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Västerås, Sweden
alessandro.papadopoulos@mdh.se

Thomas Nolte
Mälardalen University
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Abstract—It has been shown that in some robotic applications,
where the execution times cannot be assumed to be independent
and identically distributed, a Markov Chain with discrete emis-
sion distributions can be an appropriate model. In this paper we
investigate whether execution times can be modeled as a Markov
Chain with continuous Gaussian emission distributions. The
main advantage of this approach is that the concept of distance
is naturally incorporated. We propose a framework based on
Hidden Markov Model (HMM) methods that 1) identifies the
number of states in the Markov Model from observations and fits
the Markov Model to observations, and 2) validates the proposed
model with respect to observations. Specifically, we apply a tree-
based cross-validation approach to automatically find a suitable
number of states in the Markov model. The estimated models are
validated against observations, using a data consistency approach
based on log likelihood distributions under the proposed model.
The framework is evaluated using two test cases executed on a
Raspberry Pi Model 3B+ single-board computer running Arch
Linux ARM patched with PREEMPT RT. The first is a simple
test program where execution times intentionally vary according
to a Markov model, and the second is a video decompression
using the ffmpeg program. The results show that in these
cases the framework identifies Markov Chains with Gaussian
emission distributions that are valid models with respect to the
observations.

Index Terms—Real-time systems, Markov Chain Model, Prob-
abilistic Timing Analysis

I. INTRODUCTION

In real-time systems requirements on timing properties must
be considered, in addition to functional requirements, i.e., it is
of importance to have the correct behavior at the appropriate
time. Real-time requirements range from safety critical timing
requirements of hard real-time systems found in applications
of aeronautics, automotive and medical device systems to soft
real-time systems, e.g., common in multimedia applications.
Failure to meet hard real-time requirements may result in a
disaster and/or loss of human life whereas failure to meet a soft
real-time requirement can cause a deterioration of the Quality
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of Service (QoS) [1] such as in a video playback or affect the
Quality of Control (QoC) [2] of a robot’s motion planning.

It is a challenge to enable sufficiently accurate timing
analysis of today’s complex systems. Multicore processors [3]
and mixed-criticality systems [4], [5], as well as fog and
edge computing capabilities [6]–[8], require new methods
for ensuring sound timing estimates along with functional
integrity and limited over-provisioning of computational re-
sources and bandwidth for communication. Practical timing
analysis methods that consider the entire timing distribution,
as opposed to only the tail of the distribution, can allow
for system design without excessive over-provisioning. Taking
the entire distribution into account is of particular interest
primarily in the case of soft real-time applications where
requirements on QoS or QoC are considered.

Frı́as et al. have shown that computation times of a computer
vision application in a robotic system can be described as a
Markov Model [9], [10]. Inspired by the work of Frı́as et al.,
in this paper we investigate the following research question:
How can the execution time distribution of a task be faithfully
modeled in a probabilistic framework? In particular:

1) Can execution time distributions be suitably modeled as
a Markov Chain, where each state is associated with a
Gaussian emission distribution?

2) How can one estimate the model parameters from timing
measurements of the task’s jobs?

Our main motivation for exploring continuous emission
distributions is that they naturally include a concept of dis-
tance. Two execution time measurements that are similar are
more likely to originate from the same state, compared to
measurements of different magnitude. In the standard methods
for Markov models with discrete emission distributions, each
execution time value is treated as a label and the distance
information is lost. By using continuous distributions, a model
likely to provide a reasonable estimate from a smaller amount
of observations. Although each execution time is a discrete
number of clock cycles, realistic tasks on today’s processors
often result in a large number of possible values, that can be
closely approximated by a continuous distribution. In order to978-1-7281-4403-0/20/$31.00 ©2020 IEEE



develop methods that can be of practical use in schedulability
analysis, we estimate model parameters from observations.

In this paper, we present an automated framework that
estimates and validates an execution time distribution model
from observations. The proposed model is a Markov Model
with a Gaussian emission distribution associated with each
state. More precisely, we propose an HMM, as we observe
the execution times, but the states cannot be directly observed.
Firstly, in step 1 we identify the number of states for the
HMM, and fit the model to the observations. A tree-based
cross-validation approach [11] is adopted for identifying
the number of states. We estimate the parameters for the
Gaussian distributions and the transition matrix by applying
the Expectation-Maximization algorithm [12], initialized with
values resulting from the tree-based cross-validation. In step 2
we validate the estimated model using observations. Here, we
adopt a data consistency approach [13], and derive methods
for application of this approach to Markov Chains using
outputs from the Forward-backward algorithm.

A set of probabilistic techniques are selected and combined
in the framework, to enable identification and validation of
the HMM. The methods are applied to two test cases, a test
program with a known Markov Chain behavior, and a video
decompression program treated as a black box. The results
are presented and discussed. Further investigation is needed
to evaluate the applications where the framework and the
specific techniques of each step are most suitable, and for what
applications other techniques are better for one or several of
the proposed steps.

