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ABSTRACT
Two of the main paradigms used to build adaptive software em-
ploy different types of properties to capture relevant aspects of
the system’s run-time behavior. On the one hand, control systems
consider properties that concern static aspects like stability, as
well as dynamic properties that capture the transient evolution of
variables such as settling time. On the other hand, self-adaptive
systems consider mostly non-functional properties that capture
concerns such as performance, reliability, and cost. In general, it is
not easy to reconcile these two types of properties or identify under
which conditions they constitute a good fit to provide run-time
guarantees. There is a need of identifying the key properties in the
areas of control and self-adaptation, as well as of characterizing and
mapping them to better understand how they relate and possibly
complement each other. In this paper, we take a first step to tackle
this problem by: (1) identifying a set of key properties in control
theory, (2) illustrating the formalization of some of these properties
employing temporal logic languages commonly used to engineer
self-adaptive software systems, and (3) illustrating how to map
key properties that characterize self-adaptive software systems into
control properties, leveraging their formalization in temporal logics.
We illustrate the different steps of the mapping on an exemplar
case in the cloud computing domain and conclude with identifying
open challenges in the area.
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1 INTRODUCTION
Two of the main paradigms used to build adaptive software em-
ploy different types of properties to capture relevant aspects of the
system’s run-time behavior. On the one hand, control systems con-
sider properties that concern static aspects like stability, as well as
dynamic properties that capture transient aspects such as settling
time. On the other hand, self-adaptive systems consider mostly non-
functional properties that include concerns such as performance,
cost, and reliability.

Self-adaptive software can clearly benefit from the potential that
control theory provides in terms of enabling better analyzability and
enforcement of constraints on run-time system behavior. Being able
to formally reason about the non-functional concerns of a system
(e.g., security, energy, performance) in terms of control properties
in the presence of an unpredictable environment can optimize
operation and improve the level of assurances that engineers can
provide about the systems they build.

However, applying control theory to software systems poses a
set of challenges that do not exist in other domains [9, 20]. One
of the main challenges is that control-based solutions demand the
availability of precise mathematical models that capture both the
dynamics of the system under control, as well as the properties
that engineers want to impose and reason about. When control
is applied to physical plants, the laws that govern the system are
captured by accuratemathematicalmodels that arewell-understood,
and relevant properties like stability or performance are formally
characterized by definitions that are precise and standard in the
control community [4].

https://doi.org/10.1145/1122445.1122456
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While obtaining accurate models of non-functional aspects of
software behavior can to some extent be achieved using differ-
ent methods like system identification [23], the self-adaptive soft-
ware systems community still lacks a standard repertoire of run-
time properties formally characterized in a way that makes them
amenable to formal analysis using techniques applied by software
engineers in self-adaptive systems (e.g., run-time verification, model
checking). Having such a repertoire would not only help individual
system designers express and check certain common fundamen-
tal properties, but also help promote norms for system assurance
across the community of adaptive systems developers.

Solving in software the kind of problems that control theory
solves in other domains entails understanding how control prop-
erties relate to software requirements and formally characterizing
such properties in a way that facilitates their instantiation and
automated analysis using standard tools.

To advance the understanding of how self-adaptive system re-
quirements relate to control properties, in this paper we: (1) identify
a set of key properties in control theory, (2) illustrate the formal-
ization of some of these properties employing temporal logic lan-
guages commonly used to engineer self-adaptive software systems,
and (3) indicate how to map key properties that characterize self-
adaptive software systems into control properties, leveraging their
formalization in temporal logics. We illustrate the different steps of
the mapping on an exemplar case in the cloud computing domain
and conclude with identifying open challenges in the area.

2 BACKGROUND
In this section, we first present a basic set of concepts in control
systems, followed by a description of a general class of discrete
abstractions which are employed to capture the non-functional
behavior of self-adaptive systems at run time.

2.1 Control Terminology
In this paper, we focus mainly on continuous-time signals and sys-
tems, but equivalent definitions are present in the case of discrete-
time [4].

Controller Plant
y◦(t) + e(t) ũ(t) u(t) + y(t)

+

−

l(t)

+

d(t)

+

n(t)

+

Figure 1: Control scheme.

