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Abstract: Interest is growing in the use of autonomous swarms of drones in various mission-physical1

applications such as surveillance, intelligent monitoring, and rescue operations. Swarm systems2

should fulfill safety and efficiency constraints in order to guarantee dependable operations.3

To maximize motion safety, we should design the swarm system in such a way that drones do4

not collide with each other and/or other objects in the operating environment. On other hand,5

to ensure that the drones have sufficient resources to complete the required task reliably, we should6

also achieve efficiency while implementing the mission, by minimizing the travelling distance of7

the drones. In this paper, we propose a novel integrated approach that maximizes motion safety8

and efficiency while planning and controlling the operation of the swarm of drones. To achieve9

this goal, we propose a novel parallel evolutionary-based swarm mission planning algorithm. The10

evolutionary computing allows us to plan and optimize the routes of the drones at the run-time to11

maximize safety while minimizing travelling distance as the efficiency objective. In order to fulfill the12

defined constraints efficiently, our solution promotes a holistic approach that considers the whole13

design process from the definition of formal requirements through the software development. The14

results of benchmarking demonstrate that our approach improves the route efficiency by up to 10%15

route efficiency without any crashes in controlling swarms compared to state-of-the-art solutions.16

Keywords: safe navigation; evolutionary computing; swarm of drones17

1. Introduction18

A swarm of drones is a group of autonomously functioning drones providing some services19

in a coordinated manner. Swarms of drones are increasingly used in a variety of applications such20

as surveillance systems, goods delivery, rescue operations, etc. [1]. This strongly motivates fast21

development and deployment of the drone technology. Technology issues are the main factor in drone22

incidents [2] leading to a raise of serious concerns regarding the safety implications of the technology.23

Therefore, we should address the problem of ensuring motion safety, i.e., the ability of a system to24

avoid collisions, while designing autonomous swarm of drones.25

In this paper, we propose a novel approach to ensuring motion safety of swarms of drones.26

Our approach consists of five components including an offline-part, dynamic evolutionary, critical27

instruction, run-time safety monitoring and decision center. We start by explicitly defining the28

conditions that should be verified to ensure motion safety of a swarm, which are that swarms do29

collide with static objects, with each other and/or with the objects that dynamically appear in the30
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fly zone of the swarm. In addition, we consider the route planning as an optimization problem,31

aiming to maximize safety while minimizing the length of the path of each drone to achieve higher32

efficiency. The main novel contribution of this paper compared to a similar solution, DANA [3], is33

the consideration of dynamic obstacles in the environment with online re-scheduling. The decision34

center component receives the response of the dynamic evolutionary (default path) and the response35

of dynamic monitoring (current situation) and checks if we have collisions or not. If the decision36

center component detects a collision, it sends an interrupt signal to the critical instruction component.37

The critical instruction component first sends a stop message to all the drones. Then, it notifies the38

drones to continue their journey one-by-one, so that drones with the highest risk of collision pass first.39

The dynamic evolutionary component starts to find other efficient routes at the same time and sends40

them to the decision center component.41

In general, path planning is an NP-hard problem on a big search space [3]. Since we aim to42

optimize multiple objectives at the same time for a couple of agents (drones), the focused problem in43

this paper is a complex multi-criteria optimization problem. We rely on evolutionary computing44

paradigm [4,5] to solve such a problem. A combination of a genetic algorithm and imperialist45

competitive algorithm (MICGA) [5] is the basis of our proposed solution. By mimicking the processes46

associated with a competition of imperialistic countries to acquire colonies, the algorithm iteratively47

generates the solutions that progressively maximize (or minimize) the value of the defined fitness48

function. In our definition of the fitness function, we explicitly introduce safety as an argument,49

i.e., ensure that our route planning finds the safest shortest route for each drone. We verify that all50

the routes preserve the defined safety requirements. While safety-aware route planning allows us to51

handle the predictable hazards, the run-time safety monitoring and control deals with the dynamically52

emerging hazards. Such hazards are caused by two factors. First, the deviations while executing the53

planned mission (e.g., caused by drone transient failures). Second, non-deterministic appearance of54

objects at the fly zone of the swarm. In case of the deviations (the first factor), our solution allows55

the system to proactively recalculate the routes of the drones to ensure that the swarm continues its56

mission execution in a safe and efficient manner. In the case of non-deterministic happenings (the57

second factor), a mechanism for a coordinated collision avoiding maneuvering is activated.58

The search space considered in this paper is discretized. A continuous search space provides59

much more diverse solutions compared to a discretized search space. However, searching a continuous60

space is slower than a discretized space. We believe that searching a continuous space is reasonable61

for only one or two drones, while the main idea of this paper is to solve the problem for a swarm of62

drones. For example, solving the problem with A* is time-consuming for a swarm of drones, therefore,63

we must limit the search space to provide a real-time search method.64

The proposed approach is implemented as a parallel algorithm, which ensures high performance65

and scalability required for controlling highly dynamic systems. The algorithm is verified to guarantee66

safety and benchmarked in a number of simulation experiments representing different safety-related67

challenges (See Section 6). We believe that our approach proposes a novel solution enhancing the68

motion safety of the autonomous swarms of drones.69

Paper Contributions: A summary of the main contributions can be found below:70

1. We have defined the main principles of safety-aware route planning for swarms.71

2. We have proposed and verified a parallel algorithm that guarantees high performance in solving72

routing problem for a swarm of drones.73

3. We have defined and validated an architecture that combines the route planning with the run-time74

safety monitoring consisting of proactive collision avoidance and coordinated navigation.75