The rest of the paper is structured as follows. Section II
presents the related work, followed by Section III that presents
the task model. Section IV presents the proposed framework.
Sections V and VI discuss the experimental results, Finally,
Section VII concludes the paper and highlight directions for
future work.

II. RELATED WORK

Cucu-Grosjean and Davis have recently provided thorough
surveys of the literature on probabilistic methods in Timing
Analysis [14], Response Time Analysis, analysis of server-
based systems, Real-Time Queuing Theory, system analysis
with fault modeling and Mixed Criticality Systems [15].
Cazorla et al. provide a taxonomy and a survey on the
methods used in Probabilistic Worst-Case Execution Time
Analysis [16]. The authors also emphasize the fact that while
measurement-based approaches may allow analysis of a black-
box system, the results are only reliable if the analysis data
are representative with respect to the operational environment.
That is, all sources of variation in execution times or latencies
that are relevant for the result need to be contributing to the
variation in the data. Otherwise their effects need to be upper-
bounded or accounted for in other ways.

In the area of static probabilistic timing analysis, many
works consider models for set-associative or fully associative
caches. Quinones et al. [17] showed that for some cases with

programs displaying a cache risk pattern, random replace-
ment gives better results and lower variability compared to
Least Recently Used (LRU) replacement. Altmeyer et al. [18]
provide analysis considering reuse distance, associativity and
contention. Analysis using random replacement caches has
been extended to the multi-path case [19], [20]. Chen and Bel-
trame [21] perform timing analysis for single-path programs
on systems with evict-on-miss random replacement caches by
using an adaptive Markov model.

Measurement-Based Probabilistic Timing Analysis methods
estimate the pWCET by applying statistical techniques to
observations of execution time measurements. While WCET
is a scalar value – the upper bound of the worst case execution
time of runs – the pWCET is a probability distribution
representing the upper bound on the probability of exceeding
each execution time value in valid scenarios of repeated runs
of the program. The theoretical basis is in Extreme Value
Theory (EVT). The first work in this direction was by Burns,
Edgar and Griffin [22]–[24]. Measurement-Based Probabilistic
Timing Analysis was then introduced by Cucu-Grosjean et
al. [25] in 2012.

Probabilistic Response Time Analysis is used to calculate
the response time distribution of jobs, and in this manner
estimate the probability of a deadline miss. Diaz et al. [26]
presented response time analysis for a system with periodic
tasks where random variables describe execution times. Here,
the worst-case processor utilisation can exceed 1, since a
backlog is considered at the end of the hyperperiod. They show
that the backlog is a Markov chain. In [27] they also provided
properties needed to achieve a safe over-approximation. More
recent, the system model was extended by Kaczynski et
al. [28] to also allow for systems with aperiodic tasks.

Similarly as in Measurement-Based Probabilistic Timing
Analysis for pWCET estimates, EVT has also been applied
in order to estimate response time distributions. The majority
of the work in this line of research, Statistical Response Time
Analysis, has been performed by Lu et al. [29]–[32].

Real-Time Queueing Theory is an area where queue lengths
and waiting times are analyzed mathematically. Lehozcky [33]
introduced the concept in 1996, building upon work on queu-
ing theory that started in the 1950s. Doytchinov provided a
mathematical formalization in [34].

Probabilistic analysis has also been applied in analysis
of server-based systems. Buttazzo and Abeni introduced the
Constant Bandwidth Server (CBS) [35], and probabilistic
deadlines for Quality of Service guarantees [36]. The same
group has considered execution times [37], [38] and interar-
rival times [38]–[40] modeled with probability distributions.

Frı́as et al. [9], [10] have published work regarding ex-
ecution time models for tasks where execution times dis-
play dependencies due to slowly changing input data. They
have shown that for a robotic image processing task in line
following, modeling execution times as a Hidden Markov
Model is appropriate. In this work, discrete emission dis-
tributions for the different states are used. The deadline
miss probability under CBS/Earliest Deadline First (EDF)



is estimated for the Hidden Markov Model and compared
to an assumption of independent and identically distributed
random variables. The calculated probabilities are compared
to experimental results with CBS/EDF as implemented in
the Linux SCHED DEADLINE scheduling policy. The ex-
periments show that with an independent and identically dis-
tributed (i.i.d.) assumption of execution times, the probability
of respecting the deadline is overestimated, i.e., the estimate
is optimistic. The estimates based on the identified Hidden
Markov Model, on the other hand, are very close to the
experimental results.

III. TASK MODEL

In this paper, we consider a periodic task τ consisting of a
sequence of periodic jobs Ji, i ∈ N, with period T . Each job
has an execution time ci ∈ R.

We model the execution time distribution of the task accord-
ing to an adapted version of the Markov Computation Time
Model (MCTM) in Frı́as et al. [9]. The model is described by
the set {M,P, C}, where

• M = {m1,m2, . . . ,mN} is the set of N states, mn, n ∈
N.

• P is the N×N state transition matrix, where the element
pa,b represents the conditional probability P(Xi+1 =
mb|Xi = ma) of being in state mb at round i+1, given
that at round i the state is ma.