First, consider the control scheme represented in Figure 1. The
two main blocks represent the Controller and the Plant respec-
tively. The Plant is the object that we want to control. Let t ∈ R be
the continuous-time, where R indicates the real numbers; all the
signals that are introduced next are functions of the time t . Them
inputs of the plant are represented as u(t) ∈ Rm , and in comput-
ing systems are typically referred as control parameters, or tuning
parameters. The p outputs of the plant are typically represented
as y(t) ∈ Rp , and in computing systems are typically referred as
measurements or sensors data.

For every output y(t) of the plant, one defines a desired behavior
for it, which in control terms is called a setpoint or reference
signal, and is represented by y◦(t) ∈ Rp .

The difference between the desired behavior and the actual be-
havior of the plant is called error, and is represented as e(t) ∈ Rp :

e(t) = y◦(t) − y(t).

The controller is a decision-making mechanism that given the
error, decides what is the value of the control signal ũ(t) ∈ Rm in
order to make the error converge to zero. In principle, the control
signal and the plant input should be the same, i.e., ũ(t) = u(t), but in
practice, there might be a load disturbance l(t) ∈ Rm , that affects
the controller decision. Therefore, it holds that

u(t) = ũ(t) + l(t).

The load disturbance is one of the main disturbances that affect the
performance of control systems.

In addition, there might be a disturbance that is acting directly
on the output of the plant, which is called output disturbance,
and it is represented as d(t) ∈ Rp . Finally, there is noise n(t) ∈ Rp
that affects the measurements that one takes of the output. These
two last sources of disturbances are typically “high-frequency” dis-
turbances, and can be counteracted by a suitable filtering at design
time of the controller.

As a main reference to these concepts, the interested reader can
refer to the publicly available book by Åström and Murray [4].

2.2 Discrete Models
We consider the self-adaptive system as a black-box on which a set of
output variables can be monitored over time. Concretely, we model
the non-functional run-time behavior of a self-adaptive system as
a transition system that captures the evolution over time of a set
of relevant variables (i.e., state is characterized by a collection of
n real-valued random variables Y = {y1, . . . ,yn }). These variables
can be considered to be analogous to the outputs y(t) in a control
system. Sampling these variables in space and time results in their
quantization and time discretization.

Let [αi , βi ] be the range of yi , with αi , βi ∈ R, and ηi ∈ R+ be
its quantization parameter. Then, yi takes its values in the set:

[R]yi = {r : R | r = kηi , k ∈ Z, αi ≤ r ≤ βi }.
Hence, given an observed value of yi at time t (denoted as yi (t)),

the corresponding quantized value is obtained as:
quant(yi (t)) = min(argmin

r ∈[R]yi

(|yi (t) − r |)).

Variables in Y define a state-space [Rn ]Y = [R]y1 × . . . × [R]yn .
Furthermore, we assume a time discretization parameter τ ∈ R+

associated with the sampling period established for the observation
of variables, determining the transition time.

Figure 2 compares an arbitrary continuous system output y(t)
with its quantized counterpart yq (t)1 in the discrete timeline. yq (t)
takes values only in multiples of ηy , and is represented in the figure
as constant for intervals of duration τ .

Discrete models can be enriched with rewards and costs that
help capture quantitative aspects of system behavior (e.g., elapsed
time, energy consumption, cost) in a precise manner. These rewards
can be employed as building blocks to reason about properties that
capture quantitative aspects of system behavior over time.
1For convenience, we write in the following yq (t ) instead of quant (y(t )).
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Figure 2: Discrete quantized vs continuous output.

A reward structure is a pair (ρ, ι), where ι : [Rn ]Y → R≥0 is a
function that assigns rewards to system states, and ρ : [Rn ]Y ×

[Rn ]Y → R≥0 is a function assigning rewards to transitions.
State reward ι(s) is acquired in state s ∈ [Rn ]Y per time step,

that is, each time that the system spends one time step in s , the
reward accrues ι(s). In contrast, ρ(s, s ′) is the reward acquired every
time that a transition between s and s ′ occurs.

