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Abstract
Vehicular ad hoc networks have attracted the attention of many researchers during the last years due to the emergence of
autonomous vehicles and safety concerns. Most of the frameworks which are proposed for the modeling and analysis VANET
applications make use of simulation techniques. Due to the high level of concurrency in these applications, simulation results
do not guarantee the correct behavior of the system and more accurate analysis techniques are required. In this paper, we have
developed a framework to providemodel checking facilities for the analysis ofVANETapplications. To this end, an actor-based
modeling language, Rebeca, is used which is equipped with a variety of model checking engines. We have extended Rebeca
with the inheritance mechanism to support model-specific message passing among vehicles, which is crucial for the modeling
of VANET applications. To illustrate the applicability of this framework, we modeled and analyzed two warning message
dissemination schemes. Reviewing the results of using the model checking technique supports the claim that concurrent
behaviors of the system components in VANETs may cause uncertainty which may not be detected by simulation-based
techniques. We also observed that considering the interleaving of concurrent executions of the system components affects the
performance metrics of it.

Keywords Model checking · Warning message dissemination · Vehicular ad hoc networks (VANETs) · Rebeca · Actor model

1 Introduction

Safety of the autonomous vehicles is turned into one of
the main concerns of future transportation systems. This
concern has been attracting the attention of researchers
in both academia and industry, during the last years.
Using autonomous vehicles in mission-critical applications
increases the significance of the problem. Vehicular ad hoc
networks (VANETs) are considered as the main communica-
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tion network in such systemswhere themain responsibility is
the warning message dissemination (WMD). To prevent fur-
ther potential damage, WMD is used for vehicle to vehicle
communication in dangerous situations. In this case, vehicles
with the knowledge of hazard broadcast warning messages
to inform the other vehicles. To increase the number of vehi-
cles receiving the warningmessage, the receiving nodes have
to forward the message. Such a forwarding operation causes
bursty traffic. Different strategies are proposed to hold a fair
trade-off between the amount of traffic in the network and
themaximumnumber of vehicles receiving themessage [19].
Each strategy proposes how to select the next group of for-
warding nodes to enhance the performance, considering the
mentioned trade-off. In Sect. 2, more details about WMD
strategies in VANETs are presented.

To validate the correctness ofWMD strategies and to eval-
uate their performance, a number of simulation-based tools
and techniques havebeenused. Simulation-based approaches
cannot provide a high level of confidence for the correct
behavior of the system in the presence of the concurrent
execution of system components. This parameter reduces
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the effectiveness of simulation-based techniques in such
mission-critical applications. At the failure of simulation-
based techniques, formal verification approaches seem to
be the perfect technique for achieving reliable results. For-
mal verification is widely used in applications of VANETs
such as cooperative collision avoidance [9], intersection
management using mutual exclusion algorithms [3], and
collaborative driving [15]. However, to the best of our knowl-
edge, this is the first formal verification work in the WMD
application of VANETs. Note that there are some works on
formal verification of message dissemination in VANTEs
(e.g., Ferreira et al. in [5]), but none of them address analysis
of schemes which is an application layer analysis.

In this paper, we introduce Rebeca with Inheritance for
modeling and analyzing of the WMD schemes in VANETs.
Rebeca [21] is an operational interpretation of the actor
model with formal semantics, supported by a variety of anal-
ysis tools [13,20]. In the actor model, all the elements that
are running concurrently in a distributed system are mod-
eled as actors. Communication among actors takes place by
asynchronousmessage passing. These structures and features
match the needs of VANETs as they consist of autonomous
nodes that communicate by message passing. This level of
faithfulness helps in having a more natural mapping between
the actor model and VANETs, making models easier to
develop and understand. The way that inheritance is added
to Rebeca enables support for inheritance in a variety of
Rebeca extensions including TimedRebeca [1], Probabilistic
Timed Rebeca [10], and Hybrid Rebeca [11]. We developed
VeriVANca as a framework for the analysis ofWMDschemes
in VANETs using Timed Rebeca with inheritance. In Sect. 3
Timed Rebeca is briefly introduced using the simplified ver-
sion of the counting-based scheme, a WMD scheme. Then,
the inheritance mechanism and its semantics are presented
in Sect. 4. More details about how VeriVANca is developed
and its features are described in detail in Sect. 5. Note that
Rebeca family members do not support dynamic actor cre-
ation; so, they cannot be used for modeling WMD schemes
which require creating actors dynamically.