• C = {C1, C2, . . . , CN} is the set of execution time
distributions, or emission distributions related to respec-
tive state. In this paper, these are modelled as Gaus-
sian distributions with mean µn, and variance σ2

n, i.e.,
Cn ∼ N (µn, σ

2
n).

IV. FRAMEWORK

In this section, we present and describe the framework that
we have developed for the identification and validation of the
probabilistic model. Specifically, the framework consists of the
following steps:

1) Firstly, we apply the tree-based cross-validation ap-
proach [11] described in Section IV-A to identify the
number of states in the HMM from the observations.
An HMM with the identified number of states is fit-
ted to the observations, according to the Expectation-
Maximization [12] algorithm, using the likelihoods ob-
tained with the Forward-backward algorithm [41]. The
Gaussian distribution parameters and the transition matrix
used as a starting point for the optimization is given by
the outputs of the tree-based cross-validation.

2) Secondly, the obtained model is validated using a data
consistency approach [13] described in Section IV-B.
Here we derive expressions using outputs from the
Forward-backward algorithm for application of the data
consistency model validation.

In the following subsections we describe these steps on model
identification and validation in more detail.

A. Tree-based Cross-Validation

In general, the number of states N is not known a priori,
and must be identified, for example based on logged data.
In order to identify a number of states Nopt that allows for
capturing the execution sequence properties without overfit-
ting, a tree-based cross-validation approach is applied, as
described in Shinozaki [11]. The execution time sequence
cs = {c1, c2, . . . , cNS} consisting of execution times from
NS ∈ N jobs, is split into M non-overlapping folds csf with
index f .

cs = ∪Mf=1csf

csf ∩ csg = ∅, f 6= g

For each fold with index f , we also define the complement
cscf , the remaining folds:

cscf = ∪f 6=gcsg

For each fold an MCTM with N > Nopt states is fitted
to the remaining folds cscf . The initial values of means and
standard deviations for the emission distributions are given by
k-means clustering with k = N .

The occupancy probability γni is the probability of being
in state n at round i, given the observation sequence csf ,
where ci ∈ csf and the model parameters retrieved from
fitting to cscf . The occupancy probabilities for each state index
n and observation round i are calculated with the Viterbi
algorithm [41].

Statistics containing all information from the sample needed
for parameter value estimates for a statistical model are suffi-
cient for the parameter. By calculating the sufficient statistics
we can store the needed information from a sample in a
compact manner. Sufficient statistics for likelihood estimates
of a Markov chain model with Gaussian emission distribution
are a0, a1 and a2 [11]. These are calculated for each fold
index f and state index n:

a0fn =
∑

i,ci∈csf

γni

a1fn =
∑

i,ci∈csf

ciγni

a2fn =
∑

i,ci∈csf

c2i γni

For a set or cluster s of states, the maximum likelihood
mean µ and variance ν for a fold index f can be calculated
from the sufficient statistics from remaining folds:

µfs =

∑
g 6=f

∑
mn∈s a1gn∑

g 6=f

∑
mn∈s a0gn

(1)

νfs =

∑
g 6=f

∑
mn∈s a2gn∑

g 6=f

∑
mn∈s a0gn

− µ2
fs (2)



These are then used to calculate a likelihood per fold index f
and cluster s:

Lfs = −
1

2
×∑

mn∈s

(
ln(2πνfs)a0fn +

a2fn − 2µfsa1fn + µ2
fsa0fn

νfs

)
(3)

The likelihood for a cluster is then calculated by summation
of the likelihoods of each fold index.

Ls =

M∑
f=1

Lfs (4)

A tree is created, and initially all states are placed in a
cluster in the root node. The cross validated likelihood is
calculated for the tree consisting of only this cluster. Attempts
are made to split the leaf nodes of the tree, so that the node’s
cluster is split into two clusters. The possible ways of splitting
the states in a tree node are:

1) 2-means clustering of 2D data points of mean and
standard deviation of each state is performed, and the
resulting split is evaluated.

2) The states are ordered with respect to increasing mean,
and each possible split along the ordered states is evalu-
ated.

3) The modes are ordered with respect to increasing standard
deviation, and each possible split along the ordered states
is evaluated.

The split that gives the greatest increase in likelihood is se-
lected. Nodes are split as long as the cross validated likelihood
of the subtree is increased by the split, or until there is only
one state in the tree node. The node splitting process is a
greedy algorithm that may lead to a local maximum. Pseudo
code is provided in Algorithm 1.

When a suitable number of states has been found, an MCTM
with this number of states is fitted to the execution time
samples, starting from initial values taken from the node
clusters.

B. Data Consistency Model Validation

We evaluate whether the fitted model as described in
Section IV-A,is valid, with respect to observations. Thus, we
generate samples from the model and using a data consistency
approach [13] we compare the generated samples to observa-
tions. If the observed data is consistent with data generated
from the model, the model can be used in schedulability
analysis.

The model validation can be performed with the same
observations used for the model estimate, to evaluate whether
the model can capture the properties of the observations.
The evaluation can also be performed with observations from
other runs of the program, to evaluate whether the model and
parameters are valid in these cases, for different inputs or
different hardware states.

