacks on them. They
may damage some sensors/actuators or inject malicious code into the controllers.
For example, as Figure 2(b) shows, an attacker may compromise an actuator and
perform an action over physical process different from the command issued by
the controller. This action of the compromised actuator will effect the physical
process state and sensor feedback report.

This scheme is modeled in the Rebeca model as an additional message server
inside the reactive class corresponding to the target component. This message
server models the incorrect functionality. In the above example, the Rebeca
model includes the compromised actuator actor which has a message server
sending the malicious message to the physical process actor once receiving a
control command from the controller. Similar to Attack Scheme-A, all the pos-
sible Rebeca models including one or more compromised components are built
and the models are analysed in the model checking step.

Scheme-C: Combined Attack is a combination of the previous two attack
schemes in which both the system components and communication channels are
compromised by attackers. Usually, this happens when more than one attacker
try to attack the system in a coordinated way. Figure 2(c) illustrates a CPS with
presence of two attackers in which attacker A compromises actuator to launch
an alteration on the physical process, and attacker B injects a false data message
into the channel from the sensor to the controller. This coordinated operation
of attackers makes an unexpected change on the physical process without the
controller awareness. Indeed, the injected data message is sent to the controller
falsely showing that the expected action is performed rather than the malicious
alteration. The modeling of this scheme would include various combinations of
the defined attackers and compromised components as actors in a Rebeca model.
We can choose many kinds of attack scenarios with assumption of compromised
network or components in Rebeca model and check the attacks damage on the
CPS system.
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3.3 Model Checking and Security Analysis

The security objectives will be the basis for defining the security properties
to be verified. Afra supports LTL, TCTL and assertions for property specifica-
tion. The most important security objectives are confidentiality, integrity and
availability [30] presented in Table 1 and referred to in Section 4.

We use RMC to automatically verify each of the specified security properties.
If RMC detects that a property is not satisfied by the Rebeca model, it pro-
vides the modeler with a counter-example detailing the sequence of events that
would lead to a security violation. The sequence of events determines a success-
ful attack. Realising the possible successful attacks can be the basis for applying
appropriate countermeasures. In some cases, it may be enough to change the
security policies to protect the system against the attacks, and in some cases we
may need a security component such as an intrusion detection system (IDS) to
keep the system safe against intruders. As our future work, we would incorporate
and check these solutions in the model.

The common problem in model checking is state-space explosion. In principle,
a Timed Rebeca model of well-behaved reactive systems in general (including
CPS), has a recurrent bounded behavior [11]. Although we model time, the model
checking tool is able to distinguish when a newly generated state is already
visited and the only difference is in the logical time stamps. If needed, while
running the model checker we can use assertions to stop the process and look
into the state space. In any case we can have a bound on the growing time
stamps to stop the model checking at a certain time.

4 Attack Classification

STRIDE3 is designed as a model for identifying different types of threats that
a system may experience and the corresponding security objective which might
be violated [12]. In Table 1, we classify the significant attacks on CPS (reported
in [18,19,20]) based on the STRIDE categories. The cyber and physical attacks
exploit emerging CPS-related vulnerabilities in the two aspects of communica-
tion and component, and are shown in Table 1 as Scheme-A and Scheme-B.
Scheme-A consists of the attack scenarios which are secretly recording or mod-
ifying the data transmitted over the channels (e.g., eavesdropping, MITM and
injection attack). Scheme-B includes the attacks that inject malicious code into
the software components or perform a malicious alteration on a physical com-
ponent (e.g., malware and physical attack). We can model each of the attacks
using our methodology. In Section 5.1, we explain how some of these attacks can
occur on communication and components of the SWaT system.

3 The acronym STRIDE stands for Spoofing, Tampering, Reputation, Information
Disclosure, Denial of Service, and Elevation of Privilege.
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Table 1: Attack Classification using STRIDE model.