For illustration purposes, we assume that rewards are defined as
sets of pairs (pd, r ), where pd is a predicate over states [Rn ]Y , and
r ∈ R≥0 is the accrued reward when s ∈ [Rn ]Y |= pd . If the pair
(pd, r ) corresponds to a transition reward, the reward is accrued
when a transition from a source state s ∈ [Rn ]Y |= pd occurs.

3 ILLUSTRATION EXEMPLAR: RUBIS
We illustrate our formalization of properties on RUBiS [1], an open-
source application that implements the functionality of an auctions
website. Figure 3 depicts the architecture of RUBiS, which consists of
a web server tier that receives requests from clients using browsers,
and a database tier that acts as a data provider for the web tier. The
system also includes a load balancer to distribute requests among
web servers using a round-robin policy. When a web server receives
a page request from the load balancer, it accesses the database to
obtain the data required to render dynamic page content. The only
relevant property of the operating environment that we consider in
this scenario is the request arrival rate prescribed by the workload
induced on the system.

c0

c1

c2

lbproxy

s0

s1

s2

s3

db

Figure 3: RUBiS architecture.

The system includes two actuation points that can be opera-
tionalized by a controller to make the system self-adaptive and deal
with the changing request arrival rate:
• Server Addition/Removal. Server addition has an associated latency,
whereas the latency for server removal is assumed to be negligible.
• Dimmer. The version of RUBiS used for our comparison follows
the brownout paradigm [13], in which the response to a request
includes mandatory content (e.g., the details of a product), and
optional content such as recommendations of related products. A
dimmer parameter (taking values in the interval [0, 1]) can be set to

control the proportion of responses that include optional content.
The goals of the target system are summarized in two functional
and three non-functional requirements (Table 1).

Table 1: Requirements for RUBiS.
Functional Requirements

R1 The target system shall respond to every request for serving its content.
R2 The target system shall serve optional content to the connected clients.

Non-Functional Requirements
NFR1 The target system shall demonstrate high performance. The average response

time r should not exceed T .
NFR2 The target system shall provide high availability of the optional content. Subject

to NFR1, the percentage of requests with optional content (i.e., the dimmer
value d ) should be maximized.

NFR3 The target operating system shall operate under low cost. Subject to NFR1 and
NFR2, the cost (i.e., the number of servers s ) should be minimized.

There is a strict preference order among the non-functional
requirements that deal with optimization, so trade-offs among dif-
ferent dimensions to be optimized are not possible (i.e., no solution
should compromise maximizing the percentage of requests with
optional content to reduce cost). The imposition of a preference
order is aimed at better capturing real scenarios and is not a limita-
tion imposed by any of the compared approaches, which are also
able to capture non-strict preference orders among requirements.

4 CHARACTERIZING CONTROL
PROPERTIES

Control systems are usually concerned about four main objec-
tives [9], namely: (a) setpoint tracking, which is related to achieving
the specified setpoint whenever it is reachable, (b) transient behav-
ior, concerned about how setpoints are reached, in particular in the
presence of abrupt changes, (c) robustness to inaccurate or delayed
measurements, related to the ability of a controller to behave cor-
rectly even when transient errors or delayed data is provided to it,
and (d) disturbance rejection, related to the ability of avoiding any
effect of external interferences on system goals. These high level
objectives can be mapped in control theory into the satisfaction by
design of properties like stability, guaranteed settling time, integrated
squared error, that relate to the achievable runtime performance
of the control system. In this section, we describe these properties,
going from their mathematical formulation into their characteriza-
tion in temporal logics commonly used in formal verification like
LTL [16], CTL [6], and PCTL [10]. Other properties exist in control
theory, but having a complete catalogue here is beyond the scope
of this paper, and it is left as future work.