The data consistency approach we apply is described by
Lindholm et al. [13]. The log-likelihood under the proposed
model is estimated for samples generated from the model and
for the observed samples. Using a log-likelihood based statis-
tic, an estimate is calculated of the probability of generating
the observed sample or a sample with higher dispersion, from
the evaluated model. This is equivalent to the probability that
we reject the model on the basis of the observed data being
overdispersed, assuming that the data is generated from the
model. Another way of describing it is that the model is under-
dispersed compared with the observations. This probability of
falsely rejecting the model or Probability of False Alarm due
to underdispersion (PFAu) is similar to the p-value concept
in hypothesis evaluation. While the p-value is the probability
of obtaining the test results or more extreme values assuming
the null hypothesis is correct, the PFAu is the probability of
obtaining data with at least the observed variability, assuming
they are generated from the proposed model.

We denote the observed execution times with an underline,
as c. In our case, we evaluate a single model with a proba-
bility distribution p(c|M∗,P∗, C∗), where M∗,P∗, C∗ are the
parameters of the fitted MCTM.

Using the model, we generate trajectories denoted with tilde
c̃ ∼ p(c|M∗,P∗, C∗). Using c1:t to denote the samples at
rounds 1 to t from the trajectory, the conditional likelihood
of an execution time measurement in a trajectory under the
model is:

pt = p(ct|c1:t−1,M∗,P∗, C∗) =
p(c1:t|M∗,P∗, C∗)
p(c1:t−1|M∗,P∗, C∗)

This can be calculated from the scaling factors resulting
from the Forward-backward algorithm. We denote these as
scai. From Rabiner [41] we have the probability of the
observations expressed in terms of the scaling factors:

p(c1:t|M∗,P∗, C∗) =
1∏t

i=1 scai

From this it is clear that the conditional probability can be
written as:

pt = p(ct|c1:t−1,M∗,P∗, C∗) =
1

scat

The conditional log-likelihood of a data point is:

zt , ln p(ct|c1:t−1,M∗,P∗, C∗) = − ln scat (5)

Conditional probabilities of outputs for each state separately
can be estimated using the transition matrix and the scaled
forward variables α̂:

p(ct, Xt = j|c1:t−1,M∗,P∗, C∗)

= p(ct|Xt = j)

N∑
k=1

pk,jp(Xt−1 = k|c1:t−1,M∗,P∗, C∗)

=
1

σj
√
2π
e−

(ct−µj)
2

2σ2

N∑
k=1

pk,jα̂k,t−1



Algorithm 1 Pseudo code describing the tree cluster splitting process. The likelihood increase for possible splits of a cluster
are calculated using the pre-computed sufficient statistics.

1: function TREECLUSTERSPLITTING(suffStats, N )
2: tree← createNode()
3: tree.states← [1 : N ] . Add all states to the root cluster
4: tree.[leftStates, rightStates, advantage] ← calcSplitAdvantage(tree, suffStats) . Find the best split
5: while (tree.advantage > 0) and (nLeafNodes(tree) ≤ N) do . While the likelihood increases, and we can split leaves
6: for node ∈ leaves(tree) do
7: if node.advantage > 0 then
8: node.leftChild← createNode() . Add new leaf nodes and split the state cluster
9: node.leftChild.states← node.leftStates

10: node.rightChild← createNode()
11: node.rightChild.states← node.rightStates
12: node.states← ∅
13: end if
14: end for
15: for node ∈ leaves(tree) do
16: node.[leftStates, rightStates, advantage]← calcSplitAdvantage(node, suffStats) . Find the best split of the leaf
17: end for
18: for node ∈ tree; post− order do
19: node.advantage← maxAdvantageChildren(node) . Move the highest likelihood increase to the root
20: end for
21: end while
22: return tree . Return the tree with Nopt leaf clusters
23: end function

From Rabiner [41] we have that:

αk,t = p(c1:t, Xt = k|M∗,P∗, C∗)

α̂k,t = αk,t

t∏
i=1

scai =
p(c1:t, Xt = k|M∗,P∗, C∗)

p(c1:t|M∗,P∗, C∗)

= p(Xt = k|c1:t,M∗,P∗, C∗)

The conditional log-likelihood of each state and data point
is:

zt,j , ln p(ct|Xt = j, c1:t−1,M∗,P∗, C∗)

= − lnσj −
ln 2π

2
− (ct − µj)

2

2σ2
+ ln

N∑
k=1

pk,jα̂k,t−1 (6)

We denote the mean of the log-likelihood of data points in
generated trajectories as E[z̃t] and the variance as Var[z̃t].
The test statistic T for a trajectory is defined:

T (c;M∗,P∗, C∗) =
1

n

n∑
t=1

zt − E[z̃t]
Var[z̃t]

(7)

T statistics are defined similarly for each state by replacing
zt with zt,j . S is defined as the random event of a generated
sample resulting in a higher T -statistic than the observed one:

S(c̃, c) : T (c̃;M∗,P∗, C∗) > T (c;M∗,P∗, C∗)

When the probability of S, Pc̃|M∗,P∗,C∗(S(c̃, c)) is close to 0
or close to 1, it indicates that the observed data is inconsistent
with the proposed model.