Threat Type
(Security Objective)

Cyber and Physical Attack Scheme-A Scheme-B

Spoofing
(Authentication)

Masquerade attack [19]
Packet spoofing attack [20]

Tampering
(Integrity)

Man-in-the-middle (MITM) [19]
Injection attack [20] [20]
Replay attack [19]
Malware (Virus or Worms) [20]
Physical attack [20] [18]

Reputation
(Non-Repudiation)

On-Off attack [18]

Information
Disclosure
(Confidentiality)

Eavesdropping [19]
Malware (Spyware) [20]
Side-channel attack [20]
Physical attack [20] [18]

Denial of
Service
(Availability)

Resource exhaustion attack [19] [20]
Interruption attack [19]
Malware (Ransomware) [20]
Physical attack [20] [18]

Elevation of
Privilege
(Authorization)

Malware (Rootkit) [20]

5 The SWaT Case Study and Evaluation

In this section, we discuss an experimental study on the SWaT testbed [21]. We
first present the SWaT architecture and its security objectives. Then, we provide
details on the Rebeca model, and finally, we discuss the security analysis results.
The SWaT testbed is a scaled-down version of an industrial water treatment
system. This testbed is used for several research and training purposes in the
iTrust research center [21].

The water treatment process in the SWaT system consists of three stages.
These stages include supplying raw water into the system, Ultra-Filtration (UF)
and Reverse Osmosis (RO). In each stage, there is a PLC responsible for control-
ling a water tank. The PLC is directly connected to some actuators (i.e., valves
or pumps) through a local network. A simple password-based authentication is
the only mechanism employed to control access to the network, which makes the
SWaT system vulnerable to eavesdropping or packet injection attacks [6].

At any stage during the execution of the water treatment process, each pump
can be in On or Off state, and respectively each valve can be in one of the two
states Open or Close. Also, three states are considered for the big tanks (i.e.,
Tank1 and Tank2): Low(l), Medium(m), and High(h), and two states for the
small tank (Tank3): Low(l) and High(h). During the system operation, whenever
the water level of a tank changes to h, the associated sensor reports the change
to the responsible PLC. That PLC will close the valve or turn off the pump that
is pouring water into the tank. Also, the PLC may open a valve, turn a pump
on, or send open/on requests to other PLCs when the water level in the tank is
either l or m. The PLC1, PLC2 and PLC3 are configured to interact with each
other to manage the SWaT system.
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A dataset collected from the SWaT system operation is available in the iTrust
homepage for research purposes [31]. The dataset includes data about network
traffic and sensor and actuator status during normal operation of the system.
The dataset indicates that one millimeter increase or decrease in water level
of Tank1 and Tank2 takes approximately two seconds. The sensors of Tank1

or Tank2 report the water level in millimeters. The capacity of Tank3 is half
capacity of Tank1 and Tank2, and its sensor reports only low and high levels of
water to the corresponding PLC.

5.1 Security objectives and Threats

We assume that malicious attackers have the ability of injecting arbitrary pack-
ets into the communication channels between PLCs and sensors/actuators, and
also they are able to alter the functionality of sensors/actuators. Here we use the
STRIDE terminology to explain the possible attack scenarios. An attacker may
break through the network authentication, disguise herself as an actual system
component (spoofing threat) and inject a packet into the channel between sensor
and PLC (tampering threat). The integrity objective of the system is jeopar-
dized when an attacker wants to mislead the PLC (reputation threat) by sending
a packet that contains a value different from the real value of the water tank
status. Another attack scenario is possible when an attacker wants to jeopardize
the availability of the system by sending the same message to a communication
channel several times. This repetition causes the channel to be overwhelmed with
several packets (denial of service threat). It is even possible that the attacker
changes the state of an actuator through bypassing the actual commands coming
from the PLC.

In this experiment we focus on the integrity of SWaT system following the
STRIDE model. In fact, we use model checking to detect the undesirable events
that might happen while attackers tamper the channels (e.g., by injecting pack-
ets) and compromise sensors/actuators by altering their functionality (e.g., phys-
ical attack).

5.2 SWaT Actor Model

The actor model of the SWaT system is depicted in Figure 3. In this model,
each shape represents an actor which corresponds to a component in the SWaT
abstract architecture. Each arrow models a message passed between two com-
ponents. In the model, the messages that may be the targets of attackers are
distinguished from the secure ones. The red points with numbers from one to six
indicate the possible compromised channels where the attackers may inject mes-
sages. The compromised channels are due to the lack of strong authentication
and tamper-resistant mechanisms.