4.1 Stability
The concept of stability in control theory differs from the notion of
stability used in self-adaptive software. A control system is stable
even if the error e(t) is not converging to zero, but it is bounded.
More specifically, in control terms, if the initial value of system
outputy(0) is “close” to the equilibrium valuey◦, then the evolution
over time of the output y(t) will be bounded (and not diverge) from
y◦. More formally:
stby ≡ ∀ϵ > 0 ∃δ (ϵ) | ∥y(0)−y◦∥ < δ (ϵ) ⇒ ∥y(t)−y◦∥ < ϵ,∀t > 0

(1)
A system is asymptotically stable, if it is stable (as per the previous
definition), and also if the evolution over time of the system output
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will eventually converge to y◦. More formally:
as_stby ≡ stby ∧ lim

t→∞
∥y(t) − y◦∥ = 0 (2)

ts ,ϵ

2ϵ

t

y(t)
y◦(t)

y(t)

Figure 4: Example of system output stabilization.

Figure 4 shows the response of a system that eventually stabilizes
within an error band (gray box) of width 2ϵ .

Characterization in Temporal Logic. Characterizing stability in
temporal logic requires capturing the constraints imposed by the
definition of stability given in Expression 1. Such characterization
can be given on a quantized version of the variables and constants
required to define stability:

[stby] ≡ ∥yq − y◦q ∥ < δq ⇒ □(∥yq − y◦q ∥ < ϵq ) (3)
In Expression 3, the subscript q indicates that the constant or vari-
able on which it appears is the quantized version of its continuous
counterpart (i.e., yq (t) ≡ quant(y(t)), cf. Section 2.2). It is worth
noticing that variables in a software system are quantized by defi-
nition, and requiring a notion of asymptotic stability may be too
restrictive. The current definition captures the same concept with
ϵq being the resolution of the quantization or a tolerance parameter.
Moreover, the absence of explicit time indexes is consistent with the
implicit notion of time introduced by the temporal operators. For
instance, when yq is not within the scope of any temporal operator
(like in the antecedent of the implication given in the formula), the
expression refers to the value of the variable in the first state of
the trace (i.e., yq ≡ yq (0)). However, if the same term is within the
scope of a temporal operator as it happens with the □ on the right-
hand side of the expression, then the same yq refers to the value of
yq (t) in all subsequent states of the discrete temporal line (i.e.,yq (t)
when t = 0, τ , 2τ , . . . ). The non-probabilistic version of this prop-
erty is directly expressible in LTL and CTL (as A[stby]), whereas
its probabilistic version can employ the probability quantifier of
PCTL (e.g., P=?[stby], P≤b [stby]).
Instantiation in RUBiS. Expression 4 instantiates [stby], in a
straightforward manner for the response time variable r , assuming
a setpoint equivalent to the thresholdT . It states that when the error
becomes smaller than δ rq it will stay within the band [T −ϵrq ,T +ϵ

r
q ].

∥rq −T ∥ < δ rq ⇒ □(∥rq −T ∥ < ϵrq ) (4)

4.2 Settling Time
One of the key indicators of how the system reaches its goals is
settling time ts , which is the time needed by the system to reach a
new steady-state equilibrium.

For an arbitrary ϵ ∈ R+, the ϵ-settling time is defined by:
ts ,ϵ ≡ inf{δ s.t . ∥y(t) − y◦∥ < ϵ,∀t ∈ [δ ,∞]} (5)

In Expression 5, the settling time is captured as the infimum
of the set of time values in the continuous timeline for which the
error is bounded by ϵ in the following. Note that the infimum is
the greatest lowest bound that always exists, meaning that it takes
the value ∞ if the stability condition is never satisfied.
Characterization in Temporal Logic. In contrast with stability,
which is a boolean property that is either satisfied by the system
or not (Expression 3), settling time is a quantitative property and
therefore we characterize it as a temporal logic expression that
employs a reward quantifier. Since in this case the reward cap-
tures time, we assume the existence of a transition reward function
[time] ≡ (true, τ ) that accrues the time quantum employed for time
in the discrete model whenever a transition in the discrete timeline
is taken:

[ts ,ϵ ] ≡ R[time]
=? [^□∥yq − y◦q ∥ < ϵq ] (6)