4. We compared our proposed approach with six alternative evolutionary-based navigation76

solutions including À Dynamic Autonomous Navigation Algorithm (DANA) [3], Á Dynamic77

Genetic Algorithm (DGA) [6], Â Particle Swarm Optimization (PSO) [7], Ã Heuristics and78

Genetic Algorithms (HGA) [8], Ä Rapidly-Exploring Random Trees (RRT) [9], and Å RRT* [10].79

The simulation results show our purposed approach achieves 10% and 8.5% improvements80



3 of 19

on route planning efficiency on average without any crashes compared to the state-of-the-art81

solutions over Benchmark 1 and Benchmark 2, respectively. In addition, our proposed approach82

did not increase the travel distance compared to the optimal safe routing method.83

Paper Organization: The paper is organized as follows. In Section 2, we discuss the problem84

of motion safety and define the conditions that should be verified to ensure collision avoidance.85

The related works are presented in Section 3. Section 4 presents the principles of the evolutionary86

algorithms. Section 5 presents the proposed approach and gives small examples illustrating the main87

steps. We present the simulation results in Section 6. Section 7 concludes the paper.88

2. Safety Constraints in Static and Dynamic Navigation89

Inspired by [3,11], we formulate the safety requirements of swarm of drones according to the90

three following criteria:91

1. Req1. Preventing the risk of colliding drones with the static objects [3].92

2. Req2. Preventing the risk of colliding drones with each other [3].93

3. Req3. Preventing the risk of colliding drones with dynamic objects which are not belonging to94

the swarm such as airplanes [11].95

The swarm executes certain missions. A mission is defined as the destinations which should be96

reached by the drones of the swarm. Each mission of a swarm has two main phases including: planning97

(offline) and execution (online). In the planning phase, we try to to calculate optimal route for each98

drone, which is done offline before starting the mission. The goal of the execution phase is to monitor99

and control the drones during the mission since the drones operate in a dynamic unconstrained100

environment. By satisfying the mission safety requirements, we can guarantee the behavior of swarm101

to be compliant to the predefined mission and the possible unexpected situations. Sections 2.1–2.3102

formulates these three safety requirements utilized in this paper.103

We assume the flying zone is known for each drone during the mission. In addition, the obstacles104

are defined as the constraints of the planning algorithm. Thus, Req1 is satisfied so that no unsafe routes105

are planned. SWARM = {d1, . . . , dN} is the finite set of drones in the swarm. AREA = {l1, . . . , lZ} is106

the set of locations representing the mission fly zone. M is the number of obstacles located in AREA.107

Obsi is represented by a subset of AREA which are the occupied locations (Obsi ⊆ AREA). Therefore,108 ⋃M
i=1 Obsi is all the locations occupied by all the obstacles.routei =< lin, . . . , l f in > is a sequence of109

locations representing a rout for drone di (range (routei) ⊆ AREA).110

2.1. Requirement 1111

The safety Req1 can be verified by checking Equation (1) [3].

∀i, j. i ∈ [1, N] ∧ j ∈ [1, M]⇒ range(routei) ∩ (∪M
j=1Obsj) = ∅ (1)

2.2. Requirement 2112

We need to ensure that each location is occupied by only one drone at the route planning phase.
CurrentLoc represents the current position of a drone at a particular instance of time, hence, it is
represented as CurrentLoc = SWARM× [0..timemax]→ AREA where [0..timemax] is the time interval
covering the entire duration of a mission. timemax is the maximum required time for all drones in
the swarm to execute their mission. Thus, to avoid drone-to-drone and drone-to-objects collisions,
we need to satisfy Equation (2) [3].

∀di, dj, t.di, dj ∈ SWARM ∧ t ∈ [0, timemax]⇒ CurrentLoc(di, t) 6= CurrentLoc(dj, t). (2)

In this problem, we have a certain degree of uncertainty due to drones deviation from the planned113

routes, e.g., due to a transient fault. In order to model this type of uncertainty, we consider the114
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following scenario. Assume the drones d1 and d2 cross at the location l at time t1 and t2, respectively,115

according the route planning. 4 is the time gap of reaching the location l by the drones d1 and d2116

(t1 − t2 > 4). We need to consider4 in the route planning in order to ensure safe proximity distance.117

However, during the mission, d1 and/or d2 move slower than expected due to some internal failure,118

which increases the risk of collision (t1 − t2 < 4).119

To dynamically manage emerging safety hazards, we consider the two following actions.120

1. To consider safety in the route-planning algorithm. It is achieved by minimizing the number121

of the cross points and giving a higher preference to cross points with more time gaps between122

passing drones.123

2. we should complement the safety-aware route planning by adding a run-time safety monitoring124

mechanism. This mechanism monitors the compliance of the predefined routes and schedules125

with the online status of drones to detect risky deviations. Then, the controlled coordinated cross126

point passing mechanism will be activated for the detected drones.127

All in all, to satisfy the Req2:128

1. Safety is considered as one of the route-planning optimization objectives.129

2. Safety monitoring dynamically detects emerging hazards.130

3. The mechanism of controlled cross point passing is verified to preserve the condition131

of Equation (2).132

2.3. Requirement 3133

To address the requirement Req3, we consider two new concerns, including knowledge validity134

and lack of a prior knowledge regarding the possibility of an object presence [11].135