The PLCs communicate with each other through a separate protected net-
work. For example, the open Req/close Req or the on Req message passed in
the secured channel between the PLCs may not be the target of any attacker.
However, the messages (l, m, and h) which are transmitted from the sensors
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Fig. 3: SWaT actor model.

to the PLCs may be tampered by an attacker to affect the decisions made by
the PLCs. The blue points represent the components that may behave mali-
ciously. Typically, the malicious behaviour of the component leads to a faulty
data transmission. For instance, whenever a pump is compromised, it may trans-
mit message waterIncrease to the connected tank once it receives the command
Turn Off from the corresponding PLC.

In the SWaT actor model, we assume that the water level in each tank is
low in the initial state. Also, the water treatment process begins by pumping
raw water to Tank1 and it ends when the cleaned water flows out of Tank3.
During the process execution, each sensor sends water level information to the
corresponding PLC periodically. In addition, based on the iTrust dataset (see
Section 5) in the SWaT system the sensing period is 1 second, and the water
level is changed every 1000 seconds. We use these values for setting the value of
parameters (i.e., sensing interval and operationTimeTank) in the Rebeca model.

5.3 The Rebeca Model of the SWaT System

Here, we provide a detailed explanation of the Rebeca model developed for
the SWaT system. The complete model is available in [32]. Listing 1 shows an
abstract view of the SWaT Rebeca model. The main block includes the decla-
rations of all rebecs defined in the SWaT actor model (see Figure 3) together
with an attacker rebec (see Listing 1, lines 73-88). In each declaration, the first
parameter list includes the known rebecs, those which the declared rebec com-
municates with. For example, the known rebecs of PLC1 are Pump1, Valve and
Sensor1. The second parameter list includes the parameters to be passed to the
constructor of the rebec.

In addition to the main block, the Rebeca model includes the reactive classes
defining the behavior of the SWaT actors. For example, the PLC1 reactive class
has three known rebecs which are instances of reactive classes Pump1, Valve and
Sensor1 (see Listing 1, lines 5-18). The PLC1 reactive class includes a Boolean
state variable openReqPlc2 whose value indicates whether a water request is
received from PLC2 or not. This variable is initialized to false in the constructor
of PLC1.

9



1 env boolean p1Compromised = false; env int p1Compromised_time = 0;

2 ... // environment variables

3 env int chl = 1; env int malMsg = 0; env int attackTime = 0;

4 env int sensing_interval = 1; env int operationTimeTank = 1000;

5 reactiveclass PLC1(5){

6 knownrebecs{ Pump1 pump1; Valve valve; sensorTank1 sensor1;}

7 statevars{ boolean openReqPlc2, pump1On, valveOpen; int waterLevelTank1;}

8 PLC1(){ openReqPlc2 = false; waterLevelTank1 = 0; pump1On = false; valveOpen = false;}

9 msgsrv processSensorData(int waterLevel){

10 if (waterLevel == 1){

11 if (waterLevelTank1 != waterLevel){ pump1.on(); pump1On = true;}

12 } else if (waterLevel == 2 && openReqPlc2 == true && pump1On == true && valveOpen == false){

13 if (waterLevelTank1 != waterLevel){ openReqPlc2 = false; valve.open(); valveOpen = true;}

14 } else {...}

15 waterLevelTank1 = waterLevel;}

16 msgsrv openReq(){ openReqPlc2 = true;}

17 msgsrv closeReq(){ valve.close();}

18 }

19 reactiveclass PLC2(5){...} reactiveclass PLC3(5){...}

20 reactiveclass Tank1(10){

21 knownrebecs{ sensorTank1 sensor;}

22 statevars{ boolean underFlow,low,medium,high,overFlow; int status;}

23 Tank1(){ underFlow = false; overFlow = false; low = true; medium = false; high = false;}

24 msgsrv status(){

25 if (underFlow){sensor.reportStatus(0);

26 } else if (low){sensor.reportStatus(1);

27 } else {...}}

28 msgsrv waterIncrease(){

29 delay(operationTimeTank);

30 ... //changes water level status

31 if (low == true) { medium = true; low = false; high = false;

