
Agent-Based Software Testing: A Definition and
Systematic Mapping Study

Pavithra Perumal Kumaresen1, Mirgita Frasheri1, Eduard Paul Enoiu1
1Mälardalen University, Västerås, Sweden

Abstract—The emergence of new technologies in software
testing has increased the automation and flexibility of the testing
process. In this context, the adoption of agents in software
testing remains an active research area in which various agent
methodologies, architectures, and tools are employed to improve
different test problems. Even though research that investigates
agents in software testing has been growing, these agent-based
techniques should be considered in a broader perspective. In
order to provide a comprehensive overview of this research
area, which we define as agent-based software testing (ABST),
a systematic mapping study has been conducted. This mapping
study aims to identify the topics studied within ABST, as well as
examine the adopted research methodologies, identify the gaps
in the current research and point to directions for future ABST
research. Our results suggest that there is an interest in ABST
after 1999 that resulted in the development of solutions using
reactive, BDI, deliberative and cooperate agent architectures for
software testing. In addition, most of the ABST approaches are
designed using the JADE framework, have targeted the Java
programming language, and are used at system-level testing for
functional, non-functional and white-box testing. In regards to
regression testing, our results indicate a research gap that could
be addressed in future studies.

I. INTRODUCTION

Nowadays, continuous development and integration pro-
cesses are subject to large and frequent changes. Conse-
quently, software development organizations need to deliver
reliable and high-quality software products while having to
consider more stringent time constraints. A side effect of such
constraints is the limitation in the amount of development
and testing that can be performed before delivering the soft-
ware [1]. Intelligent and automated techniques can be used to
tackle this problem. For example, agents have already been
used to automate different aspects of testing and improve test
efficiency and effectiveness [2], [3].

Agents are software systems that operate in an environment
which they can perceive and act upon, while also being able of
autonomous actions [4]. Depending on the flexibility of such
actions, agents might be able to take initiatives and select their
own goals, and interact with others when deemed fit. What is
missing from the state of the art is a comprehensive approach
for defining agent-based software testing and its applications.

To tackle this gap, first we propose a definition of the
research area as Agent-Based Software Testing (ABST). Sec-
ondly, we present the results from a systematic mapping study,
in which we identify the areas of application together with
the tools, techniques, and methods used in the development of
agent-based systems for software testing, while also examining
the research methodologies adopted in these different works.

Based on the results obtained from this study, we identify
research trends and gaps which can be useful for both re-
searchers and practitioners.

II. A DEFINITION OF AGENT-BASED SOFTWARE TESTING

Agents are software systems – which could be embodied
into physical entities – that operate in an environment which
they can perceive and act upon, and are able of performing
autonomous actions [5]. Agents are used in many domains, can
take different physical forms [6], and have different properties
such as: (i) operating on their own without human interven-
tions (autonomy), (ii) interacting with other agents (social
ability), (iii) perceiving their environment and responding in
a timely fashion to changes that occur in it (reactivity), and
(iv) taking initiative to exhibit a goal-oriented behavior (pro-
activeness). An agent can be capable of learning, by acquiring
new knowledge and skills, which can be used to take better
decisions in the future.

Agents have already been used to automate different aspects
of software development [4], [7], [8]. Several researchers have
proposed different approaches for using agents specifically
in software testing [9]–[11], by considering different aspects
that relate to test management, test design, execution and
evaluation. Jeff Offutt [12] outlined in a keynote from 2016
that there is a need in test automation for more intelligent tests
exhibiting self-determination and self-awareness. However, the
relation and overlap between the use of (intelligent) agents in
software testing and what part of the testing process these
methods optimize is unclear. Hence, we propose that Agent-
Based Software Testing (ABST) should be defined as the
application of agents (e.g., software agents, intelligent agents,
autonomous agents, multi-agent systems) to software testing
problems by tackling and automating complex testing tasks.

The aim of ABST research is to address software testing
problems through agent-based paradigms, by additionally us-
ing the variety of techniques from artificial intelligence and
software engineering. We realize that the process of defining
the ABST research area is evolutionary and iterative. The
ABST definition needs to be further discussed as the evidence
and knowledge in this area grows and refines.

III. RESEARCH METHOD

A systematic mapping involves several steps like identifica-
tion of papers, analysis, and classification of selected papers
in the area of interest (i.e., agent-based software testing). The
systematic mapping study is performed in accordance with the



Define Research
Questions

Study Scope

Search for Primary
Studies

Screen Primary
Studies

Use Keywords for
Classification Extract Data

Collection of Papers Selected Papers Classification Scheme Systematic Map

Fig. 1: The Mapping Study Steps Performed in this Study.

steps shown in Figure 1 based on the guidelines of Petersen
et al. [13]. There are five steps involved in performing this
mapping study starting with the definition of the research
questions which gives a scope for the search of studies. Based
on the scope of the research, a set of search strings are
derived and applied in the selected databases to identify studies
within this research area. From the identified studies, the
most relevant ones are screened by applying certain inclusion
and exclusion criteria. We extracted the abstract descriptions,
introduction, and conclusion sections of the filtered papers
and we studied these to identify the keywords used during
the classification stage for answering our research questions.
Finally, these papers are studied in-depth to extract the data
for each category dimensions and then the obtained results are
discussed to show the final systematic map.

