
Checkable Safety Cases: Enabling Automated
Consistency Checks between Safety Work Products
1st Carmen Cârlan

fortiss GmbH
Munich, Germany
carlan@fortiss.org

2nd Daniel Petris, or
Continental Automotive Romania

Technical University of Ias, i
Ias, i, Romania

daniel.petrisor@continental-corporation.com

3rd Barbara Gallina

Mälardalen University
Västerås, Sweden

barbara.gallina@mdh.se

4th Hannes Schoenhaar

Siemens AG
Munich, Germany

hannes.schoenhaar@siemens.com

Abstract—In the automotive domain, the employment of agile
development is currently hindered by the fact that the safety
lifecycle, which implies the creation and maintenance of safety
work products, is manually executed, being a complex and expen-
sive process. Given a change in the system under consideration,
ISO 26262 recommends that the impact of that change on the
safety case of the system shall be assessed and that the safety
case shall be correspondingly updated. To this end, in this paper,
while assuming a model-based system and safety engineering
context, we propose checkable safety case models, which are
semantically rich safety case models integrated with system and
safety engineering models (i.e., work products of a model-based
safety lifecycle). The semantically rich specification and the model
integration allow for automated consistency checks between the
safety case and the system, specifically its engineering models. We
exemplify our contributions via an in-vehicle driver assistance
system for driving through intersections.

Index Terms—safety cases, safety assurance, model-based sys-
tem engineering, automated checks, maintenance

I. INTRODUCTION

Currently, in the automotive industry, there is an increase
in the frequency of development increments motivated, for
example, by the need for patching a security threat [9],
accommodating changes in the operating context [15], or the
addition of new functionality [10]. Such frequent changes
call for an agilized execution of the safety lifecycle [7].
However, the maintenance of the safety work products, i.e.,
artefacts resulting from the execution of the lifecycle, is a
time-consuming process, as it is still manually executed [16],
hindering the movement to a more agile context.

In ISO 26262-8, the change management process is de-
scribed as aiming at ensuring the systematic implementation of
changes, while maintaining the safety properties of the system
under consideration [8]. To this end, there is a need to identify
the impacted safety work products. The need for maintenance
of safety work products, given certain changes in the system
specification, also implies the need for maintenance of safety
cases. A safety case is a safety work product providing an
argument that functional safety requirements are satisfied, un-
der certain operational conditions, based on evidence compiled
from other safety work products [8]. ISO 26262-10 specifically
pinpoints the need for checking the consistency of the safety
case with the system under development [8].

While state-of-the-art safety cases entail claims in free-
form text, allowing flexibility in the argumentation structure,
the lack of formalized knowledge in a machine processable
form hinders the automatic assessment of the safety case
at a semantic level. The safety engineer manually assesses
the consistency of the safety case with other safety work
products, while understanding the semantics of the respective
argumentation structure and based on expert knowledge.

To enable the move towards agilized safety lifecycles, in this
paper, assuming a model-based system and safety engineering
context, we introduce checkable safety case models (see
Fig. 1). Such models entail both checkable and non-checkable
safety case fragments. In contrast to the state-of-the-art non-
checkable safety case fragments, the claims in checkable frag-
ments are semantically rich and integrated with engineering
models (e.g., hazards, requirements or system design models).
Further, checkable safety case fragments are based on evidence
created by model-based verification engines, which check
system design models against safety requirements. As such,
given development increments, checkable fragments allow for
automated consistency checks between a safety case model
and models of other safety work products. For example, when
adding a new element to the hazards list, a consistency check
warns the safety engineer that the safety case model needs to
be updated such that it also argues about the mitigation of the
risk associated to the newly added hazard.

Next, in Section II, we provide some insights on notations
for modeling safety case arguments. We then present an
intersection handling system, together with a selection of
engineering models generated during the execution of the
lifecycle, which we use throughout the paper to exemplify
the proposed concepts (see Section III). Then, in Section IV,
we propose specialized safety case constructs integrated with
engineering models and model-based verification engines.
Further, we define a subset of consistency criteria between
safety case and engineering models and we give an example
of a checkable safety case fragment. In Section V, we compare
our work with state-of-the-art approaches, arguing about the
novelty of our contribution. In the final section, we emphasize
again our contribution and share the vision on work ahead
that will allow further development of the proposed method
and concepts (see Section VI).