32 } else if (medium == true) { high = true; low = false; medium = false;

33 } else if (high == true) { overFlow = true; low = false; medium = false; high = false;}}

34 msgsrv waterDecrease(){...}

35 }

36 reactiveclass Tank2(10){...} reactiveclass Tank3(10){...}

37 reactiveclass Pump1(10){

38 knownrebecs{ Tank1 tank1;}

39 statevars{ boolean On, maliciousAction;}

40 Pump1(boolean compromised, int compTime){

41 on = false; maliciousAction = false;

42 if (compromised == true) { self.maliciousAct() after(compTime);}}

43 msgsrv on(){

44 if(maliciousAction == true) { on = false; maliciousAction = false;

45 } else if (on == true) { //do nothing

46 } else { on = true; tank1.waterIncrease();

47 self.KeepOnpumping() after(operationTimeTank);}}

48 msgsrv KeepOnpumping(){

49 if (on == true) {

50 tank1.waterIncrease(); self.KeepOnpumping() after(operationTimeTank);}}

51 msgsrv off(){

52 if(maliciousAction == true) { on = true; tank1.waterIncrease();

53 self.KeepOnpumping() after(operationTimeTank); maliciousAction = false;

54 } else {on = false;}}

55 msgsrv maliciousAct(){ maliciousAction = true;}

56 }

57 reactiveclass Pump2(10){...} reactiveclass Valve(10){...}

58 reactiveclass SensorTank1(10){...} reactiveclass SensorTank2(10){...}

59 reactiveclass SensorTank3(10){...} reactiveclass reverseOsmosisUnit(5){...}

60 reactiveclass Attacker(3){

61 knownrebecs{ PLC1 plc1; PLC2 plc2; PLC3 plc3; Pump1 pump1; Pump2 pump2; Valve valve;}

62 Attacker(int chl, int maliciousMsg, int attackTime){

63 if (chl == 1) { self.channelPlc1P1(maliciousMsg, attackTime);

64 } else if (chl == 2) {self.channelPlc1S(maliciousMsg, attackTime);

65 } else {...}}

66 msgsrv channelPlc1P1(int msg, int attackTime){

67 if(msg == 1) { pump1.on() after(attackTime);

68 } else if(msg == 0) { pump1.off() after(attackTime);}}

69 msgsrv channelPlc1S(int msg, int attackTime){

70 plc1.processSensorData(msg) after(attackTime);}

71 ... //message servers

72 }

73 main{

74 PLC1 plc1(pump1,valve,sensor1):();

75 PLC2 plc2(plc1,plc3,sensor2):();

76 PLC3 plc3(pump2,tank3,sensor3):();

77 Tank1 tank1(sensor1):();

78 Tank2 tank2(sensor2,unit):();

79 Tank3 tank3(sensor3,tank2):();

80 sensorTank1 sensor1(tank1,plc1):(s1Compromised,s1Compromised_time);

81 sensorTank2 sensor2(tank2,plc2):(s2Compromised,s2Compromised_time);

82 sensorTank3 sensor3(tank3,plc3):(s3Compromised,s3Compromised_time);

83 Pump1 pump1(tank1):(p1Compromised,p1Compromised_time);

84 Pump2 pump2(tank2,tank3):(p2Compromised,p2Compromised_time);

85 Valve valve(tank1,tank2):(vCompromised,vCompromised_time);

86 reverseOsmosisUnit unit(tank2,tank3):();

87 Attacker attacker(plc1,plc2,plc3,pump1,pump2,valve):(chl,malMsg,attackTime);

88 }

Listing 1: An abstract version of the SWaT system Rebeca model.
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Two Boolean state variables pump1On and valveOpen indicate the current
status of Pump1 and Valve respectively. The definition of PLC1 includes three
message servers i.e., processSensorData, openReq and closeReq. The message
server processSensorData processes the sensor data and issues commands on
or off to Pump1 and open or close to Valve accordingly. The message servers
openReq and closeReq are activated once a message is received from PLC2.