To illustrate the applicability of VeriVANca, we have
modeled a distance-based scheme [22] and a counting-
based scheme [23] using VeriVANca. In the case of the
distance-based scheme, the model checking results show
that concurrent execution of the system components enables
multiple execution traces, some of them cause starvation
whichmight not be detected by simulation-based techniques.
We also observed that concurrent execution of the compo-
nents in this model, when considering the interleaving of the
components, results in multiple values for the algorithm per-
formance. Further investigations yield that this phenomenon
is not limited to one scenario but it is common in this model.
More details on similar cases are presented in Sect. 6.

The next interesting result of this work is about the scala-
bility of themodel. To examine the scalability of VeriVANca,
a middle-sized model of a four-lane street with about 40
vehicles is analyzed. The model checking results show that
scaling the number of vehicles up into a very congested area
leads to a dramatical increment in the size of the state space
as well as the analysis time of model checking. Scaling up
the model without forming new congested areas, however,
results in a smooth increment in the size of the state space
and analysis time, as presented in Sect. 6.

This paper is an extended version of our previously
published conference paper [27]. This paper extends the con-
ference paper as follows:

– We propose the formal semantics of Rebeca with inheri-
tance in the form of SOS (Structural Operational Seman-
tics) rules.

– We illustrate how the proposed semantics can be used in
other extensions of Rebeca family members.

– The experimental results are improved for better illus-
tration of the case studies and the effectiveness of this
work.

2 Warningmessage dissemination in
VANETs

WMD is an application developed for VANETs that tends to
increase the safety and riding experience of passengers. In
this application, a warning message is disseminated between
vehicles in the case of any abnormal situations such as car
accidents or undesirable road conditions. Received warning
messages are used either to activate an automatic operation
such as reducing speed to avoid chained accidents (increasing
safety) or are shown as alerts to inform the driver of the
upcoming hazard so that the driver can do operations such as
changing their route (improving the riding experience).

Using WMD in safety-critical applications requires pro-
viding high reliability for them in developed solutions.
Besides, somecharacteristics ofVANETs such as highmobil-
ity of the nodes and fast topology changes make routing
algorithms commonly used in MANETs (Mobile Ad hoc
NETworks) inapplicable to VANETs [28]. Therefore, the
only approach for implementation of message dissemina-
tion in VANETs is multi-hop broadcast of the message.
In this approach, the receiving nodes are responsible for
re-broadcasting the message to the others. However, this
can result in broadcast storm problem in the network. In
order to tackle this problem, a number of schemes have
been proposed for WMD as described in the following
subsection.
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2.1 Message dissemination schemes

Message dissemination schemes are algorithms that specify
how a forwarding node is selected in aVANET. The selection
of a forwarding node is performed based on some criteria
such as distance between senders and receivers, number of
received messages by a node, probabilities associated with
nodes, topology of the network, etc. [19]. In this paper, two
schemes—a distance-based and a counting-based scheme—
are modeled using the proposed framework.

The distance-based scheme, called TLO (The Last One)
[22], makes use of location information of the vehicles to
select the forwarding node. In this scheme, upon a message
broadcast, the farthest receiver in the range of the sender
is selected as the forwarding TLO node. Other vehicles in
the range know that they are not the farthest node and do
not forward the received message. However, they wait for
a while to make sure of successful broadcast of the TLO
node. Receiving the warning message from the TLO node,
means that the sending of the message has been successful
and they do not forward the warningmessage. Otherwise, the
algorithm is run once again to select the next TLO forwarding
node.