Fig. 1. Overview of checkable safety case models integrated with system and safety engineering models.

II. FOUNDATIONS

There are several languages for modeling safety case ar-
guments, such as the Structured Assurance Case Metamodel
(SACM) syntax [12], Claim-Argument-Evidence (CAE) no-
tation [2], NOR-STA [18] or the Goal Structuring Notation
(GSN) [1]. In this paper, we target GSN for modeling safety
cases because for GSN there is already a formalization pro-
posed by Denney and Pai [5]. We needed such formalization
for specifying the algorithms of our consistency checks. GSN-
based models are directed and acyclic graphs (DAGs) with
typed nodes specifying an argumentation. Goals are claims
arguing about the safety of the system that can be further
decomposed into sub-goals, given a certain strategy. At the
bottom of the argumentation, solution constructs reference ev-
idence artefacts (e.g., test results), demonstrating the satisfac-
tion of goals. Context, assumption and justification constructs
specify the context, scope or rationale of an argumentation.

Denney and Pai propose a mathematical specification for a
constrained version of GSN, while considering the following
types of safety case constructs: s - strategy, g - goal, e -
evidence, a - assumption, j - justification c - context [5].
They define a safety case fragment S as a tuple ă N, l, t,Ñą
comprising the set of nodes, N , the labeling function l :
N Ñ{s, g, e, a, j, c} setting the type of a construct, the meta-
data function t : N Ñ E specifying the construct contents,
where E is a set of expressions for specifying certain attributes
of a constructs, and the connector relation Ñ:ă N,N ą,
specifying the relations between nodes. A safety case fragment
shall always be constructed as a directed acyclic graph (DAG).
The operation isrootprq checks if construct r is a root in the
DAG. Furthermore, the following structural conditions must
be met: (1) Each root of the partial safety case is a goal:
isrootprq ñ lprq “ g; (2) Connectors only leave strategies
or goals: n Ñ m ñ lpnq P s, g; (3) Goals cannot connect to
other goals: pn Ñ mq ^ rlpnq “ gs ñ lpmq P {s, e, a, j, c};
(4) Strategies cannot connect to other strategies or evidence:
pnÑ mq ^ rlpnq “ ss ñ lpmq P {g, a, j, c}.

III. AN INTERSECTION HANDLING SYSTEM

In this section, we introduce a System of Interest (SoI)
that handles automated driving (AD) in urban intersection
environments, together with a subset of safety work products
generated for this system. The SoI shall be compliant with ISO
26262 [8] and ISO 21448 [10]. A more detailed description
of the system is accessible online1.

Functional Requirements. The SoI shall interact with the
driver when handling both regular and smart intersections.
The driver can turn on the SoI only while the vehicle is
in standstill and in-vehicle systems are operational. During
operation, the system perceives the operational environment
using data from local sensors mounted on the vehicle platform
(see Fig. 2-b) and/or from smart intersections (see Fig. 2-a).
When approaching an intersection, the driver activates the SoI
by indicating the target intersection exit. After a successful
activation of the intersection handling, the SoI controls the
lateral and longitudinal behavior of the vehicle to successfully
exit the intersection. The SoI then requests the driver to take
over once the mission is accomplished. The hand over zone
is the zone where the transition from manual to AD is done
and is depicted in Fig. 2-a.

Hazard Analysis and Functional Safety Concept. A
subset of the hazards we identified for the SoI can be seen
in the hazards list model presented in Fig. 3-a. To prevent
and mitigate the risk associated to the identified hazards, we
specify two safety goals (see Fig. 3-b): SG01: AD system
shall provide a safe and comfortable driving experience to
the passengers; and SG02: AD system shall detect TPO,
VRU, road geometry and topology, each with the Automotive
Safety Integrity Level ASIL D. We then derived functional
safety requirements. In Fig. 3-c we present the requirements
addressing the sensor setup necessary for each relevant sensing
zone. For the specification of a functional architecture, we
proposed an ASIL decomposition of functionality, as shown
in Fig. 3-d. The ASIL D compliant system design solution

1https://github.com/ccarlan/safe intersection handling system



Fig. 2. a) Intersection specific sensing: Zone 1, Zone 2 and Handover zone. b) Vehicle specific sensing: close range high severity, medium range medium
severity, long range low severity. c) Vehicle sensor setup that enables a safe control inside ODD.