Lindholm et al. define PFAu, the probability of falsely
rejecting a model due to under-dispersion of the generated log
likelihoods as:

PFAu , Pc̃|M∗,P∗,C∗(S(c̃, c)) (8)

Lindholm et al. also define the probability of falsely rejecting
the model due to under- or overdispersion as:

PFA = min(PFAu, 1− PFAu)

However, in our work, we use PFAu, as an under-
dispersion of data generated from the proposed model indi-
cates that the model is optimistic with regard to tail estimates.
We note that values of PFAu that are close to 1 also indicate
model inconsistency, but that this relates to over-dispersion of
data generated from the model.

Pseudo code for the data consistency approach is given in
Algorithm 2.

V. EVALUATION

A. Test Setup

A Raspberry Pi 3B+ single board computer with quad-core
1.4 GHz BCM2837B0 is utilized in the tests. Arch Linux
ARM kernel 4.14.87 with PREEMPT_RT patch 4.14.87-49 is
configured with fully preemptible kernel and timer frequency
of 100Hz. The SD card low latency mode and dwc_otg
FIQ are disabled. A test program is pinned to a core that is
isolated from load-balancing and scheduling algorithms. The
scaling governor is set to performance for all cores and USB is
disabled during the run. The program is run in user space with
FIFO scheduling and maximum priority. The ftrace utility
trace-cmd is used to log release (sched_wakeup) and
scheduling (sched_switch) events, and to generate trace
reports with nanosecond precision from the trace logs.

The model identification and validation framework is ap-
plied offline using the recorded traces.



Algorithm 2 Pseudo code describing the data consistency validation process.
1: function DATACONSISTENCYVALIDATION(M∗,P∗, C∗, c)
2: for i ∈ 1 : M ′ do
3: traj1← generateTraj(M∗,P∗, C∗,M ′, length(c))) . Generate M ′ trajectories of the same length as observations.
4: simZ1[i]← calcZ(traj1,M∗,P∗, C∗) . Calculate log likelihoods zt and N zt,j for the samples as in Eq. 5 and 6.
5: end for
6: EZ ← mean(simZ1) . Estimate E[zt] and N E[zt,j ] across M ′ values for each round t.
7: V arZ ← var(simZ1) . Estimate Var[zt] and N Var[zt,j ] across M ′ values for each round t.
8: for i ∈ 1 : M do
9: traj2← generateTraj(M∗,P∗, C∗,M, length(c))) . Generate M trajectories of the same length as observations.

10: simZ2[i]← calcZ(traj2,M∗,P∗, C∗) . Calculate log likelihoods zt and N zt,j for the samples as in Eq. 5 and 6.
11: Tsim[i]← calcT (simZ2, EZ, V arZ) . Calculate M × (N + 1) T s for zt and zt,j as in Eq. 7 from simulated trajectories.
12: end for
13: obsZ ← calcZ(c,M∗,P∗, C∗) . Calculate log likelihoods zt and N zt,j for the samples as in Eq. 5 and 6.
14: Tobs← calcT (obsZ,EZ, V arZ) . Calculate N + 1 T s for zt and zt,j as in Eq. 7 from observations.
15: PFAu ← count(Tsim > Tobs)/M . Estimate the probability of S for the entire model and per state.
16: return PFAu

17: end function

B. Implementation

The tree-based cross validation approach described in Sec-
tion IV-A and the data consistency criterion model validation
described in Section IV-B are implemented in R1, utilizing
the R packages depmixS4 [42] and data.tree. Evaluation
code as well as test programs and scripts are available online 2.

Four folds are used for the cross validation. As described
in Section IV-A, the MCTM is fitted to three folds, and the
sufficient statistics using the fitted model are calculated for the
remaining fold. The occupancy probabilities are determined by
application of the Viterbi algorithm. A new MCTM with the
number of states given by the tree-based cross validation is
created, and initialized with the means and variances from the
clusters, as given in Eq. 1 and Eq. 2 averaged over all folds.
This model is then fitted to the entire training set, and the
fitted model is validated with the data consistency criterion.

Values of the probability of false alarm due to underdis-
persion, PFAu, are estimated for the entire model using zt
as in Eq. 5, and for each state in the model using zt,j as in
Eq. 6. First, 100 trajectories are generated for estimation of the
mean and variance of the log likelihood. The trajectories are
generated using the simulate function in depmixS4, and log
likelihoods are retrieved from depmixS4’s forward and scal-
ing variable resulting from the Forward-backward algorithm.
Second, 100 new trajectories are generated for calculation of
T values as given by Eq. 7. Referring to Algorithm 2, both
M ′ and M are set to 100.