The reactive class Pump1 includes four message servers on, off, KeepOnpump-
ing and maliciousAct (see Listing 1, lines 37-56). The message servers on and
off update the value of the state variable On based on the commands received
from PLC1. The message server KeepOnpumping calls waterIncrease which takes
operationTimeTank units of time and increases the level of water for one level
in the tank. This continues until the message server off receives the turn off
message. Due to space limitations, we exclude the explanation of other reactive
classes from this paper. Interested readers may refer to [32] for more details.

5.4 Attack Models in Rebeca

In the Rebeca model, we model compromised actors (Scheme-B Attacks) using
two parameters that are passed to all the actors that can be compromised (see
Listing 1). The first parameter sets the status of the actor, and the second
parameter sets the time of the attack. For example, the reactive class of Pump1

includes a variable maliciousAction that can be set to change the status of the
component to be compromised or not compromised. If this variable is set to be
compromised then although the pump receives a message to turn its status to
on, it turns it to off. For changing the variable maliciousAction at different times
in each run of the model, a message is sent to Pump1 at a certain model time.
This model time can be configured and is passed to the pump as a parameter.
Similar to the compromised mode of Pump1, whenever the value of the input
parameter compromised is true for Valve, then both message servers open and
close behave maliciously (for example the message server open changes the value
of state variable Open to false). The message server maliciousAct corresponding
to each sensor activates compromised mode for the sensor, which causes the
sensor to report invalid water level to the corresponding PLC.

In addition to the reactive classes that define the normal and compromised
behavior of SWaT components, the Rebeca model includes a reactive class named
Attacker (see Listing 1, lines 60-72) that models the behaviour of potential at-
tackers targeting channels to inject messages (Scheme-A Attacks).

As we assume that attackers may target the communication channels between
any two components in the SWaT system, the knownrebecs section of reactive
class Attacker includes all the other rebecs defined in the Rebeca model. The
constructor of this class has three arguments representing the target channel,
malicious message content, and attack time. Since there are six channels in the
system, the value of the first argument would be a number between 1 and 6.
Based on the value passed to this argument, the message server responsible
for sending malicious messages to the corresponding channel is invoked by the
constructor. Message content is another numeric argument whose value indicates
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either the water level in a tank, an on/off command for Pump, or an open/close
command for Valve. Finally, the third argument represents the time during the
system operation that the malicious message is sent to a channel.

5.5 Model Checking and Security Analysis

The goal of attacks on the SWaT system is to cause an overflow or underflow
in one of the tanks. An overflow may harm some of the critical units such as the
UF or RO and cause flow out unclean water. Also, an underflow may damage a
valve or a pump. Accordingly, we consider overflow and underflow for each tank
to be verified on the Rebeca model of the SWaT system.

Figure 4 represents an abstract view of the state transition diagram of the
SWaT system during a normal operation. The diagram is derived manually from
the state space generated automatically by Afra. Each state shows the water level
in the three tanks and the status of the pumps and the valve. Each transition
between two states indicates an increase or/and decrease of the water level of
some tank(s). Whenever a waterIncrease or waterDecrease occurs in a tank, then
the attached sensor informs the corresponding PLC to update the status of the
pumps and the valve based on the sensed data. Each state in Figure 4 represents
a set of states and transitions in the state space generated by model checking. In
each of these abstract states the total amount of progress of time in the including
transitions is shown. The state space generated through model checking by Afra
includes 42k states and 53k transitions.
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Pump2_off
Valve_close
----------------
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Fig. 4: The abstracted state transition of the SWaT system.

In order to analyze the security properties of the SWaT system using the
developed Rebeca model, we follow three attack schemes presented in Section 3.2.
The outcome of the analysis includes the attack scenarios which lead the system
to security violation. To cover all possible attack scenarios by model checking,
we need to generate all combinations of different values for the input parameters
of the attacker and the compromised components, and verify the model for each
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combination. A Python script is developed to automate input value generation
and accumulation of the verification results. This approach is similar in its nature
to the automated verification technique using symbolic modeling and constraint
solving in [33]. Here we use an algorithmic approach to enumerate all the possible
attack scenarios. In total we modeled 105 communication attacks and 84 attacks
on components, and also the combination of these attacks (resulting in 8820
attack scenarios). Each attack scenario takes approximately twenty seconds to be
verified by model checking, thus the total verification time for all attack scenarios
(attacks on communication and components) is around one hour. Verification of
each combined attack scenario takes around thirty seconds to complete, and the
total verification time for all possible combinations is 72 hours. Totally, out of all
above possible attack scenarios 29 cases successfully violate the system security
which we report in Tables 2, 3 and 4.