A. Definition of the research questions

The main objective of this section is to devise a set of
research questions (RQs) based on the definition of ABST
and better frame the scope of this research. To this end, we
formulate three research questions. The main objective of the
first question is to identify the research interest and types of
contributions in this domain:

RQ1: What is the current state of agent-based
software testing research?

As RQ1 is a broad research question, thus four sub-
questions (RQ1.1– RQ1.4) have been identified:

• RQ1.1: What number of academic studies on agent-based
software testing has been published?

• RQ1.2: What are the publication channels used to publish
studies on agent-based software testing?

• RQ1.3: What kinds of contributions are provided by
studies on agent-based software testing?

• RQ1.4: What research methods have been used in empir-
ical studies on agent-based software testing?

The main objective of the second research question is to
identify the method-related characteristics of the agent-based
approaches:

RQ2: What are the characteristics of these
agent-based systems used in software testing?

This question is divided into the following three sub-
questions focusing on agent-based systems’ architecture and
implementation:

• RQ2.1: What are the agent architectures used in agent-
based software testing?

• RQ2.2: What are the development frameworks used for
implementing agent-based software testing?

• RQ2.3: What are the programming languages adopted by
agent-based software testing?

The main objective of the third question concerns test-
related characteristics of agent-based systems used for soft-
ware testing:

RQ3: What are the testing characteristics pro-
vided by the agent-based software testing ap-
proaches?

This question was divided into three sub questions as follows:
• RQ3.1: What are the testing levels targeted by the agent-

based software testing approaches?
• RQ3.2: What are the testing areas targeted by agent-based

software testing?
• RQ3.3: What are the types of applications targeted by

these agent-based software testing approaches?

B. Search process

Searching for papers is a critical phase in a systematic
mapping study as it ensures the comprehensive coverage of
the research topic under study. We devised a set of search
strings for conducting the search in multiple digital libraries
in the ABST research area. Based on the ABST definition we
used the following search string: ”Agent AND Software AND
Testing”. The search format varies with different databases as
follows:

• IEEE: ((”Abstract”: software) AND (”Abstract”: testing)
AND (”Abstract”: agent))

• ACM: [Abstract: software] AND [Abstract: testing] AND
[Abstract: agent]

• SCOPUS: TITLE-ABS-KEY (“Software” and “testing”
and “agent”)

The following databases were selected to perform the
search: IEEE Xplore digital library, ACM digital library and
the SCOPUS scientific database. The selected databases are
pertinent to this study as these return the most manually
collected publications on ABST. The search string used across
these databases retrieved 2663 papers (i.e., 667 papers for
IEEE, 860 papers for ACM, and 1136 for Scopus).

We mention here that there are other methods that can be
used to improve the coverage of such a mapping study. One



Databases Initial Search Screening Detailed Study
IEEE 667 26 22
ACM 860 9 7
SCOPUS 1136 13 12

TABLE I: Paper Screening.

example of such a method is the snowballing (backward and
forward) search [14]. The selection of a start set of papers used
to perform snowballing search is one of the main challenges in
this procedure. Snowballing is not necessarily an alternative to
the database search process. Due to the nature of this study,
we used a different approach to check the reliability of the
relevant literature and ensure the best possible coverage of the
literature. We used the comprehensive related work collected
in a paper outlying the area of test agents by Enoiu and
Frasheri [15]. We selected these papers and checked their
inclusion against the results obtained from our search process.
All papers included in this paper have been found using our
search strategy and databases. However, a detailed snowballing
process could potentially extend the confidence in our search
process.

C. Paper Screening

The process of screening was performed to refine the search
results by eliminating the duplicated entries and the non-
related ABST papers based on certain screening criteria. A
set of inclusion and exclusion criteria were applied to the title,
abstract, and keywords sections of the papers to identify the
relevant ones. If the data from these sections was insufficient
to obtain a decision, we used the introduction and conclusion
sections to apply the criteria (as shown in Table I). Out of
the 2663 papers obtained from the search results a set of
48 papers were selected. These 48 papers were studied in
detail to perform the data extraction. Due to lack of relevant
data with respect to the research questions seven papers were
excluded. Finally a set of 41 papers was obtained. The final
set of primary studies is available also as a data set [16].

In the inclusion criteria we focused on the relevant aspects
by including: (1) papers that are relevant to using agent-based
systems in software testing and (2) papers that include the
development and maintenance of agent-based systems used in
software testing. In addition we used the following exclusion
criteria for: (1) papers that are not relevant to agent-based
systems, (2) papers on software testing using search-based
techniques using machine learning, (3) papers that are not
available in full text, (4) papers on the usage of agents to
maintain and increase the system performance or other criteria
rather than testing the software systems, and (5) papers on
testing agent-based systems rather than the usage of these
systems in software testing.