Expression 6 characterizes the settling time as the time reward
accrued until the system reaches a state from which the error is
bounded by ϵq . There are two aspects of this characterization that
are important to highlight. First, the reachability formula accrues re-
ward until it reaches a state that satisfies the reachability predicate,
but the reward in the latter state is not included. Second, when the
reachability predicate is not satisfied, the semantics of the reward
quantifier assign an infinite reward as the value that is obtained
when the expression is quantified (e.g., in PCTL, co-safe LTL with
rewards). These two aspects make this characterization consistent
with the definition given in Expression 5, which defines the settling
time as the time instant immediately prior to the one in which the
error is already bound by ϵ , and becomes infinite if the error is not
always bound by ϵ , starting at some arbitrary point in the timeline.
Note that, due to the nesting of temporal operators including □, this
property is not (currently) directly expressible in temporal logics
with Markovian rewards as implemented in probabilistic model
checkers like PRISM [14] and Storm [7]. However, assuming finite
traces in our discrete models, we can perform a preprocessing step
on the traces, labeling explicitly states from which □∥yq −y◦q ∥ < ϵq
as p, and then model check the property as:

R[time]
=? [^p] (7)

Instantiation in RUBiS. Expression 8 instantiates [ts ,ϵ ]with sim-
ilar assumptions to those adopted for Expression 4.

R[time]
=? [^□∥rq −T ∥ < ϵrq ] (8)

4.3 Integrated Squared Error
Relevant quantitative measures of a system’s performance are also
often based on the behavior of the error e(t). We consider here as a
representative index the integrated squared of the error (ISE):

ISE ≡

∫ T

0
e2(t)dt (9)

The ISE integrates the square of the error over time (see Figure 5),
penalizing large errors more than smaller ones (the square of a
large error will be much bigger). Control systems specified to mini-
mize ISE of the tracking error e(t), e.g., MPC or LQG [? ], tend to
eliminate large errors quickly, but tolerate small ones persisting for
a long period of time. This often leads to fast responses, but with
considerably low-amplitude oscillation.
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Figure 5: Illustration of the integrated squared error.

Characterization in Temporal Logic. Similar to the settling time,
the ISE is a quantitative property and therefore we characterize it
making use of a reward quantifier. Since in this case the reward
has to capture accrued error over time, we assume the existence
of a transition reward function [error] ≡ (true, (∥yq − y◦q ∥)

2) that
accrues the square of the instantaneous error whenever a transition
in the discrete temporal line is taken.

Then, we can write an expression that accrues the error reward
over the discrete timeline before stability is achieved:

[ISE] ≡ R[error]
=? [^□∥yq − y◦q ∥ < ϵq ] (10)

Due to the nesting of ^□, this property is not directly expressible
in PCTL/Co-safe LTL with rewards. However, under the same as-
sumptions described for the settling time property, a similar model
preprocessing step can enable its practical verification through a
simpler probabilistic reachability property (cf. Expression 7).
Instantiation in RUBiS. We assume that RUBiS is working on
steady state, but suddenly receives a spike on request arrival rate,
causing the average response time r to go above threshold T (Fig-
ure 6). After violating the threshold, the system adds a server to
drive down the response time belowT . Before the system stabilizes,
its response time may experience some oscillations that make r go
above and belowT several times. For simplicity, we assume y◦ = T .

T

t

r (t) T

r (t)

Figure 6: Example of RUBiS performance response with ac-
crued positive squared error.

To obtain an indication of how well the system is adapting, we
can employ a modified version of the [ISE] property (Expression 10).
In this case, we are only interested in accruing a penalty whenever
the output of the system is above the threshold T , therefore we
adapt the reward structure for the error, constraining it to accrue
reward only whenever r > T , i.e., [penalty] ≡ (r > T , (r −T )2):

R[penalty]
=? [^□∥r −T ∥ < ϵq ] (11)

We can observe that the accrued error corresponds to the colored
areas enclosed by T and r (t) in Figure 6. Since negative error (i.e.,

when r < T ) does not constitute a violation of the response time
threshold, we do not accrue it, in contrast with the more general
property described in Expressions 9 and 10.