Table 2 presents the outcomes of the analysis process for Attack on Com-
munication (Scheme-A). The results indicate at which system state the injected
message has caused security violation. For example, assume that the system is in
state S0 (see the state transition diagram in Figure 4), and the attacker injects
a malicious message into the channel between Sensor1 and PLC1 (see channels
in Figure 3). This message wrongly reports the level of water in Tank1 as being
High. Tank1 will underflow afterwards, because Turn off Pump1 and Open Valve
are issued by PLC1 after receiving the message (line 5 in Table 2).

Table 2: Model checking results in Attack on Communication (Scheme-A).

# Tank Property Injected Message Communication
Channel

System
State

1 Tank1 Overflow Water level in Tank1 is low Sensor1 to PLC1 Si+1
2 Tank1 Overflow Turn on Pump1 PLC1 to Pump1 Si+1
3 Tank1 Overflow Water level in Tank1 is low Sensor1 to PLC1 Si+2
4 Tank1 Overflow Turn on Pump1 PLC1 to Pump1 Si+2
5 Tank1 Underflow Water level in Tank1 is high Sensor1 to PLC1 S0

6 Tank2 Overflow Water level in Tank2 is medium Sensor2 to PLC2 Si+1
7 Tank2 Overflow Open Valve PLC1 to Valve Si+1

8 Tank3 Overflow Water level in Tank3 is high Sensor3 to PLC3 Si
9 Tank3 Overflow Open Valve PLC1 to Valve Si
10 Tank3 Underflow Turn on Pump2 PLC3 to Pump2 S0
11 Tank3 Underflow Turn on Pump2 PLC3 to Pump2 S1
12 Tank3 Underflow Water level in Tank3 is high Sensor3 to PLC3 S2
13 Tank3 Underflow Turn on Pump2 PLC3 to Pump2 S2
14 Tank3 Underflow Water level in Tank3 is high Sensor3 to PLC3 Si+2
15 Tank3 Underflow Turn on Pump2 PLC3 to Pump2 Si+2

Table 3 shows the results of model checking on the Rebeca model for Attack
on Components (Scheme-B). These results indicate at which system state the
compromised component causes security violation. For example, assume that the
system is in state Si+1 and Sensor2 is compromised. This sensor sends a wrong
report about the water level of Tank2 to PLC2. This report indicates the level
of water as being Medium, whereas the real level is High. Upon receiving this
report, PLC2 opens Valve and causes Tank2 to overflow (line 5 in Table 3).
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Table 3: Model checking results in Attack on Components (Scheme-B).

# Tank Property Compromised
Component

Malicious Behaviour System
State

1 Tank1 Overflow Sensor1 Water level in Tank1 is low Si+1
2 Tank1 Overflow Pump1 Turn on Si+1
3 Tank1 Overflow Sensor1 Water level in Tank1 is low Si+2
4 Tank1 Underflow Sensor1 Water level in Tank1 is high S0

5 Tank2 Overflow Sensor2 Water level in Tank2 is medium Si+1

6 Tank3 Overflow Sensor2 Water level in Tank2 is low Si
7 Tank3 Overflow Valve Open Si
8 Tank3 Underflow Pump2 Turn on S1
9 Tank3 Underflow Sensor3 Water level in Tank3 is high S2
10 Tank3 Underflow Pump2 Turn on Si+1
11 Tank3 Underflow Sensor3 Water level in Tank3 is high Si+2

The analysis results in Table 4 indicate that by using the modeling method
presented in Combined Attack (Scheme-C), such collaborative attack can be
easily detected. For example assume that the system is in state S0 and an attacker
injects message Open Valve into the communication link between PLC1 and
Valve, and at the same time another attacker compromises Pump1 to be turned
off, then Tank1 will underflow (line 1 in Table 4). As another example, if the
system is in state S1, Sensor2 is compromised and a malicious message of high
water level for Tank3 is injected into the channel between Sensor3 and PLC3,
then Tank3 will underflow (line 3 in Table 4).