D. Classification

The classification scheme is composed of the following
facets based on our research questions: publication and re-
search trends, agent characteristics and testing characteristics.
The results obtained in this study are based on manual data

extraction and analysis which is done iteratively and revised
continuously to mitigate the risk of missing relevant data. The
classification scheme used for data extraction is developed
based on the revised keywords and adaptations of the com-
monly accepted and used categorizations. These categories are
well established in both the agent and testing areas of research.

1) Publication and Research Trends: We used the following
categories for extracting data from each paper in relation to
RQ1:

• (RQ1.1) Publication rate. It identifies the number of
publications in ABST area within a specified period of
time. The period of time is defined from the publication
dates of the included publications.

• (RQ1.2) Publication type. It identifies the channels of
publications in ABST area (e.g., journal papers, confer-
ence papers, workshop papers).

• (RQ 1.3) Research Contributions. An existing classifica-
tion of research approaches by Wieringa et al. [13], [17]
was used in this mapping study: validation research, eval-
uation research, solution proposal, philosophical papers,
opinion papers and experience papers.

• (RQ 1.4) Empirical Research Methods. For the empirical
studies concerned with ABST we identified three differ-
ent study types: experiment, case study or comparative
study.

2) Agent characteristics: This category covers the charac-
teristics of the agent-based systems (RQ2) used for software
testing. It consists of the following sub-facets corresponding
to each sub-research question:

• (RQ 2.1) Agent Architecture. To have an overview of
the system structure, it is important to understand its
architecture, showing how the parts of an agent system
interact [18] with each other. The agent architecture
is considered as the functional controller of an agent
involved in making decisions and reasoning to solve prob-
lems and achieving goals [19]. Over the years, several
surveys and reviews [18], [19] have been conducted on
agent architectures. The agent architecture classification
used in this study was based on the classification scheme
proposed by Friedenberg and Silverman [20]:

– Simple Reactive. Agents in this kind of system are
based on response and reasoning facilities similar
to that of logical sequences. Nevertheless, in unpre-
dictable and dynamic circumstances they lack deci-
sion making capabilities and rely on other agents.

– Reactive/Subsumptive. In this architecture, agents
are viewed as a collection of simple behavior mod-
ules that have a hierarchical organization.

– Belief-Desire-Intention (BDI). In this architecture,
agents can store the state of their system and environ-
ment (beliefs), maintain goals (desires), and contain
means to convert the belief and desires into actions
(intentions).

– Deliberative. Agents have the potential to solve
complex problems, including provision for planning,



and can perform a sequence of actions to achieve
a certain goal. These agents take advantage of con-
temporary AI technologies (e.g., neural nets, Fuzzy
Logic).

– Blackboard/Co-Operative. These agents act as a
team, where they obtain the state knowledge of
the system through a central common agent (black-
board).

• (RQ 2.2) Development Frameworks and Tools. This cate-
gory identifies the development tools used for each ABST
approach. An agent-based system can be designed and
built with a help of a toolkit or a framework. Several
reviews have been conducted to identify the tools that are
used for developing intelligent agent technologies [21],
[22]. JADE, JADEX, JACK and MADKIT are examples
of agent development frameworks. This category aims
to identify the development frameworks used for imple-
menting ABST approaches.

• (RQ 2.3) Programming Language. This category identi-
fies the commonly used programming languages targeted
by agent-based systems 1.

3) Testing Characteristics: This category covers the fol-
lowing test-related characteristics of the agent-based systems
(RQ3) used for software testing:

• (RQ 3.1) Testing Level. This category classified the
papers based on the level of abstraction at which ABST is
performed. For our purpose we used the following testing
levels by adapting some existing classifications [1], [23]:

– Acceptance Testing. It assesses the software with
respect to its customer requirements.

– System Testing. It assesses the software with respect
to its architectural design.

– Integration Testing. It checks the proper integration
of lower units and the correct operation.

– Unit/Component Testing. It assesses software with
respect to its implementation.

• (RQ 3.2) Testing Areas. The following classification of
testing areas is based on the categorization proposed by
Spillner et al. [23]:

– Functional Testing. Test cases are created based on
the functional requirements of the system.

– Non-Functional Testing. Test cases are designed
based on attributes describing the system as a whole
and some of its non-functional characteristics such
as reliability, usability and performance.

– White-Box/Structural Testing. It uses the internal
structure of the system for creating test cases.

– Regression Testing. The purpose of regression testing
is to check whether changes to existing software have
introduced errors to functionality that performed
correctly in the software’s previous version.

1Some of the popular programming languages are Java, Python, C,
Ruby, and C#. Data according to L. Kim, ”10 Most Popular Programming
Languages Today, Available: http://www.inc.com/larry-kim/10-Most-Popular-
Programming-Languages-Today.html. [Accessed 11 April 2020].