implements system and safety measures identified by decom-
posing the ASIL D rating into three ASIL B(D) sensor
components independently implemented. The local sensing
setup relies on three different sensing technologies: LIDAR,
radar and camera chosen and integrated such that the SoI uses
data with sufficient certainty to enable a safe control over the
ego vehicle, as shown in Fig. 2-c). ASIL B(D) allocation to
different sensing components is chosen as a solution consider-
ing sensor uncertainty caused by the wide spectrum of ODD
and technological limitations of current sensing technologies.
The different sensing technologies are used within distinct
sensing zones bounded by a decision making process that
uses different voting routines that considers sensor limitations,
environment and ego vehicle data to output a trustworthy
control command. The functional safety concept considers
a certain Operational Design Domain of the SoI. The SoI
controls the vehicle when enabled within a constrained ODD
and requests the driver to take over control of the vehicle when
the specified conditions inside the ODD are no longer met.

Change scenarios. The execution of an agilized safety
lifecycle would be beneficial for such a system, given the
fact that is a new concept, and new hazards and requirements
are in scope of the development during the product lifecycle.
Furthermore, system reconfigurations may frequently occur.
For example, the sensing setup may change, depending on
advances in technology.

IV. CHECKABLE SAFETY CASES

In this section, we present checkable safety case models
– our conceptual solution for maintaining safety case models
consistent with system and safety engineering models.

A. Semantically Rich Safety Case Constructs

Checkable safety case fragments comprise semantically
rich specialized safety case constructs, which extend GSN
constructs, as depicted in Fig. 4. We specify these GSN
extensions by adding new constructs to the set of GSN node
types {s, g, e, a, j, c}

Ť

SpecializedConstructs. Each such
specialized construct specifies a re-occurring safety claim,
having certain known semantics. Further, such a construct has
placeholders for references to certain types of engineering

model elements. As such, for each specialized safety case
construct we can specify consistency criteria, i.e., if and how
a specific type of change in associated engineering models
impacts the validity of the claim. For example, for arguing
that the risk associated to a hazard is mitigated, the Hazard
Mitigation specialized goal may be used. Such a special-
ized goal will always be associated to an element within the
model of a hazards list. Given the deletion or modification of
the associated hazard model element, the specialized goal will
become inconsistent with the hazards model.

Our proposed specialized constructs are connected with
each other via specialized connections, thus constraining the
argumentation structure. This constraint not only ensures a
semantically correct argumentation structure, but also allows
for automated assessment of the argumentation structure given
certain changes in the system specification. For example,
the Argument over Hazards specialized strategy argu-
ing about the fact that the risk of each identified hazard
has been addressed shall be associated to a certain hazards
list. This strategy may only be supported by a certain type
of specialized goals (i.e., Hazard Referencing Goal
Base goals). Each such specialized goal has a claim about
the reduction of the risk associated to a referenced haz-
ard from the respective list. Given the addition of a new
hazard to the list, our consistency checks will signal the
safety engineer that there should be an additional Hazard
Referencing Goal Base goal arguing about the mit-
igation of the newly identified hazard and supporting the
Argument over Hazards strategy.

B. Exemplary System and Safety Engineering Models
Hazards Models. During the execution of the hazard

analysis and risk assessment, the safety engineer can model
a list of hazardous events. In Fig. 3-a, we present the such
a model for the intersection handling system introduced in
Sec III. We specify a hazardous event as a tuple ha “ă

id, spec, s, p, c, asil ą, specifying an identifier (id) and a text-
based specification. Further, to support risk assessment, the
safety engineer may specify for each hazard, given a certain
operational situation, severity, exposure and controllability
properties to rate the associated ASIL.



Fig. 3. The Argument over Requirement Satisfaction checkable fragment of the safety case model of a intersection handling system, a set of engineering
models with which it is integrated and the warnings output by our proposed consistency checks.

Safety Requirements Models. Based on the identified haz-
ardous events, different safety requirements models are spec-
ified during the operational, functional and technical safety
concept. Examples of such models specifying requirements
for the intersection handling system introduced in Sec III can
be seen in Fig. 3-b and Fig. 3-c. Each safety requirement is
a tuple sr “ă id, spec, author, asil, traces ą, having an id,
a specification and an author, an assigned ASIL and a set of
tracing relationships. A safety requirement shall be traced to
one or more hazards hazTraces : SafetyRequirementsÑ
Hazards or to a higher-level safety requirement reqTrace :
SafetyRequirementsÑ SafetyRequirements.