The first concern is explained by the following scenario. In a mission, we have a swarm that136

flies over the airport take-off zones. Although all the take-offs and landings schedule is known at137

the route planning time, the actual take off and landing times can change due to the weather or air138

traffic conditions. Therefore, we have prior information of the location and time of a possible collision139

locations, but, this knowledge may become invalid during the mission execution.140

The second concern discuss a non-deterministic arrival of a flying object, when we do not have a
prior knowledge about the appearance of objects or we have a possibilistic prior knowledge. In the case
of a possibilistic prior knowledge, we should guarantee the drones will not appear in the predictably
occupied zone at the predicted time. Let define DO = {obj1, . . . , objp} as a set of dynamic objects
which might appear at the flying zone. The time of appearance of each object and its route are defined
by DoTraj_ f function such that DoTraj_ f : DO × [1..timemax] → AREA. If the positioning of the
object is approximate: DoTraj_ f : DO× [1..timemax]↔ AREA. To guarantee dynamic objects collision
avoidance, our route planning algorithm should satisfy the following constraints [11]:

∀di, doj, t. di, doj ∈ SWARM ∧ doj ∈ DO ∧ t ∈ [0, timemax]⇒ CurrentLoc(i, t) 6= DOTraj f (doj, t) (3)

Similarly in the case of approximate positioning:

∀di, doj, t. di ∈ SWARM ∧ doj ∈ DO ∧ t ∈ [0, timemax]⇒ CurrentLoc(i, t) 6⊂ DOTrajr(doj, t) (4)

As we noted earlier, our priory knowledge is possibilistic. Therefore, the validity of the141

pre-planned constraints should be confirmed while the swarm is in route. We assume that the142

planned trajectories remain unchanged, while the time of object appearance might change. To ensure143

safety, we should guarantee that when any drone approaches a zone that might be occupied by a144

dynamically appearing object, the autonomous flying mode is changed to the controlled mode if145

the validity of the pre-planned constraints is not confirmed. In the controlled mode, it should be146

guaranteed that the drone does not enter the potentially occupied zone until a permission from the147
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air traffic controller is received. We do this by limiting our algorithm to only select the free zone in148

the search grid. In the case of unavailability of prior knowledge, we can only rely on the run-time149

sensor data and trigger controlled mode to calculate a bypass maneuver while satisfying run-time150

constraints Equations (1)–(4).151

In this paper we utilized a 2D motion model (4-neighbourhood or 8-neighbourhood) in order152

to limit the movement space of each drone. Solving the problem in 2D motion space is more153

complicated than 3D motion space (6-neighbourhood or 26-neighbourhood) since we have less possible154

movement options.155

3. Related Work156

To the best of our knowledge, this paper provides the first algorithm that considers motion157

safety and efficiency of swarm at the same time, while presenting better results compared to the158

state-of-the-art solutions. The problem of safe navigation of autonomous robots has been significantly159

studied in the past [7–10,12–21].160

A comprehensive overview of the problems associated with mobile robots is given in [22].161

The analysis carried out in [12] shows that the most prominent routing schemes do not guarantee162

motion safety. A comprehensive literature review on motion planning algorithms for drones can163

be found in [23,24]. The approaches reviewed in [23] are applicable to a preliminary, offline motion164

planning phase to plan and produce an efficient path or trajectory for a drone before the start of the165

mission. Pandey et al. [25] reviews related research trying to solve path planning of autonomous aerial166

vehicles using meta-heuristic techniques.167

Macek et al. [13] proposed a layered architectural solution for robot navigation. They focus on168

a problem of safe navigation of a vehicle in an urban environment. Similarly to our approach, they169

distinguish between a global route planning and a collision avoidance control. However, in their170

work, they focus on the safety issues associated with the navigation of a single vehicle and do not171

consider the problem of route optimization that is especially acute in the context of swarms of robots.172

Petti et al. [15] have proposed an approach that relies on a partial motion planning to ensure safety for173

the navigation of a single vehicle. They state that a calculation of an entire route is such a complex174

and computationally-intensive problem that the only viable solution is a computation of the next safe175

states and navigation within them. In our work, to overcome the problem of heavy computational176

costs and hence insufficiently quick response, we have, on the one hand, discretized the search177

space, and on the other hand, developed a highly prominent algorithm that guarantees the desired178

responsiveness. As a result, we could not only calculate entire safe and efficient routes, but also solve179

this task for a swarm of drones. While defining the overall architecture of the control system, we180

implicitly structured the behavior of the system using the notion of modes. Indeed, the drones fly in181

the autonomous mode until a danger of collision is detected. Then, the controlled collision avoidance182

mode is activated. Barry and Tedrake [16] proposed an obstacle detection algorithm for drones that183

allows to detect and avoid collisions in real-time. Similarly, Lin [17] presented a real-time path184

planner for drones that detects and avoids moving obstacles. These approaches are only applicable185

for individual drones and they do not provide support for a swarm of drones. Bürkle et al. [20]186

proposed a multi-agent system architecture for team collaboration in a swarm of drones. They also187

developed a simulation platform for patrolling or surveillance drones which monitor a protected area188

against potential intrusions. However, they did not address path planning and collision avoidance for189

the swarm, while we focused on collision prediction, avoidance and efficient navigation of swarms190

of drones. Augugliaro et al. [21] also presented a planned approach for generating collision-free191

trajectories for a drone fleet. In contrast to these approaches, our proposed approach combines192

offline motion planning with a more realistic online route generation approach to produce efficient193

collision-free routes. Olivieri et al. [26] presented an approach for movement coordination of swarms194

of drones using smart phones and mobile communication networks. Their work focuses on the internal195

communication of the swarm and does not provide a solution for collision-free route generation.196
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Aniculaesei et al. [14] have proposed a formal verification to ensure motion safety. They employ197