Fig. 2: ABST publications by year.

• (RQ 3.3) Types of Applications Under Test. This category
identifies the type of applications that are tested using
agent-based systems. Agents are used in a wide range
of application domains. We extracted data from each
paper related to the application under test. The identified
types are: web based applications, network applications,
industrial applications, distributed software applications.

Thus, a simple classification scheme has been formed based
on the research questions, which allows for a direct extraction
of data items to each facet and reduces the complications of
further deeper analysis for the comparison of the results.

E. Data extraction and Mapping

A final set of papers was obtained by applying the inclusion
and exclusion criteria. These papers were studied in detail
to extract the data under each category of the classification
scheme using an excel sheet. Thus, for every paper that was
studied, the respective column details were entered for each
facet. Once the data items were identified, a systematic map
was developed.

IV. DATA ANALYSIS AND RESULTS

The results of this mapping study were analyzed both quan-
titatively and qualitatively. A quantitative analysis gives the
quantitative results under each category whereas the qualitative
analysis is used to extract information based on interpretation.

A. Publication and Research Trends

The aim of this research question is to establish the annual
number of academic studies on ABST as well as the main
channels where ABST approaches are disseminated.

1) RQ 1.1: Figure 2 lists the number of publications by
year of the primary studies from 1999 until 2020. This
categorisation is valuable as it indicates that although the
number of academic studies on ABST remains rather low,
there is a continuous interest over the last decade (peaking
in 2010).

2) RQ 1.2: The aim of this research question is to identify
the main channels where ABST studies are disseminated. The
results suggest that 78% of the primary papers were published
in peer-reviewed international conferences, 17% in journals
and just 5% were published in workshops.



Architecture Primary Studies
Reactive [24], [25], [26], [27], [28], [29], [9], [10], [30],

[31], [11], [32], [33], [34], [35], [36]
BDI [37], [38], [39], [40], [41], [42], [43], [44]
Co-Operative [45], [46], [47], [48], [49], [15], [50], [51]
Deliberative [52], [53], [54], [55], [3], [56], [57], [58]

TABLE II: Agent Architectures used in ABST research.

3) RQ 1.3: The classification results based on the research
contributions show that 50% (21 papers) of the studies pro-
posed an ABST solution, while nearly 40% (16 papers) have
contributed by validating ABST approaches and only 10% (4
papers) have evaluated their proposed ABST solutions. These
results highlight a need for ABST research to provide more
significant practical contributions, as well as widening the
proposed academic solutions towards practical evaluations.

4) RQ 1.4: The analysis of the results related to the
empirical research methods used in ABST research shows that
23 studies have conducted experiments in this research area,
4 studies used the case study method while 2 papers perform
a comparative study. On the other hand, 32% of the studies
did not use any empirical research methods.

Answer RQ1: There is a continuous interest in
ABST after 1999 with the majority of studies
being disseminated in conferences and propos-
ing both solutions and performing empirical
studies.

B. Agent Characteristics
The analysis under this category gives an overall under-

standing of the agent-based system characteristics used in
ABST.

1) RQ 2.1: The aim of this research question is to cat-
egorise studies on ABST based on key agent architectures
emerging from the papers being studied. We show the overall
results in Table II. 39% of the primary studies are categorized
as using the reactive architecture, 60% (20% for each of
the other categories) of the studies used BDI, deliberative
and co-operative architectures. For one study [59] we could
not categorize the ABST approach based on the information
provided on the used agent architecture.

2) RQ 2.2: The aim of this research question is to identify
the reported frameworks used for developing ABST solutions.
In Table III we show seven agent-development frameworks
used in ABST. In 61% of the studies, the ABST solutions are
proposed as methods and not implemented in practice. Our
results suggest that the most common platform used for ABST
development is JADE (10 papers). Some other platforms used
are ADK, IBM Aglet, JADE LEAP and JADEX (extensions
of JADE), FIPA OS and JACK Intelligent Agent. The scarcity
of ABST solutions being implemented would indicate that this
research is currently rather restricted and has not yet scaled to
practical and industrial use cases.

3) RQ 2.3: The aim of this research question is to cate-
gorise studies on ABST based on programming languages tar-
geted by these agent-based systems emerging from the papers

being studied. Our results suggest that in more than half of the
papers (51%), ABST targets the Java programming language.
In almost 37% of the papers there is no explicit mention of any
programming language used. Other programming languages
like C, C++, Python, and Perl are rarely targeted.

Answer RQ2: Research in ABST has used reac-
tive, BDI, deliberative and cooperative agent
architectures. The majority of these solutions
are targeting the Java programming language
and are using JADE framework.

C. Testing Characteristics

1) RQ 3.1: The aim of this research question is to identify
the reported testing level at which ABST approaches are
used. The overall results are shown in Figure 3. Our results
suggest that most of the ABST studies (i.e., 28 papers) are
targeting system level testing. In addition, 14 of the studies
are performing ABST at unit level while just two studies are
on integration level testing 2.