System Architecture Models. During the functional and
technical safety concept phase in ISO 26262, the safety
engineer may model the system architectural design SD as
a set of components connected to each other through named
channels SD “ă C,CH ą. Fig. 3-d present the functional
architecture specified for the system introduced in Sec III.

C. Integration of Safety Case and Engineering Models
Each specialized construct, depending on the type of claim

it specifies, has associations to certain types of model elements
(e.g., hazards, safety requirements, system design compo-
nents), this allowing checkable safety case models to be
aware of changes in system and safety engineering models.
This characteristic is highly needed especially in a change

management system. To this end, we define an association
between a GSN node to a system model element as an attribute
of GSN constructs. The association attribute is actually a
link to an engineering model element. While in Fig. 4-a, we
illustrate our proposed integration of safety case models with
system and safety engineering models, via class association
relationships, in Fig. 4-b, we give some examples of seman-
tically rich constructs and their associations to engineering
models. We define an association that points to a model
element that was deleted as a broken link brokenLink :
Associations Ñ Boolean, where if g.association “

NULL, then brokenLinkpg.associationq “ true.

D. Using Model-based Verification Results as Safety Evidence
One of the objectives of the technical safety concept stated

in ISO 26262 is ”to verify that the system architectural design
and the technical safety concept are suitable to satisfy the
safety requirements according to their respective ASIL” [8].
To this end, checkable safety cases integrate as safety evidence
the results of engines verifying the correct implementation of
safety requirements by system design models, while arguing
the confidence in such results. The verification results are
communicated at the safety case abstraction level by extending
the solution GSN element with metadata specifying whether
the verification was successful or not (see Fig. 4-b) and
whether the results are outdated or not. We define consistency



Fig. 4. a) Integration of safety case model elements with system models, via associations. b) A subset of specialized GSN nodes (depicted in hashed-gray)
and their associations to system and safety engineering models (depicted in gray).

criteria between the verification evidence and the system
specification (i.e., safety requirements and system design). We
namely analyse which types of changes in system design or
requirements models invalidate current verification evidence,
in order to support the reuse of verification evidence.

E. Consistency Criteria

For each argumentation structure entailing specialized con-
structs, we define certain consistency criteria with respect to
specific changes in system and safety engineering models,
based on which we then specify consistency checks. The
consistency criteria defined for specific claims and argument
structures refine the following general consistency criteria
between safety case and engineering models:

‚ Reference existence. Evaluation of whether the model el-
ements referenced in the safety case model are available.
This check supports the confirmation review objective
C.10.3 from ISO 26262-2;

‚ Trace correctness. The tracing relationships specified
in safety argumentation structures shall be consistent
with tracing relationships specified in system models (see
objective C.10.4 from ISO 26262-2 regarding traceabil-
ity). For example, the claim about the satisfaction of
a requirement shall support a higher-level claim about
the satisfaction of another requirement only if there is a
tracing relationship between the two requirements;

‚ Argument completeness. The safety argumentation shall
be sufficient to argue about functional safety (see confir-
mation review objective C.10.2 from ISO 26262-2). For
example, a safety argument shall go over all identified
hazards, i.e., for each identified hazard there shall be a
specialized goal claiming that the risk associated to the
respective hazard has been reduced;

‚ Refinement correctness. Given system specifications at
different levels of abstraction, it shall be checked for
correct refinement. For example, given certain changes in
one requirement from the functional safety requirements
model, the functional architecture model shall be re-
verified against the changed requirement via model-based
verification engines and the new verification results shall
be integrated in the safety case as evidence.

‚ Correct ASIL decomposition. Given the available haz-
ards and requirements models, it shall be checked if the
ASIL decomposition is done correctly, as assumed in the
safety case model, based on ISO 26262-9;

‚ ODD assumptions validity. Given a change in the
Operational Design Domain, it shall be checked whether
the system functions safely in the new assumed opera-
tional context. Further, the assumed operational context
properties explicitly specified in the safety case model
shall be validated during runtime, in order to recognize
when the system under consideration exits the operational
design domain, as recommended by ISO 21448.

‚ Up-to-date evidence. Whenever there is a change in
a system specification, assurance evidence may become
stale [11]. Therefore, we need to check if the evidence
on which the argumentation is based reflects the most
current state of the system implementation and of the
assumed operational context. For example, for manually
performed checks, we shall make sure that the timestamp
of the review make sure that the evidence is still actual.