UPPAAL to verify that a moving robot engages brakes and safely stops upon detection of an obstacle.198

Since in our work we have focused on finding an algorithm that optimizes safety/efficiency ratio,199

our solution is more flexible. Our solution also allows the system to dynamically recalculate the route200

to prevent a collision and avoids unnecessary stopping of drones. Verification of mode logic using201

the approach proposed in [18,19] would allow us to ensure correctness and safety of the proposed202

system architecture.203

Sujit and Beard [7] proposed a Particle Swarm Optimization (PSO) based anytime algorithm for204

path planning for a swarm of drones. In their approach, whenever a drone detects a moving obstacle,205

the anytime algorithm generates a new path for the drone depending on the time allowed to compute a206

new path before the collision can occur. Although the anytime algorithm avoids collisions with moving207

obstacles, it works only in certain cases in which the obstacles can be detected from a significant208

distance. In comparison to the PSO-based algorithm, our proposed approach combines an efficient209

path generation algorithm with a drone reflex computation algorithm to avoid moving obstacles210

collisions in various kinds of scenarios. Silva Arantes et al. [8] presented a drone path planning211

approach for critical situations requiring an emergency landing of the drone. Their approach uses212

heuristic and genetic algorithms (HGA) to generate and optimize feasible paths under different types of213

critical situations caused by equipment failures. LaValle [9] presented a sampling based path planning214

algorithm called Rapidly-Exploring Random Trees (RRT). It was designed to plan efficient paths215

by exploring high-dimensional spaces and incrementally building a tree. Karaman and Frazzoli [10]216

proposed an extension of RRT called RRT*. It was designed to asymptotically generate optimal paths217

by addressing the limitations of sampling-based path planning algorithms.218

4. Background: Imperialist Competitive Algorithm (ICA)219

Evolutionary computing comprises a set of optimization algorithms, which are inspired by a220

biological or societal evolution [27]. An example of the former is Imperialist Competitive Algorithm221

(ICA) [4]. The algorithm simulates a human social evolution. Its parallel implementation [5] shows222

a remarkable performance in comparison with the other Evolutionary Algorithms (EA) and offers a223

promising solution supporting computationally intensive tasks of controlling swarm systems. The rest224

of this section explains the detailed functionality of ICA.225

ICA starts by a random generation of a set of countries—the chromosomes (an encoding of226

the possible solutions)—in the search space of the optimization problem. The fitness function227

determines the power of each country. The countries with the best values of the fitness function228

become Imperialists, the other countries become Colonies. The Colonies are divided between the229

Imperialists and hence the overall search space is divided into empires. An association of a Colony230

with an Imperialist means that only the chromosomes of the Imperialist and its associated colonies231

will be used to crossover.232

The crossover and mutation are implemented by the assimilation and revolution operators.233

Mutation is a unary operator applied to a chromosome to produce a (slightly) modified mutant—a234

child (offspring). Mutation is stochastic, i.e., the child depends of the outcomes of random choices.235

For instance, a mutation of a chromosome represented by a bit-string can be achieved by a random236

flip of a bit. Recombination (or crossover) merges the information from two parent genotypes into237

offspring genotype. Similarly to mutation, the recombination is also stochastic—the choice of parents’238

chromosome parts and the way of combining is random. Intuitively, a recombination is the of mating239

two individuals with the different but desirable features to produce an offspring that combines both of240

those features.241

Assimilation moves colonies closer to an imperialist in its socio-political characteristics. It can be242

implemented by a replacement of a bit of a Colony chromosome by the corresponding bit (or a certain243

function over such a bit) of the Imperialist.244
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Revolution is implemented by a random replacement of a certain bit in the Colony chromosome.245

As a result of assimilation and revolution, a colony might reach a better position and has a chance246

to take the control over the entire empire, i.e., to replace the current imperialist. This can happen247

only if the evaluation of the fitness function of such a colony gives a higher value (if we are solving a248

maximization problem) than the value of the fitness function of the current imperialist.249

The next step of the algorithm is to compute the power of each empire and implement the250

Imperialistic Competition, which corresponds to the selection of the survival process. The power of an251

empire is computed as a summation of the value of the fitness function of imperialist and a weighted252

value of the sum of the fitness functions of the colonies.253

The imperialists try to take a possession of colonies of other empires, i.e., the weakest empire254

loses its weakest colony. Indeed, the weakest empire does not offer a promising solution in the search255

space and further assimilation of colonies to the current imperialist would not bring any significant256

improvement. Therefore, it is practical to reallocate the weakest colony to a more promising empire.257

In each step of the algorithm, based on their power, all the empires have a chance to take258

control of one or more of the colonies of the weakest empire. The steps of the algorithm are repeated259

until a termination condition is reached. As a result, the imperialist of the strongest empire will260

give us the most optimal solution. The benchmarking simulations demonstrate that the parallel261

implementation of the proposed algorithm significantly outperforms the similar parallel algorithms.262