2) RQ 3.2: The aim of this research question is to cate-
gorise studies on ABST based on the testing areas emerging
from the papers being studied. As shown in Figure 3, most
of the ABST approaches are targeting functional testing (18
studies), white-box testing (19 studies) and non-functional test-
ing (13 studies). The scarcity of ABST research in regression
testing (4 studies) indicates that this area of research has not
scaled to regression test selection and continuous integration
practices.

3) RQ 3.3: The aim of this research question is to identify
the reported types of applications targeted by the ABST
approaches. In Figure 3 we show the overall results of this
classification. The results suggest that ABST is mostly used
in software testing of distributed software applications (46%
of the studies). In addition, ABST targets other application
domains such as web-based applications (19.5% of the stud-
ies), network applications (almost 15% of the studies), and
industrial automation systems (19.5% of the studies).

Answer RQ3: Most of the ABST approaches
are used to perform functional and white-box
testing at system level and are targeting web-
based and distributed software applications.

V. RELATED WORK

Several mapping studies have been conducted in the soft-
ware testing research area [60]–[63] to identify the level of
growth, usage, and effects of different types of testing in var-
ious application domains. The usage of various technologies
for efficient testing has also been studied and mapped.

Cruz et al. [64] found that software testing is one of
the areas with the most secondary studies and replications
in software engineering. Additionally, a mapping study per-
formed by Engström et al. [60] identified the potential gap

2We note here that some ABST approaches focused on multiple testing
abstractions levels.



Frameworks Description Primary Studies
ADK ADK (Agent Development Kit) is a commercial agent platform that mainly emphasizes

on the mobility and security aspects.
[37]

AGLET A java mobile agent platform. [26]
FIPA OS An open-source FIPA compliant software framework using a simple task-based

approach as an internal agent structure.
[24]

JACK A framework for multi-agent system development for BDI software. [57]
JADE JADE (Java Agent DEvelopment Framework) is a framework used to build multi-

agent systems implemented in Java programming language and complies with the
FIPA specifications.

[48], [39], [40], [28], [55],
[3], [10], [32], [36], [42]

JADEX A JADE extension developed for rational agents, the BDI model and focusing on web
services.

[41]

JADE LEAP JADE-LEAP is a modified version of the JADE platform that can be used in any
devices which are java enabled.

[37], [52]

TABLE III: Agent Development Frameworks and Tools.

Testing Levels

System-level
Testing

Integration-level
Testing

Unit-Level
Testing

Testing Areas

Functional
Testing

Non-Functional
Testing

White-Box
Testing

Regression
Testing

Distributed
Software

Applications

Network
Applications

Industrial
Automation
Systems

Web-Based
Applications

13

7

3

5 1

1

1

6

3

4

 Application 
Under Test

3

9

2

4

1

5

3

4

6

9

2

2 2

2

Fig. 3: Distribution of ABST research over a range of testing characteristics, testing levels and applications.

between research and practice in software testing. Several
mapping studies have been conducted to study the testing
trends in various application domains for testing such as cloud
testing [65], web testing [61], combinatorial testing [63] and
agile testing [62]. These studies aim at identifying the gaps
in current testing research, as well as trends and directions
for future testing research. Recently, test automation and
intelligent testing using search-based approaches have been
used to improve test efficiency and effectiveness. One of these
directions relates to the use of agents in software testing.
Norouzi et al. [66] conducted a survey to identify the different
behaviors, forms and other trends in the use of intelligent

agents across various domains like education and virtual
assistance. To summarize, to the best of our knowledge, this
is the first mapping study on agent-based software testing and
more studies are needed to improve the study of ABST and
its wider application to software development problems.

VI. CONCLUSION AND FUTURE WORK

The use of agent-based systems in software testing and
test automation is a growing area of research that should
be recognized and considered. Therefore, in this study we
present a definition of the agent-based software testing (ABST)
research area and conduct a systematic mapping study based



on several identified concepts and dimensions related to agent-
based systems and software testing.

The definition highlights that ABST is the application of
agents (e.g., software agents, intelligent agents, autonomous
agents, multi-agent systems) to software testing problems by
automating complex testing tasks. We found a total of 41
related papers in ABST research area. Our results suggest that
there is an interest in this area after 1999 that resulted in the
development of solutions using reactive, BDI, deliberative and
cooperate agent architectures for software testing. The major-
ity of the implemented ABST approaches are designed using
the JADE framework and are using the Java programming
language. In addition, our results suggest that the majority
of the ABST approaches are used at system-level testing for
functional, non-functional and white-box testing. The results
of our systematic map also indicate that the current body of
knowledge concerning ABST does report only four studies on
regression testing. Future work could include the extension
of this systematic mapping study into a systematic literature
review.

ACKNOWLEDGMENT

This work is partially supported by the Swedish Innovation
Agency (Vinnova) through the XIVT project, and the UNI-
CORN (Sustainable, Peaceful and Efficient Robotic Refuse
Handling) project.