In the counting-based scheme [23], an integer number is
defined as counter threshold. Each receiving node counts the
number of received messages in a time interval. At the end of
that time interval, the receiver decides on being a forwarding
node based on the comparison of the value of its counter and
the value of counter threshold. If the value of the counter
is greater than the value of counter threshold, the receiver
assumes that enough warning messages are disseminated in
its vicinity; therefore, it avoids forwarding the message. Oth-
erwise, the receiver forwards the warning message.

2.2 Analysis techniques

Different analysis techniques have been developed for the
correctness and performance evaluation of message dissem-
ination schemes in VANETs. Simulation-based approaches
are widely used for the analysis of applications of in this
domain. Gama et. al. developed a model and analyzed three
different message dissemination schemes using Veins sim-
ulator [6]. Sanguesa et. al. have used ns-2 simulator in two
independent works regarding the selection of optimal mes-
sage dissemination scheme. In [17], they aim to select the
optimal broadcasting scheme for the model in each scenario
and in [18], the selection of the optimal scheme is performed
for each vehicle based on vehicular density and the topo-
logical characteristics of the environment where the vehicle
is located in. In a more comprehensive work [19] authors
have developed a framework in ns-3 simulator for compar-
ing different schemes. Note that although this approach is
used in many applications, it does not guarantee correctness

of results as it does not consider concurrent execution of sys-
tem components.

Another technique used for the analysis of WMD in
VANETs is the analytical approach. In this approach, a sys-
tem is modeled by mathematical equations and the analysis
is performed by finding solutions to the equation system.
For example, in [16], Saeed et. al. have derived difference
equations that their solutions yield the probability of all vehi-
cles receiving the emergency warning message. This value is
computed as a function of the number of neighbors of each
vehicle, the rebroadcast probability, and the dissemination
distance. In another work, a probabilistic multi-hop broad-
cast scheme is mathematically formulated and the packet
reception probability is reported for different configurations,
taking into account the topology of the network and as a
result, major network characteristics such as vehicle den-
sity and the number of one-hop neighbors [8]. This approach
guarantees achieving correct results but it is not modular and
developingmathematical formula needs a high degree of user
interaction and a high degree of expertise.

As the third technique, model checking is a general veri-
fication approach which provides ease of modeling similarly
to simulation-based approaches in addition to guaranteeing
the correctness of results due to its mathematical foundation.
To the best of our knowledge, there is no framework which
provides model checking facilities for the analysis of WMD
schemes in VANETs.

3 Rebeca language

Rebeca is a modeling language based on Hewitt and Agha’s
actors [2]. Actors in Rebeca are independent units of con-
currently running programs that communicate with each
other through message passing. The message passing is an
asynchronous non-blocking call to the actor’s corresponding
message server. Message servers are methods of the actor
that specify the reaction of the actor to its corresponding
received message. In the Java-like syntax of Rebeca, actors
are instantiated from reactive class definitions that are simi-
lar to the concept of classes in Java. Actors in this sense can
be assumed as objects in Java. Each reactive class declares
the size of its message buffer, a set of state variables, and
the messages to which it can respond. Reactive classes have
constructors with the same name as their reactive class, that
are responsible for initializing the actor’s state.

Timed Rebeca [14] is an extension on Rebeca with time
features which supports modeling and verification of time-
critical systems. To this end, three primitives are added to
Rebeca to address computation time, message delivery time,
message expiration, and period of occurrence of events. In
a Timed Rebeca model, each actor has its own local clock
and the local clocks evolve uniformly. Methods are still exe-

123



F. Yousefi et al.

cuted atomically, however passing time while executing a
method can be modeled. In addition, instead of a queue for
messages, there is a bag of messages for each actor. We
introduce Timed Rebeca using the example of the counting-
based scheme presented in the previous section. A Timed
Rebeca model consists of a number of reactive class defini-
tions which provide type and behavior specification for the
actors instantiated from them. There are two reactive classes
BroadcastingActor and Vehicle in the implemen-
tation of counting-based WMD in VeriVANca as shown in
Listing 1.