Therefore, it guarantees that at each control cycle the algorithm will generate a desired optimal swarm263

routing as discuss next.264

5. Safety-Aware Routing Planning and Run-Time Safety Monitoring265

Our approach to ensuring collision avoidance in the swarm combines parallel ICA-based route266

calculation with the run-time monitoring. As we discussed in Section 2, the fly area including the267

positions of the drones can be represented by the set of locations called AREA. We assume that the268

entire fly zone is represented by a grid, i.e., the distances between a pair of neighboring locations269

are the same, as shown in Figure 1a. The initial and destination positions are known for all drones.270

The drones move from location to location. Our goal is to find an optimal routing, where routing271

is defined as a union of each individual drone route, i.e., routing represents a plan of a mission for272

all drones. We give an ID to each routing and define the set of phenotypes as a set of routing IDs.273

To explain the principle of defining a chromosome, let us consider an example shown in Figure 1b.274

Afterwards, we explain the deviation scenarios by considering the example illustrated in Figure 1c.275

For the drone d1 (blue in Figure 1) the shortest path from the initial location to the destination is a276

sequence <20,19,18,17,16,11,6>, corresponding the shortest paths for the drone d2 (green in Figure 1)277

is <21,22,17,12,7,2,3> and for drone d3 (red in Figure 1) is <11 12,13,14,9,10,15>. We note that the path278

of each drone can be succinctly represented by a “turning” point—we call it a middle point, which279

would be 16 for d1, 12 for d2, and 9 for d3. Hence, a chromosome representing such a routing can be280

represented as a triple�16,12,9�. In general, for n drones a chromosome is an n− tuple consisting of281

the middle points of the corresponding drones. The turning points are generated randomly. To ensure282

collision avoidance with the static objects, we should explicitly define the locations, which are occupied283

by the obstacles.284
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Figure 1. Example of the routing planning. (a) Illustration of the search space with the start point and
end point for a red drone, a green drone, and a blue drone. (b) Illustration of the best suggested path
for each drone. (c) Illustration of the movement of each drone after the first step.

Our route planning starts by generating all shortest paths between each pair of locations in our285

grid and storing them in a database. The database of the shortest paths is then used to compose the286

routes of the individual drones as a concatenation of the route from current to the middle point and287

from the middle point to the final destination. The shortest routes are computed using the algorithm288

proposed by Dijkstra [28]. For each given source node in the graph, the algorithm finds the shortest289

path between that node and all other nodes. As an input to our implementation of Dijkstra’s algorithm,290

we define the adjacency matrix of the fly zone AREA with the explicit representation of the obstacles.291

Now we should define the fitness function to evaluate the fitness of each country (chromosome).
As we discussed in Section 2, our goal is to devise an algorithm that optimizes the safety/efficiency ratio.
To achieve this, while evaluating fitness of each routing, we should not only evaluate the corresponding
path lengths, but also the number of cross points between all drones, as well as the time gap associated
with them. The first argument of our fitness function is the distance metric (Equation (5)).

Distance Metric =
nd

∑
i=1

(DistanceCurrenti→Middlei
+ DistanceMiddlei→Destinationi

) (5)

It defines the total length of the drone routes according to the given routing. For our example in292

Figure 1b, the distance metric of the routing defined by the chromosome�16, 12, 9� is the summation293

of the lengths of the drone paths: 6 + 6 + 6 = 18.294

The second argument defines the number of cross points associated with the given routing.295

For our example, the number of cross points is 3 such that in location 17 between routes 1 and 2,296

in location 12 between routes 2 and 3, and in location 11 between routes 1 and 3, correspondingly.297

The third argument of the fitness function is the safety level of the time gap at the cross point.298

We introduce three safety levels including safety level 0 when there are no cross points, safety level 1299

when the time gap at the cross point is above the safety threshold and safety level 2 when the time300

gap is below the threshold. For instance, in our example shown in Figure 1b, the time gap at cross301

point 17 is 1 since the drones arrive at that point at times 3 and 1, respectively, and the time gap for the302

cross point 12 is 2, because the drones arrive there at times 3 and 1, and for the cross point 11 it is 5.303

As a matter of illustration, we can assume that the time gaps below threshold 2 are classified as safety304

level 2, while the time gaps at and above threshold 2 as safety level 1. Hence, the cross point 17 obtains305

safety 2, while the cross points 11 and 12 is the safety level 1.306
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We define our route optimization task as a minimization problem with the following fitness
function (Equation (6)).

Fitness Function = Distance Metric + α× Number o f Cross Point + β× Level (6)

α and β are the weight coefficients defined in Equation (7).