REFERENCES

[1] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

[2] K. S. Decker and K. Sycara, “Intelligent adaptive information agents,”
Journal of Intelligent Information Systems, vol. 9, no. 3, pp. 239–260,
1997.

[3] C. Malz, N. Jazdi, and P. Gohner, “Prioritization of test cases using soft-
ware agents and fuzzy logic,” in International Conference on Software
Testing, Verification and Validation. IEEE, 2012, pp. 483–486.

[4] M. Wooldridge, “Agent-based software engineering,” IEE Proceedings-
software, vol. 144, no. 1, pp. 26–37, 1997.

[5] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and
practice,” The knowledge engineering review, vol. 10, no. 2, pp. 115–
152, 1995.

[6] P. Balaji and D. Srinivasan, “An introduction to multi-agent systems,” in
Innovations in multi-agent systems and applications-1. Springer, 2010,
pp. 1–27.

[7] M. Winikoff, “Future directions for agent-based software engineering.”
IJAOSE, vol. 3, no. 4, pp. 402–410, 2009.

[8] L. Erlenhov, F. G. de Oliveira Neto, R. Scandariato, and P. Leitner,
“Current and future bots in software development,” in International
Workshop on Bots in Software Engineering (BotSE). IEEE, 2019, pp.
7–11.

[9] J. Tang, “Towards automation in software test life cycle based on multi-
agent,” in International Conference on Computational Intelligence and
Software Engineering. IEEE, 2010, pp. 1–4.

[10] T. U. Salima, A. Askarunisha, and N. Ramaraj, “Enhancing the effi-
ciency of regression testing through intelligent agents,” in International
Conference on Computational Intelligence and Multimedia Applications,
vol. 1. IEEE, 2007, pp. 103–108.

[11] P. Dhavachelvan and G. Uma, “Multi-agent-based integrated framework
for intra-class testing of object-oriented software,” Applied Soft Com-
puting, vol. 5, no. 2, pp. 205–222, 2005.

[12] F. Wotawa, M. Nica, and N. Kushik, Testing Software and Systems:
28th IFIP WG 6.1 International Conference, ICTSS 2016, Graz, Austria,
October 17-19, 2016, Proceedings. Springer, 2016, vol. 9976.

[13] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic map-
ping studies in software engineering,” in 12th International Conference
on Evaluation and Assessment in Software Engineering, 2008, pp. 1–10.

[14] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th
international conference on evaluation and assessment in software
engineering, 2014, pp. 1–10.

[15] E. Enoiu and M. Frasheri, “Test agents: The next generation of test
cases,” in International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, 2019, pp. 305–308.

[16] P. P. Kumaresen, M. Frasheri, and E. P. Enoiu, “Data Set Primary Studies
for Agent-Based Software Testing: A Systematic Mapping Study,” Jun.
2020. [Online]. Available: https://doi.org/10.5281/zenodo.3874307

[17] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements
engineering paper classification and evaluation criteria: a proposal and
a discussion,” Requirements engineering, vol. 11, no. 1, pp. 102–107,
2006.

[18] R. Girardi and A. Leite, “A survey on software agent architectures.”
IEEE Intelligent Informatics Bulletin, vol. 14, no. 1, pp. 8–20, 2013.

[19] K. O. Chin, K. S. Gan, R. Alfred, P. Anthony, and D. Lukose, “Agent
architecture: An overviews,” Transactions on science and technology,
vol. 1, no. 1, pp. 18–35, 2014.

[20] J. Friedenberg and G. Silverman, Cognitive science: An introduction to
the study of mind. Sage, 2011.

[21] T. Rendón Sallard and M. Sànchez-Marrè, “A review on multi-agent
platforms and environmental decision support systems simulation tools,”
2006.

[22] F. Leon, M. Paprzycki, and M. Ganzha, “A review of agent platforms,”
Multi-Paradigm Modelling for Cyber-Physical Systems (MPM4CPS),
ICT COST Action IC1404, pp. 1–15, 2015.

[23] A. Spillner, T. Linz, and H. Schaefer, Software testing foundations: a
study guide for the certified tester exam. Rocky Nook, Inc., 2014.

[24] J. Lanslots and A. Vecchio, “Using intelligent agents for distributed
measurements,” in IEEE International Symposium on Intelligent Signal
Processing. IEEE, 2003, pp. 49–54.

[25] H. F. El Yamany, M. A. Capretz, and L. F. Capretz, “A multi-agent
framework for testing distributed systems,” in 30th Annual International
Computer Software and Applications Conference, vol. 2. IEEE, 2006,
pp. 151–156.

[26] J. Zhang and D. Xu, “A mobile agent-supported web services testing
platform,” in International Conference on Embedded and Ubiquitous
Computing, vol. 2. IEEE, 2008, pp. 637–644.

[27] N. Friess, H. Crawford, and J. Aycock, “A multi-agent approach to
testing anti-spam software,” in International Workshop on Database and
Expert Systems Application. IEEE, 2009, pp. 38–42.