F. Argument over Requirement Satisfaction

In Fig. 3, apart from showing models of parts the safety
work products generated for this system, as presented in
Sec. III, we show an example of a checkable safety fragment,
which is integrated with these models. Given certain changes
applied to the engineering models, we describe in the figure
the outputs of some consistency checks.

The fragment entails a Requirement Satisfaction
specialized goal, specifying that a certain safety requirement
is satisfied. The specialized goal has an association to
one requirement model element (i.e., the SG02 identified
for the the intersection handling system introduced in
Sec III). The goal is only valid under the assumption that
the system operates in the expected ODD. We specify
this by ODD Assumptions specialized assumption,
integrated with a requirements list model specifying the
ODD. The requirements in that list may be checked at
runtime. The Requirement Satisfaction goal is
supported by an argument about the satisfaction of all the
requirements derived from the respective requirement (see
Argument over Requirements specialized strategy).



The Argument over Requirements strategy has
an association to a model entailing the functional safety
requirements derived from the respective safety goal, as
shown in Fig. 3. The strategy is further supported by
Requirement Satisfaction specialized sub-goals
arguing about the satisfaction of one particular requirement
in the list associated to the strategy. These sub-goals can be
supported by Model-checking Evidence specialized
solutions, integrated with model-based verification results.
Each such specialized solution entails metadata in form of
attributes regarding the status of the verification, namely
whether the verification has been successful and whether the
results are up-to-date or not. Given these specialized GSN
constructs, we add new nodes to the set of GSN node types
{s, g, e, a, j, c}

Ť

{argumentOverRequirementsStrategy,
requirementSatisfactionGoal,modelCheckingEvidence}.
The extensions can be seen in Fig. 4-b.

Regarded changes and proposed checks. Given the gen-
eral consistency criteria defined in Section IV, we present
in the following a set of consistency checks between the
checkable safety case fragment presented before and the
models with which it is integrated. The checks are triggered
by certain types of changes in engineering models:

‚ Reference existence check. When an element from
the requirements model is deleted, it is checked
if the deletion causes a broken link in goals
of type Requirement Satisfaction: @rsg
lprsgq “ requirementSatisfactionGoal CHECK
brokenLinkprsg.associatationq “ true. For example,
in Fig. 3, we show the output of the consistency
checks when FSR02.3: AD system shall detect non-
overridable obstacles (small objects, pot holes) that
may affect the dynamic of the ego vehicle if driven over
defined for the intersection handling system was deleted
from the model. The requirement was deleted because
the detection of pot holes and small objects hinders the
performance of the system;

‚ Argument completeness check. When a new
requirement is added to the requirements model
associated to the Argument Over Requirements
specialized strategy, it is checked if, for each requirement
in the list, there is an argumentation leg about
its satisfaction. This means that it is checked if,
for each requirement, there is a Requirement
Satisfaction specialized goal having an association
to the respective requirement: @req P reqList,
where Dlpstrq “ argumentOverRequirements
Ź

str.association “ reqList CHECK Dg, where
lpgq “ requirementSatisfaction

Ź

str Ñ g
Ź

g.association “ req. For example, considering our
intersection handling system example, after deciding
during the functional safety concept to use cameras
for short-range sensing, we added a requirement
FSR02.12. Given the newly added requirement to the
requirements model associated to the Argument over

Requirements specialized strategy, the consistency
check alerted the safety engineer that the satisfaction
of the newly added safety requirement has not been
regarded in the argumentation (see Fig. 3);

‚ Trace correctness check. When a new require-
ment is added to the requirements model associ-
ated to the Argument Over Requirements spe-
cialized strategy, it is checked if the respective re-
quirement has a trace to the requirement associated
to the supported Requirement Satisfaction spe-
cialized goal: @req P reqList, where Dlpstrq “

argumentOverRequirements
Ź

str.association “

reqList
Ź

Dg Ñ str
Ź

lpgq “ hazardMitigation
CHECK req.reqTrace “ g.association. For example,
in the intersection handling system, when added, require-
ment FSR01.1 will not satisfy the trace correctness con-
sistency criterion because, unlike the other requirements
in the list, it does not trace to safety goal SG02, and
therefore it cannot contribute at the argument regarding
the satisfaction of SG02 (see Fig. 3);