Each reactive class consists of a set of state variables
and a message bag with the size specified in parentheses
after the name of the reactive class in the declaration. For
example, reactive class Vehicle has state variables isAv,
direction, latency, counter, etc. The size of the
message bag for this reactive class is set to five. The local
state of each actor consists of the values of its state variables
and the contents of itsmessage bag. Being an actor-based lan-
guage, Timed Rebeca benefits from asynchronous message
passing among actors. Upon receiving a message, the mes-
sage is added to the actor’s message bag. Whenever the actor
takes a message from the message bag, the routine which is
associated with that message is executed. These routines are
called message servers and are implemented in the body of
reactive classes.

As depicted inListing 1, themessage servers of Vehicle
are move, receive, alertAccident, stop, and
finishWait. In order for an actor to be able to send ames-
sage to another actor, the sender has to have a direct reference
to the receiver actor. For example, in Line 19, the message
alertAccident is sent to selfwhich represents a refer-
ence to the actor itself. However, in order to model a WMD
scheme inVANETs, thewarningmessage should reach actors
which are in the range of the sender actor.

Listing 1 Counting-based scheme in Timed Rebeca

1 env int RANGE = 10;
2 env int THRESHOLD_WAITING = 4;
3 env int MESSAGE_SEND_TIME = 1;
4 env int C_THRESHOLD = 3;
5 abstract reactiveclass BroadcastingActor (5)
6 { statevars { int id, x, y; }
7 abstract msgsrv receive(int data);
8 void broadcast(int data) { ... }
9 double distance(BroadcastingActor

bActor, BroadcastingActor
cActor){...}

10 }
11 reactiveclass Vehicle extends

BroadcastingActor(5){
12 statevars{
13 boolean isAV;
14 int direction, latency, destX,

destY, counter;
15 }

16 Vehicle (/*List of Parameters*/){
17 /*Variables Initializations*/
18 if (isAV) {
19 self.alertAccident();
20 } else
21 self.move() after(latency);
22 }
23 msgsrv alertAccident(){ ... }
24 msgsrv move() { ... }
25 msgsrv stop () { ... }
26 msgsrv finishWait(int hop) { ... }
27 msgsrv receive(int hopNum) { ... }
28 }
29 main {
30 Vehicle

v1():(0,0,10,RIGHT,1,10,10,true);
31 Vehicle v2():(1,10,0,UP,2,10,10,false);
32 Vehicle

v3():(2,-1,0,RIGHT,1,10,0,false);
33 Vehicle v4():(3,0,1,DOWN,2,0,-10,false);
34 Vehicle v5():(4,3,0,LEFT,1,-10,0,false);
35 }

Basically, in Rebeca, the concept of known rebecs was
introduced for an actor to specify the actors to which it can
send messages. However, to implement applications in ad
hoc networks, a more flexible sending mechanism is needed.
Two Rebeca extensions b-Rebeca [24] and w-Rebeca [25]
have been proposed to provide more complex sending mech-
anism. In b-Rebeca the concept of known rebecs is eliminated
and it is assumed that the only communication mechanism
among actors is broadcasting; hence, only a fully connected
network can be modeled. Note that the type of broadcasting
introduced in b-Rebeca is not the same as the location-based
broadcasting in VANETs. In location-based broadcasting,
only the actors in the range of each other are connected in the
Rebeca model. Regarding this assumption, a counter-based
reduction technique is used in b-Rebeca to reduce the state
space size of the model making it impossible to send mes-
sages to a subset of actors.