C. Markov Chain Test Program

In a first test, a program with a known Markov Chain
behavior is evaluated. The test program contains a state
machine with three states. The program keeps an array of
100 integers, initialized from a random uniform distribution
in the range [0, 4711]. It executes a job periodically at a 5ms

1https://www.r-project.org/
2https://github.com/annafriebe/MarkovChainETFramework

interval. In the job, a state transition is performed, given the
following transition matrix:

P =

0.7 0.1 0.2
0.5 0.1 0.4
0.5 0.2 0.3

 (9)

Depending on the current state, elements in the array are
increased with 43 and a modulo operation with 4711 is
performed. The first state has the shortest average execution
time, the second state the middle and the third state the longest
average execution time.

Logs are created from 21 runs of the program, one is
used for model parameter estimation, and 20 in the model
evaluation. In each run, the task releases 10 000 jobs. A python
script is used to calculate the execution time for each job. The
steady state is considered, so the logs from the first 250 jobs
and the last executed job instance are excluded. The execution
times of the first 250 are slightly lower, due to the program
always starting in state 1 and possibly due to the system state.
The last job’s execution time is much longer due to produced
status output before termination.

The execution time sequence used for estimating models is
displayed in Fig. 1.

The tree based cross-validation approach is applied with
8 initial states to the training execution time sequence. The
fitted model has six remaining states. The means and standard
deviations of the states and PFAu values are displayed in
Table I, and the estimated transition matrix is given by:

P =


0.51 0.18 0.08 0.02 0.19 0.007
0.45 0.27 0.05 0.04 0.18 0.005
0.36 0.14 0.07 0.047 0.38 0.005
0.31 0.18 0.07 3.7× 10−5 0.43 0.012
0.34 0.15 0.15 0.06 0.30 0.008
0.12 0.45 0.02 0.18 0.12 0.11


(10)

Based on the means and standard deviations from Table I,
we can see that states 1 and 2 represent the program state with
the lowest mean execution time, states 3 and 4 represent the
middle program state and states 5 and 6 represent the highest
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Fig. 1. The execution time sequence from the Markov Chain Test program
used for estimating models. Times are given in nanoseconds.

TABLE I
STATE MEANS AND STANDARD DEVIATIONS (IN NANOSECONDS) AND

CORRESPONDING PFAu VALUES FOR THE MODEL ESTIMATED FROM THE
TRAINING SEQUENCE.

State 1 2 3 4 5 6 All
mean 22240 22859 29652 30248 42185 41203 NA
stddev 222 420 221 409 383 9 190 NA
PFAu

test 1 0.22 0.21 0.18 0.18 0.94 0.44 0.31
test 2 0.52 0.49 0.33 0.33 0.14 0.56 0.87
test 3 0.38 0.37 0.24 0.24 0.43 0.05 0.02
test 4 0.28 0.27 0.19 0.18 0.53 0.20 0.19
test 5 0.36 0.36 0.22 0.22 0.42 0.22 0.24
test 6 0.14 0.14 0.12 0.14 0.75 0.10 0.06
test 7 0.26 0.26 0.18 0.18 0.67 0.38 0.19
test 8 0.00 0.00 0.01 0.01 0.58 0.00 0.00
test 9 0.58 0.58 0.43 0.39 0.01 0.44 0.89
test 10 0.55 0.53 0.42 0.40 0.02 0.62 0.92
test 11 0.27 0.26 0.19 0.20 0.76 0.24 0.17
test 12 0.43 0.43 0.29 0.26 0.04 0.31 0.41
test 13 0.48 0.47 0.25 0.23 0.03 0.31 0.50
test 14 0.74 0.73 0.50 0.46 0.01 0.69 0.99
test 15 0.28 0.28 0.19 0.20 0.58 0.31 0.14
test 16 0.29 0.28 0.21 0.21 0.41 0.14 0.56
test 17 0.37 0.37 0.21 0.21 0.09 0.13 0.76
test 18 0.36 0.36 0.24 0.23 0.37 0.12 0.41
test 19 0.28 0.28 0.21 0.21 0.53 0.59 0.61
test 20 0.19 0.20 0.18 0.19 0.81 0.16 0.11
train 0.40 0.39 0.28 0.26 0.45 0.48 0.94

program state and state 6 also some outliers. If we sum the
values of columns 1-2, 3-4 and 5-6 for each row in Eq. 10,
we see that for rows 1-5 they sum up to values similar to the
corresponding transition probabilities in 9.

We see in Table I that the model is valid for all but one of
the test sequences (test 8).

D. Video Decompression

A video is generated with images from the Tears of Steel
open movie project3. The video is created with ffmpeg from

3https://mango.blender.org/
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Fig. 2. The execution time sequence of the video decoding process. Times
are given in nanoseconds, log scale.
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Fig. 3. Estimated transition probabilities between the macro states.

frames 5000–8999 of the 1080bis-png images4. The frame
rate is set to 25 fps.