[28] U. Manzoor, J. Irfan, and S. Nefti, “Autonomous agents for testing
and verification of software after deployment over network,” in World
Congress on Internet Security. IEEE, 2011, pp. 36–41.

[29] G. Chen, S. Ma, and M. Xia, “A kind of software fault diagnosing
framework based on multi-agent,” in International Conference on Qual-
ity, Reliability, Risk, Maintenance, and Safety Engineering. IEEE, 2012,
pp. 760–762.

[30] J. Grundy, G. Ding, and J. Hosking, “Deployed software component test-
ing using dynamic validation agents,” Journal of Systems and Software,
vol. 74, no. 1, pp. 5–14, 2005.

[31] P. Dhavachelvan, G. Uma, and V. Venkatachalapathy, “A new approach
in development of distributed framework for automated software testing
using agents,” Knowledge-Based Systems, vol. 19, no. 4, pp. 235–247,
2006.

[32] M. G. Devasena and M. Valarmathi, “Multi agent based framework for
structural and model based test case generation,” Procedia engineering,
vol. 38, pp. 3840–3845, 2012.

[33] H. Zhu, “Cooperative agent approach to quality assurance and testing
web software,” in International Computer Software and Applications
Conference, vol. 2. IEEE, 2004, pp. 110–113.

[34] N. C. Narendra, “Large scale testing of pervasive computing systems
using multi-agent simulation,” in International Workshop on Intelligent
Solutions in Embedded Systems. IEEE, 2005, pp. 27–38.

[35] S. K. Gardikiotis, V. S. Lazarou, and N. Malevris, “Employing agents
towards database applications testing,” in International Conference on
Tools with Artificial Intelligence, vol. 1. IEEE, 2007, pp. 173–180.

[36] A. D. da Costa, C. Nunes, V. T. da Silva, B. Fonseca, and C. J.
de Lucena, “Jaaf+ t: a framework to implement self-adaptive agents that
apply self-test,” in Proceedings of the Symposium on Applied Computing,
2010, pp. 928–935.

https://doi.org/10.5281/zenodo.3874307


[37] L. Miclea, E. Szilard, G. Toderean, A. Benso, and P. Prinetto, “Agent
based dbist/dbisr and its web/wireless management,” in International
Test Conference, vol. 2. IEEE, 2003, pp. 131–139.

[38] D. Kung, “An agent-based framework for testing web applications,” in
Proceedings of the 28th Annual International Computer Software and
Applications Conference, vol. 2. IEEE, 2004, pp. 174–177.

[39] B. Ma, B. Chen, X. Bai, and J. Huang, “Design of bdi agent for adaptive
performance testing of web services,” in International Conference on
Quality Software. IEEE, 2010, pp. 435–440.

[40] C. Zhao, G. Ai, X. Yu, and X. Wang, “Research on automated testing
framework based on ontology and multi-agent,” in International Sym-
posium on Knowledge Acquisition and Modeling. IEEE, 2010, pp.
206–209.

[41] C. D. Nguyen, A. Perini, and P. Tonella, “ecat: a tool for automating
test cases generation and execution in testing multi-agent systems,” in
Proceedings of the 7th international joint conference on Autonomous
agents and multiagent systems: demo papers. Citeseer, 2008, pp. 1669–
1670.

[42] X. Bai, B. Chen, B. Ma, and Y. Gong, “Design of intelligent agents for
collaborative testing of service-based systems,” in Proceedings of the
6th International Workshop on Automation of Software Test, 2011, pp.
22–28.

[43] M. Winikoff, “Bdi agent testability revisited,” Autonomous Agents and
Multi-Agent Systems, vol. 31, no. 5, pp. 1094–1132, 2017.

[44] S. Enyedi, L. Miclea, and I. Stefan, “Agent-based testing and repair
of heterogeneous distributed systems,” in International Conference on
Automation, Quality and Testing, Robotics, vol. 1. IEEE, 2008, pp.
104–108.

[45] Q. Huo, H. Zhu, and S. Greenwood, “A multi-agent software engineer-
ing environment for testing web-based applications,” in International
Computer Software and Applications Conference. IEEE, 2003, pp.
210–215.

[46] L. Liu, X.-S. Zhou, J.-H. Gu, and Z.-Y. Yang, “Agent-based automated
compatibility software test for nlsf,” in International Conference on
Machine Learning and Cybernetics (IEEE Cat. No. 03EX693), vol. 4.
IEEE, 2003, pp. 1986–1989.

[47] Y. Chengqing, W. Yinglong, and W. Jizhi, “A ipv6 network performance
test system using multi-agent,” in International Conference on Electronic
Measurement and Instruments. IEEE, 2007, pp. 2–113.

[48] J. Gao and Y. Lan, “Automatic test task allocation in agent-based dis-
tributed automated testing framework,” in 2009 International Conference
on Computational Intelligence and Software Engineering. IEEE, 2009,
pp. 1–5.