The other extension w-Rebeca, which is developed for
model checking of wireless ad hoc networks, uses an adja-
cency matrix in the model checking engine, to consider
connectivity of actors. In this approach, by random changes
in the value of adjacencymatrix, all the possible topologies of
the network are considered in the model checking. Note that
users are allowed to define a set of topological constraints and
the topologies that do not fulfill the constraints are not con-
sidered in the model checking. w-Rebeca does not support
timing in the model which is essential for developing mod-
els in the domain of VANET, since there are some real-time
properties that need to be considered. Besides, considering
all possible topologies —some of which may not be pos-
sible in the reality of the model— results in a bigger state
space for the model. In addition, considering these infeasible
topologies, may cause false-negative results when checking
correctness properties.
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In this work, we extended Rebeca to support inheritance
and used the inheritance mechanism of Timed Rebeca to
implement this customized sending strategy. More details of
this extension will be discussed in the next section.

4 Inheritance in Rebeca

As mentioned before, developing different message dissem-
ination algorithms in Rebeca requires a variety of commu-
nication mechanisms that are not supported by the current
extensions of Rebeca. So, we extended Rebeca to support
the inheritance mechanism and user-defined communication
mechanism to enable it for the modeling of this type of
applications. In object-oriented design, inheritance mecha-
nism enables classes to be derived from another class and
form a hierarchy of classes that share a set of attributes and
methods. Using this approach, we encapsulated new com-
munication mechanisms in a base reactive class and all other
actors which need that type of communication are inherited
from the base reactive class. Note that w-Rebeca and b-
Rebeca [26] proposed a broadcasting-based communication
mechanism which cannot be used for message dissemina-
tion purposes as they mainly work based on distance-based
wireless communication.

4.1 Abstract syntax of Rebeca with inheritance

To enable formal description of the semantics of Rebeca with
inheritance, we have to provide an abstract specification for
the Syntax of it. The proposed modifications in the syntax
of Rebeca family extensions are developed in a way that the
minimum changes are applied to their former syntax.

In the first step, we present the notations used in the rest
of the article. These notation are based on the work of [12].
Given a set A, the set A∗ is the set of all finite sequences
over elements of A, the set P(A) is the power set of A, and
the set PN(A) is the power multiset of A. For a sequence
a ∈ A∗ of length n, the symbol ai denotes the i th element
of the sequence, where 1 ≤ i ≤ n. Using this notation, we
may alsowrite the sequence a as 〈a1, a2, . . . , an〉. The empty
sequence is represented by ε, and 〈h|T 〉 denotes a sequence
whose first element is h ∈ A and T ∈ A∗ is the sequence
comprising the elements in the rest of the sequence. For two
sequences σ and σ ′ over A, the operator ⊕ is defined as
⊕ : A∗ × A∗ → A∗ for the concatenation of two sequences
such that σ ⊕ σ ′ is a sequence obtained by appending σ ′
to the end of σ . Consequently, getting the prefix of σ with
length l takes place using 
 : A∗ × N → A∗ operator.

A Rebeca with inheritance model consists of a set of reac-
tive class declarations and amainblockwhich specifies actors
of the model. A reactive class is defined as an instance of

type RClass = CID× {ε,CID} ×P(Mtds) ×P(Knowns) ×
P(Vars) × P(Mtds) such that:

– CID is the set of all reactive class identifiers in the model.
– Mtds is the set of all method declarations.
– Knowns is the set of all the identifiers of known actors.
– Vars is the set of all variable names.

The tuple (cid,pcid,consts,knowns,vars,mtds)defines
a reactive class which has the identifier cid, is inherited
from the reactive class pcid, the constructor method const ,
the set of known actors knowns, the set of state variables
vars, and the set of methods mtds. Each method (and the
constructor method) is defined as the triple (m, p, b) ∈
MName × Var∗ × Stat∗, where m is the name of the mes-
sage the method is used to serve, p is the sequence of the
names of the formal parameters, and b contains the sequence
of statements comprising the body of the method.