‚ Correct ASIL decomposition check. Given a
newly added requirement in the requirements model
associated to the Argument Over Requirements
specialized strategy, it is checked if the ASIL of
the respective requirement correctly decomposes the
ASIL assigned to the requirement from which the
newly added requirement was derived: @reqList,
where Dlpstrq “ argumentOverRequirements
Ź

str.association “ reqList
Ź

Dg Ñ str
Ź

lpgq “ hazardMitigation CHECK
correctASILDecompositionpg.association, reqListq,
where correctASILDecomposition is a function
that, given a hazard or a higher-level requirement and
a set of derived requirements, it assess if the ASIL
decomposition rules have been followed. For example,
in our intersection handling system, FSR02.09,
together with the other requirements defined at the same
abstraction level do not correctly decompose SG02
safety goal (see Fig. 3);

‚ Refinement correctness check. Given a modification
in either the verified system component in the system
architecture or the claim of the requirement against which
the component is verified, the verification results are to
be annotated as outdated and should be re-generated.
For example, when modifying the claim of requirement
FSR02.9 by writing ”long range zone”, instead of
”medium range zone”, the safety engineer shall reverify
the functional architecture model implementing this re-
quirement (see Fig. 3), as different sensing zones require
different sensing capabilities.

V. RELATED WORK

The state of the art proposes a series of works on creating
and manipulating safety cases models integrated with models
of work products generated during the safety lifecycle.



AdvoCATE is a safety case modeling approach supporting
the automated generation of safety case models consistent
with engineering models generated during system development
and safety analysis [6]. The automated generation of safety
case models is based on automatic instantiation of safety
case patterns. Similar to patterns in software design, a safety
case pattern is a template for arguing the satisfaction of a
reoccurring type of safety claim with placeholders for system-
specific information. The automated instantiation of such pat-
terns in AdvoCATE is done via a table that maps placeholders
within the claims of the pattern with string-based identifiers of
elements within system and safety engineering models, such
as hazards, requirements or system design elements. While
the instantiation is automated, the safety engineer still needs
to manually assess when the safety argumentation needs to be
regenerated, in order to be consistent with engineering models.
Further, in AdvoCATE model-based verification results are
integrated as evidence in safety case models via a reference
from solution elements to the path verification results files.

ENTRUST is a methodology for the systematic ENgineer-
ing of TRUstworthy Self-adaptive sofTware, which proposes
assurance processes to develop trustworthy self-adaptive soft-
ware, while combining design-time and runtime modeling and
verification activities [3]. Furthermore, ENTRUST proposes
a safety case pattern arguing about the satisfaction of safety
properties, based on both design-time and runtime model-
based verification evidence. After each system reconfiguration,
the verification is re-executed and the safety argumentation is
regenerated, by automatic pattern instantiation.

Support for automatic detection of consistency problems.
Our consistency checks could be used in AdvoCATE or
ENTRUST to trigger the need for safety case regeneration,
as currently the decision of regeneration is manually taken by
the safety engineer. Unlike AdvoCATE and ENTRUST, which
propose safety case models referencing engineering models by
specification of string-based identifiers of model elements as
metadata, we propose that the safety case model is integrated
with other engineering models. To this end, our proposed
specialized safety case constructs have direct associations to
other model elements (see Fig. 4-a). One advantage of the
integration between safety case and other engineering models
is that it allows safety case models to be aware of changes in
system and safety engineering models.

The AMASS platform supports engineering and assurance
activities, including the creation of safety case models inte-
grated with system architecture models [17]. In the AMASS
platform, safety case fragments are automatically generated
via pattern instantiation with associations to elements within
the system design model [13]. While the safety case model is
integrated with the system architecture model, thus enabling
traceability, there are no guidelines for maintaining the two
models consistent. Given a change in the system specification,
the decision of regenerating the safety case is taken by the
safety engineer, after assessing the impact of a change.

Support for reuse of safety evidence and argumentation.
Instead of completely regenerating the safety case, as it is

done in the approaches presented before, it may be sufficient
to change part of the argumentation, thus facilitating the
reuse of verification evidence and safety argumentation. Our
consistency checks provide feedback to the safety engineer on
the impact a certain change has on the safety case model and
on how to update the safety case model in order to achieve
consistency with the other work products.