A trace is logged during decoding of the video with
ffmpeg in native frame rate. The sequence of execution times
from the decoding is displayed in Fig. 2. We consider the
steady state, therefore the first 250 and the last 50 execution
time measurements have been discarded, as outliers are seen
on visual inspection. From the figures it is clear that the
execution times are separated in distinct groups, the lower with
execution times below 0.15 ms, accounting for approximately
57% of the samples, a slightly higher with execution times
below 1 ms and a peak at around 0.45 ms, accounting for
about 22% of the samples, a higher and more varying 10
ms accounting for approximately 19% of the samples, and
the high with execution times above 22.5 ms accounting for
less than 2% of the samples. These groups are considered
as macrostates, and the transition probabilities between the
states are displayed in Fig. 3. The execution time sequence
has been separated outside of the framework and the transition
probabilities in Fig. 3 are estimated directly from the sequence.
The framework analysis is applied to each of these groups
separately. The PFAu values are with respect to the sequence
used for model estimation.

4https://media.xiph.org/tearsofsteel/tearsofsteel-1080bis-png/



1) Macro state 1: Execution times below 0.15 ms: The
execution times ci < 0.15 ms are extracted from the video
decompression log, resulting in a log of 10 538 samples. A
Markov chain model is identified in the first two steps of the
framework - the tree based cross validation approach described
in Section IV-A, and fitting to the observations. The initial
number of states is 20, and the resulting Markov model has
13 states. The data consistency criterion PFAu for each state
and for the entire model is calculated for the observations. The
features and PFAu values for the model is given in Table II.

2) Macro state 2: Execution times in the range between 0.15
and 1 ms: The execution times 0.15 ≤ ci < 1 ms consist of
4165 samples. The tree-based cross validation with 20 states in
the initial Markov Model is applied and the resulting Markov
Chain has 13 states. The state means and standard deviations
of the estimated model, and the associated PFAu values, are
displayed in Table III.

3) Macro state 3: Execution times in the range between
1 and 22.5 ms: The execution times 1 ≤ ci < 22.5 ms
are 3598 samples. The tree-based cross validation does not
generally find a solution in this case - for many starting
values the depmixS4 fit function is unable to complete the
expectation maximization step. Starting from 24 initial states, a
solution with 14 states is found. The state means and standard
deviations and corresponding PFAu values for the model are
listed in Table IV.

4) Macro state 4: Execution times above 22.5 ms: 346 ob-
servations from the execution time sequence belong in macro
state 4, ci ≥ 22.5 ms. The tree-based cross validation starting
with 15 states identifies a model with 8 states. The state means
and standard deviations and corresponding PFAu values for
the model estimated from the execution time sequence are
shown in Table V.

VI. DISCUSSION

The evaluation allows us to conclude that a Hidden Markov
Model with Gaussian emission distributions can be appropriate
to model execution time sequence data, and that the proposed
framework can be used to identify and validate such a model.

The analysis of the Markov Chain test program shows that
the methods can be used to estimate the number of modes,
the transition matrix, means and standard deviations to fit
the model. While the test program is constructed to display
Markov Chain properties, we show that the execution time
distributions in each state can be modeled by a combination of
modes with Gaussian emission distributions. Compared to the
video decompression test, the program has a simple structure
and a small memory footprint.

We also note that a Hidden Markov Model with Gaussian
emission distributions appears to be valid in relation to the
execution time sequences in the video decompression test.

The depmixS4 methods used in the tree-based cross
validation step are somewhat sensitive to the initial number
of states, and the step may fail if this number is too large or
too small. These methods can also fail if there are significant
gaps between the execution time values, which is why the

video decompression sequence is separated into macrostates.
The framework could be expanded to manage separation into
macrostates and find a suitable initial number of states.

We also note that in some cases the number of states in
the final models vary significantly. The heuristic algorithm for
splitting the nodes could be adapted to evaluate a more exhaus-
tive selection of possible splits, or replaced by an optimization
algorithm such as for example simulated annealing [43].

Due to randomization utilized in many of the methods
within the framework, different random seeds cause varying
results. This is illustrated in Fig. 4, where the Gaussian
distributions of two models are visualized on top of a nor-
malized histogram of the sequence they are estimated from.
The Gaussian distributions are scaled with their respective
stationary distribution probabilities.
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Fig. 4. Normalized histograms of execution times (in nanoseconds) of the
execution time sequence of the Markov chain test program. Two different es-
timated models from different random seeds are visualized with the Gaussian
distributions of the states scaled with their respective stationary distribution
probability, and their means displayed as vertical lines. In (a) we see the six
state model from Section V-C, and in (b) a five state model estimated with
the framework applied to the same execution time sequence but initialized
with another random seed.

We have conducted preliminary tests with the validation step
performed with observations from running video decompres-
sion on another part of the “Tears of Steel” movie, that indicate
that the identified model is not valid in this case. This may be
due to input dependencies or cache related effects that cause



TABLE II
STATE MEANS AND STANDARD DEVIATIONS (IN NANOSECONDS) AND CORRESPONDING PFAu VALUES WITH THE ESTIMATED MODEL FOR

MACROSTATE 1.