5 FORMALIZING NON-FUNCTIONAL
REQUIREMENTS

The non-functional run-time behavior of self-adaptive systems
can be captured by an external observer as a set of quantitative
indicators that represent attributes of different concerns such as per-
formance, cost, or availability. In this section, we employ the char-
acterization of control properties in temporal logic introduced in
the previous section as building blocks to formalize non-functional
requirements in RUBiS.
NFR1. The target system shall demonstrate high performance. The
average response time r should not exceed T . This requirement can
be captured by combining temporal logic properties of: (i) stabil-
ity as described by Expression 4, (ii) settling time as captured by
Expression 8, and (iii) an integrated error property analogous to
Expression 11 using the penalty, [penalty] ≡ (r > T , r −T ) which
should be guaranteed to be always less or equal to zero, i.e.:

R[penalty]
=? [^□∥r − y◦r ∥ < ϵq ] ≤ 0 (12)

Note that in the expression above, the error term ∥r − y◦r ∥ does
not make the simplifying assumption included in Expression 11,
and incorporates an arbitrary setpoint different fromT . This makes
sense in a realistic setting because, if y◦r = T , oscillations around
the setpoint during transients would always result in response time
threshold violations. This is also applicable to properties (i) and (ii)
for this requirement.
NFR2.The target system shall provide high availability of the optional
content. Subject to NFR1, the percentage of requests with optional
content (i.e., the dimmer valued) should bemaximized.Capturing this
requirement requires instantiating the integrated error property
on variable d , which should be always as close as possible to 1
(maximum optional content):

R[optional]
=? [^□∥1 − dq ∥ < ϵdq ] (13)

where [optional] ≡ (true,d). Note that in this case, the magnitude
of the error is always below 1, so minimizing the non-squared error
is a more sensible choice.
NFR3. The target operating system shall operate under low cost.
Subject to NFR1 and NFR2, the cost (i.e., the number of servers s)
should be minimized. The formalization of this requirement can be
captured using the following properties defined over the response
time variable r : (i) stability as described by Expression 4, (ii) settling
time as captured by Expression 8. Finally, we can capture the penalty
of using extra servers during the transient by employing an integral
error property which should minimize the use of servers according
to [penalty] ≡ (r > T , s2):

R[penalty]
=? [^□∥rq −T ∥ < ϵrq ] (14)

Note that in this case, stability and settling time properties are
defined over response time r , whereas penalty is defined over the
number of servers employed s , making an interesting case in which
formalizing a single requirement involves combining different con-
trol properties across variables.

All variables might present similar patterns in terms of control
properties, but the composition of the self-adaptive properties is
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non-trivial and might be realized in different ways. As a conse-
quence, there is a need to incorporate high-level compositional
operators to enable joint evaluation of the requirements. Alterna-
tively, wemight want to express priorities in how specific properties
should be achieved.

6 RELATEDWORK
We have grouped related work in four parts: control applied to
computing systems, automatically generated control solutions, ver-
ification of control properties, and evaluation of quality properties.
Control Applied to Computing System. In 2004, Hellerstein et
al. wrote a pioneering book on applying control theory to comput-
ing systems [11]. Over the years, control-based approaches have
been applied extensively to computing systems, mostly focussing
on controlling lower-level resources. Abdelzaher et al. apply dif-
ferent types of controller models (e.g., PI and PID) to deal with
performance requirements of servers [2]. Wang et al. present DEU-
CON that allocates local controllers to computing units that only
coordinate with neighbors [25]. Stability analysis is based on the
location of poles of the composite system’s transfer function. Imes
et al. present CoPPer, a control-theoretic approach that applies
adaptive control to meet soft performance goals by manipulating
hardware power limits [12]. In contrast, our work targets a mapping
between classic control properties and typical software qualities.
Automatically Generated Control Solutions. To deal with the
complexity of control theory, researchers have started investigating
automatic generation of control solutions to adapt software [9, 22,
26]. Filieri et al. introduce the push-button methodology (PBM) that
automatically constructs a linear model of a software system for a
PI controller to adapt the system for one setpoint goal [8]. Shevtsov
et al. propose a solution to control a software system for multiple
goals, including an optimization goal [21]. Maggio et al. apply
model-predictive control (MPC) to software adaptation [15], while
Anagelopoulos et al. apply a requirements-driven approach with
MPC [3]. These approaches highlight properties that are important
from a control-theoretic viewpoint, but this accounts for only one
side of the problem we target in this paper, namely, a rigorous
specification and verification of classic control properties.
Verification of Control Properties. Some work exits on the for-
malisation and verification of properties of control systems. We
highlight two representative examples. Preuse and Hanisch apply
model checking to verify safety, liveliness and deadlock properties
of manufacturing control systems that are specified in temporal
logic [17]. Yan et al. use approximate bisimulation for comparing
the similarity between a complex (continuous) cyber-physical sys-
tem and a (discretized) higher level model of it [28]. The authors
illustrate the approach for a safety property. Our work comple-
ments these approaches by focusing on typical software quality
properties and the formal mapping of these with control properties.
Evaluation ofQuality Properties.Anumber of approaches zoom
in on the evaluation of quality properties in self-adaptive sys-
tems. Weyns and Ahmad [27] performed a systematic literature
review identifying the main quality properties considered in self-
adaptation: efficiency/performance of the system (55% of the stud-
ies), reliability (41%), and flexibility (28%). Reinecke et al. [19] pro-
pose a payoff metric to measure the “success” of adaptation. This