MMINT-A is a model management approach for maintain-
ing GSN-based safety case models consistent with system
models based on model evolution concepts, with the scope
of identifying the minimum set of reusable argumentation
elements after a change in the system specification [11]. Given
any change (i.e., addition, deletion, modification) of a refer-
enced system model element, the approach first annotates the
safety case elements referencing the respective system model
element as to be revised. Then, each element in the safety case
model having a connection to the element to be revised and
referencing to a model element having a trace to the changed
model element is annotated as to be rechecked. However, the
MMINT-A impact analysis is too conservative, hence the need
for more precise impact analysis. Still, MMINT-A can be used
as complementary to our approach - when a change for which
we have not define any consistency criteria occurs, the change
impact analysis proposed by MMINT-A may be used.

More precise impact analysis. One advantage of our ap-
proach over MMINT-A is that, whereas in MMINT-A any
change in a system element causes its associated elements
in the safety case model to be marked for revision, our
consistency checks trigger warnings only for specific types
of system changes affecting specific types of claims. As such,
only actually impacted elements are identified.

Guiding recovery actions. We not only identify the impacted
elements, but also the type of impact, supporting the safety
engineer in deciding the recovery actions meant to re-establish
the consistency between safety work products. For example,
given the modification of the ASIL attribute of a requirement,
the consistency checks provide feedback on whether the ASIL
decomposition is still correct. If the ASIL decomposition is
incorrect, then the safety engineer knows that the recovery
action is to reconsider the ASIL assignment.

VI. CONCLUSION AND NEXT STEPS

Enabled automations in consistency assessment. Based on
the general consistency criteria introduced in Sec. IV, we can
define for specific checkable safety case fragments, specific
consistency checks considering certain types of changes in
referenced engineering models. Currently, we automated the
following consistency checks:

1) Given the deletion of any element in engineering models,
warnings regarding broken links in safety case models
will be triggered;

2) Given the addition of new items in hazards list or
requirements models, warnings regarding the fact that
the argumentation does not consider the mitigation of the
newly identified hazard or the satisfaction of the newly
specified requirement are output;



3) Given the modification of a system-level requirement or
of the system design model, model-based verification
evidence is re-generated;

4) Given the modification of ASIL attributes, the correct-
ness of the ASIL decomposition is checked;

5) Given the modification of tracing relationships in engi-
neering models, it is checked if the safety argumentation
structure is invalidated.

Next, we plan on investigating the automation of other
checks. For example, we want to look into how to check
the consistency between safety case models and models of
Operational Design Domain (ODD). Further, given process
models, we could check the consistency of safety arguments
with organizational changes. Also, we plan on investigating
what types of changes in requirements or system design
models do not trigger the need for re-verification, scoping at
supporting the reuse of verification evidence.

Towards agilized model-based system and safety engineer-
ing in automotive. In this paper, we introduce checkable safety
case models, which may support safety managers and engi-
neers in developing automotive systems in an agilized man-
ner (i.e., allowing frequent changes in system specifications)
through frequent and automated consistency checks between
safety case and engineering models. Given both the integration
of safety and system engineering models and the integration of
replayable and maintainable model-based verification results
as evidence in safety case models, whenever a change occurs
in an engineering model, a set of checks for consistency with
the safety case model will automatically be triggered. To this
end, we implemented a tool – FASTEN.Safe, which supports
the modeling of checkable safety cases and of other safety
work products and the automated execution of consistency
checks, given certain changes in engineering models [4]. While
we present our concepts by extending GSN, the conceptual
solution presented in this paper for GSN is translatable to for
SACM [14] or any other safety case modeling approach.

Limitations and next steps. Automation of consistency
checks is only achievable for certain types of changes, depend-
ing on the capabilities of formalizing both the safety claims
and the work products. In Sec. IV, we already presented a
set of change types for which automated checks are feasi-
ble. Next, we plan to investigate for which other types of
changes the automation of consistency checks is achievable.
We envision that agilized safety lifecycles will only allow a
constrained set of changes. Some changes, such as changes in
the addressed operational context, are usually undesirable due
to their impact on the entire safety argumentation. Further, we
identified three aspects hindering the usage of our proposed
approach in practice. First, while we assume the existence of
models for all safety work products, in practice, especially
for legacy systems, the specification of work products is
done in simple, unstructured ways (e.g., text-based format).
As such, to foster adoption of our approach, one line of
future work could be to propose methods for generating such
models from already existing artefacts. Second, while our
approach relies on the integration between the safety case

and other engineering models, such artefacts are typically
dispatched in various tools, sometimes without open interface
to access them. However, there already exists dedicated work
for that, the most well-known being Open Services for Life-
cycle Collaboration (OSLC)2. Third, even given a tool-chain
implementing our proposed approach, tool qualification could
be another challenge to be addressed.