1 ≤ α ≤ nd
2

, 1 ≤ β ≤ √np× nd, (7)

where nd is the number of drones and np is the total number of points. These values allow us to adapt307

the fitness function evaluation based on the level of complexity of the flying zone and the number of308

drones. For our example in Figure 1b the value of the fitness function is computed as follows: 18 + 1,309

5×3 + 5×3 = 37.5. The evaluation of the fitness function for the initial population is shown in Table 1.310

In our large-scale simulation experiments, after evaluating the fitness values of the initial311

population, we have chosen the imperialists—the countries with the fitness function values smaller312

than a certain threshold—and the colonies—the other countries. Due to a very small size of the313

population in our example, we skip this step and explicitly pairwise compare the fitness values.314

The chromosomes with the lowest fitness values are chosen for crossover and mutation, as shown in315

Tournament Number and Mating Pool columns in Table 1. The next column defines the probabilities of316

crossover rc and the results of applying crossover operator are shown in the Offspring after Crossover317

column. In the similar way, we define the probabilities of mutation. The Offspring after Mutation318

column shows the results of mutation operator applied to the offspings.319

Now we calculate the fitness function for the mutated offsprings. To produce the new generation,320

from the initial population and the pool of mutated offsprings, we chose the chromosomes with the321

lowest values of the fitness function. After that, we start the next iteration of the algorithm with the322

new generation as the current population. After several iterations of the algorithm, we find the routing323

that achieves our goal—minimizing the distance of travelling and associated danger, i.e., maximizing324

safety. The pseudocode and flow diagram of the entire approach are shown in Algorithm 1 and325

Figure 2 respectively.326

Let us now illustrate a deviation scenarios. In Figure 1c, we present a snap-shot of drone positions327

after one unit of time has elapsed. drone 2 and drone 3 have moved according to the planned routes328

with the planned speed. However, due to some internal problems, drone 1 moved twice as fast as it329

was supposed to. If drone 1 regains the planned speed and the initial routing is not changed then the330

drone 1 and drone 2 will collide in location 17. Hence, we should recalculate the routes. This goal331

is achieved using our proposed algorithm. As shown in Figure 1c, the new routing avoids cross332

point 17 by rerouting drone 2 to the route <22, 23, 24, 29, 24 , 9, 4, 3> and finding shorter path for333

drone 3 <12, 13, 14, 15>.334

If a collision is predicted between the drones, the priority to move to the next position is given to335

the drone that is closer to the cross point. Then, after a safe time gap, the next drone moves to the next336

position and the situation is reassessed. If the collision danger is removed, the routing is recomputed337

and the autonomous flying mode is resumed.338
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Table 1. An example of the two iterations of proposed optimization algorithm.

Current
Position

Initial Population
(Iteration #1)

Total
Distance

Cross
Point

Critical
Level Fitness Tournament

Number
Mating

Pool rc

Offspring
after

Crossover
rm

Offspring
after

Mutation

Total
Distance Hot Point Critical

Level Fitness Next Generation
(Iteration #2) Best

20
21
11

17 24 13 18 4 1 39 1, 3 17 24 13 0.6 16 22 16 0.2 17 24 13 18 6 2 57 17 24 13

16 12 0909 17 18 20 4 2 56 2, 4 16 12 19 17 14 18 0.6 17 14 18 20 3 1 39.5 17 14 18
13 09 23 22 5 1 44.5 1, 4 16 12 19 0.9 16 12 19 0.1 13 09 23 22 4 2 58 13 09 23
16 12 90 18 3 1 37.5 2, 3 13 09 23 13 09 23 0.4 16 12 09 18 2 1 44.5 16 12 09

Current
Position

Total
Distance

Cross
Point

Critical
Level Fitness Tournament

Number
Mating

Pool rc

Offspring
after

Crossover
rm

Offspring
after

Mutation

Total
Distance

Cross
Point

Critical
Level Fitness Next

Generation Best

18 14 1 1 30.5 2, 4 16 12 09 0.5 17 09 09 0.1 17 09 11 16 4 2 52 17 24 13

17 24 1322 17 2 2 50 1, 3 17 24 13 16 21 14 0.3 16 21 14 14 1 1 30.5 16 21 14
12 18 4 1 39 1, 4 17 24 13 0.7 18 09 23 0.4 18 09 23 18 3 1 37.5 18 09 23

14 2 2 47 3, 2 13 09 23 12 24 13 0.8 12 24 13 14 2 1 32 12 24 09
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Algorithm 1: The pseudocode of the overall algorithm (DE1).

1 Function Offline Part():
2 Step 1: Call Dijkstra’ Algorithm to Compute the Shortest Path between all nodes

Step 2: Read Current Position of all Drones.
3 Step 3: Call Generate Countries
4 Step 4: Call Evaluation Operation
5 Step 5: Select the Best Routes

6 Function Online Part():
7 while all Drones has not arrived to their Destinations do
8 if #Crosspoint(BestRoutes) == 0 then

9 while the Best routes and current positions match do
10 only monitoring

11 Call Evaluation Operation
12 else if theDangerouslevel == 2 then
13 Run Critical Navigation Instructions
14 Go to line 5
15 else
16 Call Assimilation and Revolution Operations
17 Call Evaluation Operation
18 Run Competition Operation
19 Go to line 5