Note that the scenarios presented in Table 4 are those in which the single
attacks (message injection or the compromised component) do not cause a secu-
rity failure separately, but the combination leads to the security violation. If we
assume that the system is robust against the scenarios in Table 2 and Table 3,
the system may still be vulnerable against the collaborative attacks in Table 4.

Table 4: Model checking results in Combined Attack (Scheme-C).

#Tank Property
Injected Message
(Communication Channel)

Compromised Component
(Malicious Behaviour)

System
State

1 Tank1 Underflow
Open Valve
(PLC1 to Valve)

Pump1
(Turn Off)

S0

2 Tank3 Underflow
Water level in Tank2 is medium
(Sensor2 to PLC2)

Sensor3
(Water level in Tank3 is high)

S0

3 Tank3 Underflow
Water level in Tank3 is high
(Sensor3 to PLC3)

Sensor2
(Water level in Tank2 is medium)

S1

6 Related Work

Several modeling and simulation methods have been proposed for analyzing the
security of CPS. In this section, we review the ones most related to the method
presented in this paper. There are interesting works based on simulation. Wa-
sicek et al. [34] propose an aspect-oriented technique to model attacks against
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CPS. They illustrate how Ptolemy [35] can be used to simulate the behavior of
system components and detect anomalies. Taormina et al. [7] propose another
simulation-based approach that is implemented in a MATLAB toolbox to an-
alyze the risk of cyber-physical attacks on water distribution systems. In [1,8],
the authors rely on simulation to perform their analyses. They propose a new
metric to quantify the impact of attacks on components of the target CPS. This
metric can be used to perform cost-benefit analysis on security investments.

Furthermore, there are several formal methods that examine CPS security.
In [6], Kang et al. use Alloy to model SWaT behavior and potential attackers.
They can discover the undetected attacks which cause safety failure (e.g., water
tank overflow). The study is considered as run-time monitoring, which compares
actual invariant of the SWaT system and output state in the Alloy model checker
during system operation. Important attack scenarios are identified using this ap-
proach, and each run of the analysis considers only one point of the system to
attack. In our approach we are able to detect scenarios with several attackers
exploiting the communication and components vulnerabilities. Rocchetto and
Tippenhauer [36] present another formal method for discovering feasible attack
scenarios on SWaT. ASLan++ is the formal language used for modeling the
physical layer interactions and CL-AtSe is a tool used to analyze the state space
of the model and discover the potential attack scenarios. As the result, they
succeed to find eight attack scenarios. They provide support for modeling dif-
ferent attacker profiles and only one profile can be active at each moment. Fritz
and Zhang [37] consider CPS as discrete-event systems and model them using a
variant of Petri nets. They propose a method based on permutation matrices to
detect deception attacks. In particular, they can detect attacks by changing the
input and output behavior of the system and analyzing its effect on the system
behavior. Covert attacks and replay attacks are two kinds of attacks modeled
and analyzed in this study. The combinations of attacks are not considered.

7 Conclusion and Future Work

In this paper, we present an approach to model and analyze the security prop-
erties of CPS using formal methods. We define three attack schemes targeting
communication channels, components, and the combination of each, and then
verify if the attacks could compromise the system security. In this approach, we
use an actor-based modeling language Rebeca. The language facilitates modeling
and analysis of the normal system behavior as well as the malicious behavior
of potential attackers. We present a case study on a Secure Water Treatment
(SWaT) System. This case study shows how each component in a Cyber-Physical
System can be directly mapped to an actor in a Rebeca model. We demonstrate
how the Afra model checking tool makes it possible to discover various potential
attack scenarios. The presented approach enables the evaluation of the attack
scenarios in a practical case study where some of the scenarios were not easily
manually analyzable.
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As future work, we intend to extend the application of our method to security
analysis during run-time system operation and also analyze mitigation strate-
gies together with attack scenarios. Moreover, we plan to use Hybrid Rebeca
introduced in [38] where we are able to model physical actors with continuous
behavior and also different network protocols.
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