metric is a user-defined function aggregating QoS metrics observed
on the running system similarly to a utility function. Villegas et
al. [24] present a framework to evaluate adaptation properties, i.e.,
stability, accuracy, settling time, overshoot, robustness, termination
of adaptation, consistency, scalability, and security. The proper-
ties are informally defined and mapped to software qualities based
on examples from literature. Raibulet et al. [18] focus on quality
attributes to evaluate the utility of a self-adaptive system, and soft-
ware metrics to evaluate the quality of the adaptation at runtime,
whereas Cámara and de Lemos [5] evaluate resilience properties
formalized in PCTL. Each of these approaches contributes to a bet-
ter understanding of quality properties and their evaluation from a
software engineering point of view. However, this only accounts
for one side of the mapping problem we target in this paper, i.e., a
traditional software engineering perspective.
Conclusion. While control theory and self-adaptive systems con-
tribute knowledge about properties in their domain, there is little
understanding on the mapping between the two types of properties,
which is precisely the target of the research presented in this paper.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we have taken the first step in bridging the gap be-
tween control and self-adaptive system properties. We have (1) iden-
tified key properties in control theory (stability, settling time, and
integral error), (2) formalized these properties in temporal logic
languages, which are typically used to specify properties (require-
ments) of software systems, and (3) illustrated how non-functional
properties of self-adaptive systems (performance, availability, and
costs) can be mapped into these control properties by using this
formalization and the RUBiS exemplar. To achieve the formaliza-
tion and mapping, we have discussed the abstraction of transition
systems describing discrete state spaces on which self-adaptive
system attributes are measured and how this abstraction is able to
represent continuous system dynamics in which control properties
are typically characterized. Models of such transition systems and
control properties formalized in a temporal logic can serve as input
for off-the-shelf run-time verification tools and model checkers.

This approach advances the understanding of hownon-functional
requirements relate to control properties (e.g., which requirements
can be characterized by which control properties) and paves the
way for an improved operation and assurance of self-adaptive sys-
tems via formal reasoning (e.g., by run-time verification) based on
control. Our approach is currently limited by the set of control
properties that we have formalized, requirements that we have
mapped into control properties (cf. previous paragraph), and the
expresiveness of temporal logics, which might not be able to fully
capture the nuances of some control properties (cf. Section 4.2).

Our long-term goal is to understand whether control theory can
be used as a formal foundation for specifying and analyzing self-
adaptive systems, and if so, under which conditions. Towards that
goal, work is needed to identify further corresponding and comple-
menting properties between self-adaptive and control systems (e.g.,
whether real-time or security requirements can be mapped into
control properties), and to leverage the formalization of properties
for a formal assessment of controllers in self-adaptive systems (e.g.,
to provide guarantees for the correctness of controllers).
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