339

Figure 2. The flow diagram of the proposed algorithm (DE1). DE1 finds an offline scheduling with
a safe route for the swarm. At the run-time, our algorithm works properly until the decision center
component finds a collision. In the case of collision risk, the navigation center first stops all drones,
then activate them one-by-one according to the new scheduling received by the dynamic EC component.
Therefore, we can guarantee the desired responsiveness.
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The amount of locations does not impact on the run-time of the algorithm. The run-time of the340

algorithm is influenced by the number of drones since the length of ICA chromosome is the number of341

drones. Therefore, the search space will be complex by adding more drones.342

6. Results343

This section presents the simulation results of the proposed approach. The simulation344

configuration and the characteristics of the evaluation benchmarks are presented in Sections 6.1345

and 6.2, respectively. Route length, minimum safe distance, frequency of the route regeneration,346

number of crashes, and longest route length are recorded as the evaluation metrics. We compared347

our proposed approach with six state-of-the-art drone controlling methods (Section 6.3). Finally, we348

analyze the convergency of the proposed optimization approach in Section 6.4.349

6.1. Simulation Configuration350

We have implemented the proposed approach on a shared memory platform. We used the message351

passing interface (MPI) to parallelize the proposed algorithm and MPICH2 [29] to run the algorithm.352

To implement the proposed work, we used four processors in a ring topology. Our algorithm was353

tested on Intel R© Xeon R© E5-1620 v3 3.50 GHz processors with 16 GB memory and NVIDIA GeForce354

GTX 1080 graphics processing units. The configuration of the proposed ICA optimization method is355

presented in Table 2.356

Table 2. The Specification of Imperialist Competitive Algorithm (ICA) configuration.

ICA Configuration Parameter Value

Population size 35
Number of empires 3

Max iterations for each step 10
Assimilation rate 0.8
Revolution rate 0.2

6.2. Evaluation Benchmarks357

The specification of evaluation benchmarks is presented in Table 3. Benchmark 1 is based on a358

10× 10 flying zone with 4 drones, 8 static obstacles, 1 dynamic obstacles moving on straight lines359

from different starting positions, and 4 unforeseen/unpredicted obstacles. Benchmark 2 is based on a360

10× 10 flying zone with 4 drones, 10 static obstacles, 1 dynamic obstacles moving on straight lines361

from different starting positions, and 8 unpredicted obstacles. Figures 3a and 4a depict the initial plan362

for the drones in the first and the second benchmark based on knowledge about the starting points,363

ending points, static obstacles, and dynamic obstacles. Figures 3b and 4b show the behavior of our364

dynamic model based on the unpredicted obstacles.365

Table 3. Specification of evaluation benchmarks.

Parameter Benchmark 1 Benchmark 2

Number of Static and Dynamic Obstacles 9 11
Number of Drones 4 4

Number of Unpredicted Obstacles 4 8
Shortest Distance (Optimal) without Safety 43 44

Shortest Distance (Optimal) with Safety 47 48
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Figure 3. Illustration of the benchmark 1 flying zone. (a) The best suggested path regarding the
known static and dynamic obstacles. (b) The behavior of algorithm at run-time regarding the
suddenly obstacles.
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Figure 4. Illustration of the benchmark 2 flying zone. (a) The best suggested path regarding the
known static and dynamic obstacles. (b) The behavior of algorithm at run-time regarding the
suddenly obstacles.

The first benchmarks focuses on resolving the problem of the high number of potential cross366

points and dynamic obstacles, as shown in Figure 3b. The drones should fly in the opposite directions367

and hence, there is a high risk of collision between each other. The aim of the second benchmark is to368
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evaluate the algorithms under the challenging flying zone topology for resolving the problem of the369

high number of potential cross points and dynamic unpredicted obstacles (shown in Figure 3b).370

6.3. Comparing to the Other Solutions371

We compared our proposed approach, which is called DE1 for simplicity, with six other372

alternatives including Dynamic Genetic Algorithm (DGA) [6], Particle Swarm Optimization (PSO) [7],373

Heuristics and Genetic Algorithms (HGA) [8], Rapidly-Exploring Random Trees (RRT) [9], and RRT*374

[10], which addresses a similar problem. The baseline approach for comparison is called DANA375

(Dynamic Autonomous Navigation Algorithm) [3]. Tables 4 and 5 compares the results of our proposed376

solution (DE1) with DGA, DANA, PSO, HGA, RRT and RRT*. The comparison is based on the following377

seven metrics. The best achieved results with respect to the evaluation criteria are highlighted in the378

tables using green color.379

1. Route length: the length of a drone route measured as the number of steps in the routing. To be380

minimized to generate shorter routes.381

2. Minimum distance: the minimum distance between a drone and an obstacle. To be maximized to382

generate safer routes.383

3. Frequency of route regeneration: the number of times the drone routes are regenerated. To be384

minimized for reducing the re-computation overhead.385

4. Number of crashes: the number of drone collisions. To be minimized to generate safer routes.386

5. Length of the longest route: the total number of steps in the generated longest route. To be387

minimized to generate shorter routes.388

The results shown in Tables 4 and 5 demonstrate that DE1 outperformed DANA, DGA, PSO ,389

HGA, RRT, and RRT*. It minimized the route lengths and the number of crashes more efficiently than390

the others. DE1 generates drone routes with a minimum distance of three steps in benchmark 1 and391

two steps in benchmark 2, which ensured the safety of the drones. Although RRT generate a new route392

less frequently compare to DE1, it suffers from more number of crashes because it does not react to the393

dynamic obstacles.394

In benchmark 1, DE1 produced 11.3%, 12.9%, 12.9%, 11.3%, 7.8%, and 4% shorter routes over395

DANA, DGA, PSO , HGA, RRT, and RRT*, respectively. Similarly, in benchmark 2, it generated396

14.2%, 12.7%, 11.1%, 9.4%, 2%, and 2% shorter routes over DANA, DGA, PSO , HGA, RRT, and RRT*,397

respectively. In addition, DE1 algorithm has successfully and efficiently managed to solve the collision398

avoidance problem where no collisions occurred with no increased in travel distance (shown in Table 4).399

The algorithm has succeeded in finding a safe and efficient routing with no increase in travel distance400

(shown in Table 5).401

Table 4. Benchmark 1 results for different studied optimization methods. The best results are shown in
green cells.