State 1 2 3 4 5 6 7 8 9 10 11 12 13 All
mean 70 662 76 370 10 082 10 671 10 920 15 954 43 703 54 343 28 470 12 927 31 295 62 083 39 794 NA
stddev 15 236 2 360 230 640 578 2 585 1 069 4 095 1 908 1 034 3 024 2 159 2 065 NA
PFAu 0.51 0.45 0.24 0.24 0.24 0.22 0.06 0.22 0.17 0.24 0.23 0.47 0.10 0.02

TABLE III
STATE MEANS AND STANDARD DEVIATIONS (IN NANOSECONDS) AND CORRESPONDING PFAu VALUES WITH THE ESTIMATED MODEL FOR

MACROSTATE 2.

State 1 2 3 4 5 6 7 8 9 10 11 12 13 All
mean 465 766 418 676 252 165 446 819 552 131 530 612 399 345 773 326 681 703 481 032 301 732 586 839 452 460 NA
stddev 9 790 9 832 13 083 4 442 33 902 5 549 3 868 37 217 9 397 13 513 13 543 13 245 4 530 NA
PFAu 0.35 0.45 0.46 0.39 0.18 0.20 0.48 0.24 0.20 0.31 0.46 0.17 0.37 0.37

TABLE IV
STATE MEANS AND STANDARD DEVIATIONS (IN NANOSECONDS) AND CORRESPONDING PFAu VALUES WITH THE ESTIMATED MODEL FOR

MACROSTATE 3.

State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 All
mean 12 146 116 9 907 489 9 408 568 11 763 973 8 753 004 13 172 000 13 071 808 11 726 350 15 321 999 10 722 598 10 652 123 8 223 196 10 074 260 11 246 543 NA
stddev 237 788 253 316 284 388 481 965 306 717 328 076 636 583 276 281 2 759 114 288 845 456 994 332 875 286 002 314 261 NA
PFAu 0.07 0.16 0.17 0.08 0.17 0.03 0.07 0.08 0.45 0.14 0.18 0.00 0.16 0.07 0.80

TABLE V
STATE MEANS AND STANDARD DEVIATIONS (IN NANOSECONDS) AND CORRESPONDING PFAu VALUES WITH THE ESTIMATED MODEL FOR

MACROSTATE 4.

State 1 2 3 4 5 6 7 8 All
mean 22 979 652 22 881 488 23 863 163 22 786 818 22 733 574 23 365 667 23 094 934 23 198 326 NA
stddev 57 727 682 112 197 495 36 255 66 411 140 413 54 839 110 609 NA
PFAu 0.39 0.36 0.37 0.36 0.35 0.32 0.30 0.38 0.57

the Gaussian distribution parameters and transition matrix to
change over time and between runs.

Chen and Beltrame [21] show that effects of a random
replacement cache can be described by an adaptive Markov
Chain, and the ARM processor on the Raspberry Pi applies a
pseudo-random cache replacement policy. Our methods derive
a homogeneous Markov Chain, and if the model changes
significantly during the sequence used for model parameter
estimation, the model will not be valid, and this will be
reflected in the resulting PFAu values.

Finally, we note that cache-related jitter in our evaluations
may be exaggerated by the ftrace process running simulta-
neously.

VII. CONCLUSION AND FUTURE WORK

This work proposed a measurement-based framework for
probabilistic modeling of execution times of real-time applica-
tions. It presented an end-to-end workflow that first identifies
the structure of a Markov Chain model and fits the proba-
bilistic distributions to the collected execution time data, and
finally validates the obtained model on the collected data based
on a data consistency approach.

As with all measurement-based approaches, the application
of this framework requires that the observations used at
analysis are representative of the observations at runtime.

In order for the models to be useful in cases where full
representativity of the observations at analysis time is not
realistic to achieve, the methods described in this paper need
to be complemented with (i) a method for providing a safe
over-approximation of the execution time distribution, and
(ii) a method for dynamically updating the model to reflect
the effects on execution time patterns due to changes in input,
program state or hardware state.

It is worth noticing that the proposed framework presents
a consistent combination of different probabilistic tools, but it
can include other techniques as alternatives. For example, the
approach proposed in [9] for the identification of the Markov
model can be used in the first step of the proposed framework,
as an alternative method. Further investigation on the tradeoffs
among different techniques is needed, and it is deferred to
future work.

The framework could be further extended and automated,
e.g., by specifying required limits on the PFAu values. If
these are too close to 0 or 1, one can reject the model. Attempts
can be made to identify new models in an iterative manner,
until we find a model that is not rejected, or we reach an



iteration limit and deem the proposed model not consistent
with the observations.

Finally, this paper focused on the single use case of video
decompression. Other use cases will be analyzed in the future
to better understand and investigate benefits and drawbacks
of different probabilistic tools that can be included in this
framework.

REFERENCES

[1] D. D. Clark, S. Shenker, and L. Zhang, “Supporting real-time ap-
plications in an integrated services packet network: Architecture and
mechanism,” SIGCOMM Comput. Commun. Rev., vol. 22, no. 4, p.
14–26, 1992.

[2] P. Martı́, J. M. Fuertes, G. Fohler, and K. Ramamritham, “Improving
quality-of-control using flexible timing constraints: metric and schedul-
ing,” in IEEE Real-Time Systems Symp. (RTSS), 2002, pp. 91–100.
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