[49] C. V. Jordan, F. Mäurer, S. Löwenberg, and J. Provost, “Framework
for flexible, adaptive support of test management by means of software
agents,” Robotics and Automation Letters, vol. 4, no. 3, pp. 2754–2761,
2019.

[50] R. Maamri and Z. Sahnoun, “Maest: multi-agent environment for
software testing,” Journal of Computer Science, vol. 3, no. 4, pp. 249–
258, 2007.

[51] G. Farias, A. Dantas, R. Lopes, and D. Guerrero, “Distributed test
agents: a pattern for the development of automatic system tests for
distributed applications,” in Proceedings of the 9th Latin-American
Conference on Pattern Languages of Programming, 2012, pp. 1–11.

[52] D. J. Mala and V. Mohan, “Intelligentester-software test sequence
optimization using graph based intelligent search agent,” in International
Conference on Computational Intelligence and Multimedia Applications,
vol. 1. IEEE, 2007, pp. 22–27.

[53] C. Malz and N. Jazdi, “Agent-based test management for software
system test,” in International Conference on Automation, Quality and
Testing, Robotics (AQTR), vol. 2. IEEE, 2010, pp. 1–6.

[54] M. A. B. Júnior, F. B. de Lima Neto, and J. C. S. Fort, “Improving black
box testing by using neuro-fuzzy classifiers and multi-agent systems,” in
International Conference on Hybrid Intelligent Systems. IEEE, 2010,
pp. 25–30.

[55] C. Malz and P. Göhner, “Agent-based test case prioritization,” in In-
ternational Conference on Software Testing, Verification and Validation
Workshops. IEEE, 2011, pp. 149–152.

[56] D. A. Ostrowski and R. G. Reynolds, “Knowledge-based software testing
agent using evolutionary learning with cultural algorithms,” in Congress
on Evolutionary Computation-CEC, vol. 3. IEEE, 1999, pp. 1657–1663.

[57] D. J. Mala and V. Mohan, “Intelligentester-test sequence optimization
framework using multi-agents.” JCP, vol. 3, no. 6, pp. 39–46, 2008.

[58] S. Karlsson, “Exploratory test agents for stateful software systems,”
in ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019, pp.
1164–1167.

[59] A. V. Mirgorodskiy and B. P. Miller, “Diagnosing distributed systems
with self-propelled instrumentation,” in ACM/IFIP/USENIX Interna-
tional Conference on Distributed Systems Platforms and Open Dis-
tributed Processing. Springer, 2008, pp. 82–103.

[60] E. Engström and K. Petersen, “Mapping software testing practice
with software testing research—serp-test taxonomy,” in International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW). IEEE, 2015, pp. 1–4.

[61] S. Akbulut, Y. T. Gebreyesus, A. Mishra, and A. Yazici, “Systematic
mapping on quality in web application testing,” in International Infor-
matics and Software Engineering Conference (UBMYK). IEEE, 2019,
pp. 1–5.

[62] T. D. Hellmann, A. Chokshi, Z. S. H. Abad, S. Pratte, and F. Maurer,
“Agile testing: a systematic mapping across three conferences: under-
standing agile testing in the xp/agile universe, agile, and xp conferences,”
in Agile Conference. IEEE, 2013, pp. 32–41.

[63] R. E. Lopez-Herrejon, S. Fischer, R. Ramler, and A. Egyed, “A first sys-
tematic mapping study on combinatorial interaction testing for software
product lines,” in Eighth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). IEEE, 2015, pp. 1–10.

[64] M. Cruz, B. Bernárdez, A. Durán, J. A. Galindo, and A. Ruiz-Cortés,
“Replication of studies in empirical software engineering: A systematic
mapping study, from 2013 to 2018,” IEEE Access, vol. 8, pp. 26 773–
26 791, 2019.

[65] A. A.-S. Ahmad, P. Brereton, and P. Andras, “A systematic mapping
study of empirical studies on software cloud testing methods,” in
International Conference on Software Quality, Reliability and Security
Companion (QRS-C). IEEE, 2017, pp. 555–562.

[66] N. Norouzi, K. Kim, J. Hochreiter, M. Lee, S. Daher, G. Bruder, and
G. Welch, “A systematic survey of 15 years of user studies published
in the intelligent virtual agents conference,” in Proceedings of the 18th
international conference on intelligent virtual agents, 2018, pp. 17–22.


	Introduction
	A Definition of Agent-Based Software Testing
	Research Method
	Definition of the research questions
	Search process
	Paper Screening
	Classification
	Publication and Research Trends
	Agent characteristics
	Testing Characteristics

	Data extraction and Mapping

	Data Analysis and Results
	Publication and Research Trends
	RQ 1.1
	RQ 1.2
	RQ 1.3
	RQ 1.4

	Agent Characteristics
	RQ 2.1
	RQ 2.2
	RQ 2.3

	Testing Characteristics
	RQ 3.1
	RQ 3.2
	RQ 3.3


	Related work
	Conclusion and Future Work
	References