Comparison Metrics DE1 (Ours) DANA DGA PSO HGA RRT RRT*
Route length 47 53 54 54 53 51 49

Minimum distance 3 1 2 0 1 0 1
Frequency of route regeneration 5 7 7 6 5 4 5

Number of crashes 0 0 0 1 0 2 0
Length of the longest route 12 14 13 13 14 12 12

Efficiency compared to the optimal 100% 88.6% 87.0% 88.6% 87.0% 92.1% 95.9%
route with safety (route length = 47)

• The best results are shown in green cells.
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Table 5. Benchmark 2 results for different studied optimization methods. The best results are shown in
green cells.

Comparison Metrics DE1 (Ours) DANA DGA PSO HGA RRT RRT*
Route length 48 56 55 54 53 49 49

Minimum distance 2 0 0 0 0 0 0
Frequency of route regeneration 7 11 9 12 9 4 7

Number of crashes 0 1 1 2 1 4 4
Length of the longest route 12 14 14 13 13 12 12

Efficiency compared to the optimal 100% 85.7% 87.2% 88.8% 90.5% 97.9% 97.9%
route with safety (route length = 48)

• The best results are shown in green cells.

6.4. Convergency Analysis402

We analyze the convergency of DE1 and compare it with the DANA (Dynamic Autonomous403

Navigation Algorithm) [3] as the baseline of comparisons. Figure 5a,b depict the convergency variations404

for the best solution (given to the drone) generated by the DE1 and DANA methods over benchmark 1,405

and benchmark 2, respectively. Since we have no information of dynamic obstacles, we need to406

regenerate a new route at the run-time when we face a new obstacle. Each peak in Figure 5 indicates407

re-computing a new route at run-time due the presence of a dynamic obstacle in the default route408

generated offline. In a nutshell, we can conclude:409

1. Since our proposed approach presents multiple near-optimal solutions at the same time,410

the number of peaks in the variations of DE1 convegency is less than DANA for both benchmark 1411

(40% higher re-computation efficiency) and benchmark 2 (57% higher re-computation efficiency).412

2. DE1 needs less computation time to generate a new route compared to DANA, while it presents413

a collision-free path.414

3. The deviation of peaks in DE1 is smaller than DANA since ICA finds three alternative solutions415

at the same time helping the DE1 to re-converge rapidly.416
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Figure 5. Illustrating the Convergency of the DANA and DE1 over the (a) benchmark 1, and (b)
benchmark 2. DE1 does recalculation at run-time even when we know we have a safe route. The main
reason is to improve the efficiency of navigation. Each peak indicates a recalculation.

6.5. Analysing Reproducibility of the Results417

To demonstrate that our results are reproducible, we ran all the studied method 10 times.418

According to the reproducibility results shown in Figure 6, DE1 has no collisions in all the runs,419
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while DANA, DGA, PSO, HGA, RRT, RRT* present 0.1, 0.2, 1.3, 0.1, 2.5, 0.3 and 1.6, 2.2, 2.3, 1.5, 4.4,420

4.2 collisions on average over benchmark 1 and benchmark 2, respectively.421
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Figure 6. Analysing the Sustainability of different scheduling methods over the (a) benchmark 1,
and (b) benchmark 2.

6.6. Computational Time Analysis422

Table 6 compares the computational time of DE1 with other studied methods. RRT and RRT*423

provides 3.0%, 1.35% (for benchmark 1) and 3.44%, 1.15% (for benchmark 2) faster computation424

time compared to DE1, respectively. The main reason is that RRT and RRT* are not swarm-based425

optimization methods and runs the optimization method for each drone separately. Although, RRT and426

RRT* are faster than DE1, they have 4.4 and 4.2 collisions on average over benchmark 2, respectively,427

while DE1 presents a safe route.428

Table 6. Computational time analysis of the studied scheduling methods.

Time (Sec.)

Time Metric DE1 (Ours) DANA DGA PSO HGA RRT RRT*

Total time (to the end of route length) 37.62 42.13 97.43 68.44 56.27 12.45 27.85Benchmark 1 Average times of route regeneration 1.41 1.62 2.76 2.54 2.11 1.09 1.12
Total time (to the end of route length) 44.16 45.26 99.59 69.18 57.28 12.89 34.28Benchmark 2 Average times of route regeneration 1.63 1.79 2.81 2.67 2.24 1.11 1.28

7. Conclusions429

In this paper, we have proposed a novel approach to ensuring motion safety of swarms of drones.430

Our approach relies on the use of evolutionary computing that allows us to formulate safe routing as431

an optimization problem. A distinctive feature of the approach is its ability recalculate the routing of432

the entire swarm to maximize safety and efficiency at run-time. To the best of our knowledge, this433

issue has not been addressed before. We believe that our work has offered a promising solution to the434

problem of ensuring motion safety of swarms of drones. The benchmarking results have demonstrated435

that our algorithm is able to manage challenging routing conditions, and guarantees safety while436

introducing only a small overhead to achieve it.437
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