Acknowledgments. The author B. Gallina is partially sup-
ported by by Sweden’s Knowledge Foundation via the SACSys
(Safe and Secure Adaptive Collaborative Systems) project.

REFERENCES

[1] GSN community standard version 2 (2018), http://www.
goalstructuringnotation.info/

[2] Bloomfield, R.E., Netkachova, K.: Building blocks for assurance cases.
In: Proceedings of the 25th International Symposium on Software
Reliability Engineering Workshops (ISSRE Workshops). pp. 186–191.
IEEE Computer Society (2014)

[3] Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I.,
Kelly, T.: Engineering trustworthy self-adaptive software with dynamic
assurance cases. IEEE Trans. Software Eng. 44(11), 1039–1069 (2018)

[4] Cârlan, C., Ratiu, D.: Fasten.safe: A model-driven engineering tool to
experiment with checkable assurance cases. In: Proceeding of the 39th
International Conference on Computer Safety, Reliability, and Security
- SAFECOMP. LNCS, vol. 12234, pp. 298–306. Springer (2020)

[5] Denney, E., Pai, G.: A formal basis for safety case patterns. In:
Proceedings of the 32nd International Conference on Computer Safety,
Reliability, and Security - SAFECOMP. LNCS, vol. 8153, pp. 21–32.
Springer (2013)

[6] Denney, E., Pai, G.: Tool support for assurance case development.
Automated Software Engineering 25(3), 435–499 (2018)

[7] Gallina, B., Muram, F.U., Ardila, J.P.C.: Compliance of agilized (soft-
ware) development processes with safety standards: a vision. In: 4th
international workshop on Agile Development of Safety-Critical Soft-
ware. Association for Computing Machinery (2018)

[8] International Organisation for Standardization (ISO): 26262: Road ve-
hicles - functional safety. Tech. rep. (2018)

[9] International Organization for Standardizatio: Road vehicles cyberse-
curity engineering. Tech. rep. (2019)

[10] International Organization for Standardization (ISO): Road vehicles
safety of the intended functionality. Tech. rep. (2019)

[11] Kokaly, S., Salay, R., Chechik, M., Lawford, M., Maibaum, T.: Safety
case impact assessment in automotive software systems: An improved
model-based approach. In: Proceedings of the 36th International Con-
ference on Computer Safety, Reliability, and Security (SAFECOMP).
LNCS, vol. 10488, pp. 69–85. Springer (2017)

[12] Object Managment Group: Structured Assurance Case Metamodel
- SACM, version 2.1. Tech. rep. (2020), https://www.omg.org/spec/
SACM/About-SACM/

[13] Sljivo, I., Uriagereka, G.J., Puri, S., Gallina, B.: Guiding assurance of
architectural design patterns for critical applications. Journal of Systems
Architecture 110, 101765 (2020)

[14] The GSN Working Group: Mapping between gsn and sacm 2.0. Tech.
rep. (2020), http://www.goalstructuringnotation.info/gsn-metamodel

[15] US National Highway Traffic Safety Administration (NHTSA): A frame-
work for automated driving system testable cases and scenarios. Tech.
rep. (2018)

[16] US National Highway Traffic Safety Administration (NHTSA): The
safer affordable fuel efficient (safe) vehicles final rule for model years
2021-2026. Tech. rep. (2020)

[17] de la Vara, J.L., Parra, E., Ruiz, A., Gallina, B.: The amass tool
platform: An innovative solution for assurance and certification of cyber-
physical systems. In: Proceedings of the 26th International Conference
on Requirements Engineering: Foundation for Software Quality. vol.
2584. CEUR-WS (2020)

[18] Wardziński, A., Jones, P.: Uniform model interface for assurance case
integration with system models. In: Proceedings of the 36th Interna-
tional Conference on Computer Safety, Reliability, and Security (SAFE-
COMP). vol. 10488, pp. 39–51. Springer (2017)

2https://en.wikipedia.org/wiki/Open Services for Lifecycle Collaboration