In Rebecawith inheritance, the set of statements is defined
as Stat = Assign ∪ Cond ∪ Send ∪ {skip}, where different
types of statements are defined as below. The meaning of
the below statements is the same as the general purpose pro-
gramming languages. In the following, Expr is the set of
integer expressions defined over usual arithmetic operators
(with no side effects) and BExpr is the set of Boolean expres-
sion defined over usual relational and logic operators. We do
not provide more details of the expressions in this article.

– Assign = Var×Expr is the set of assignment statements.
We use the notation var := expr as an alternative to
(var , expr).

– Cond = BExpr × Stat∗ × Stat∗ is the set of conditional
statements. We use the notation ifexprthen σelse σ ′ as an
alternative to (expr, σ, σ ′).

– Send = (ID∪{self})×MName×Expr∗ is the set of send
statements. We use the notation x .m(e) as alternative to
(x,m, e) to show that message m is sent from actor x
with the set of parameters e.

– skip is a predefined statement that has no effect.

In the main part of a model, actors are defined as instances
of reactive classes. The set of actors is defined as Actor =
CID × AID × AID∗ × Expr∗ such that (c, a, k, p) ∈ Actor
defines an actor instantiated from reactive class c, with iden-
tifier a, the set of known actors k, and the set of parameters
of its constructor p. Note that supporting inheritance does
not result in any modification in the syntax of statements and
instantiation part of Rebeca family models.

Having the above definitions, the set of Rebeca models is
specified by P(RClass) ∪ P(Actor), where the first com-
ponent contains the specification of reactive classes and the
second component corresponds to the main block consisting
of a sequence of actor instantiations. The BNF presenta-
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Fig. 1 Abstract syntax of Rebeca(a slightly revised version of the syn-
tax presented in [1]). Angle brackets 〈...〉 are used as meta parenthesis,
superscript + for repetition at least once, superscript ∗ for repetition
zero or more times, whereas using 〈...〉with repetition denotes a comma
separated list. Brackets [...] indicates that the text within the brackets
is optional. The symbol ? shows non-deterministic choice. Identifiers

className, rebecName, methodName, v, literal, and t ype denote class
name, rebec name, method name, variable, integer number, and type,
respectively; and e denotes an (arithmetic, Boolean, or nondetermin-
istic choice) expression. The parameter t is an expression with natural
number result

tion of the syntax of Rebeca with inheritance is presented in
Fig. 1. In comparison with the former grammar, extends
and abstract are two new keywords which are added to
the syntax of Rebeca.

4.2 Semantics of Rebeca with inheritance

In this section, we present the semantics of Rebeca with
Inheritance. Prior to presenting the semantics, we present
the notations used in the rest of the article.

For a function f : X → Y , we use the notation f [x �→
y] to denote the function {(a, b) ∈ f |a 
= x} ∪ {(x, y)}
and D( f ) to denote the domain of f (which is X here).
Following this, we use the notation f [x1 �→ y1∧· · ·∧ xn �→

yn] to denote the function {(a, b) ∈ f |a /∈ {x1, . . . , xn}} ∪
{(x1, y1), . . . , (xn, yn)}. We also use the notation x �→ y as
an alternative to (x, y). For X ′ ⊆ X , we write f |X ′

as the
restriction of f to X ′, i.e., {(x, y) ∈ f |x ∈ X ′}. Having two
sequences a and b of the same size n, the functionmap(a, b)
returns the mapping of the elements of a into b such that
map(a, b) = {ai �→ bi |1 ≤ i ≤ n}, assuming that the
elements of a are distinct.

We also define the following auxiliary functions to be used
in defining the formal semantics:

– body:AID × MName → Stat∗, in which body(x,m)

returns the body of the method m of the reactive class
which actor identified by x is instantiated from, appended
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by the special element endm, which denotes the end of
the method.

– params:AID × MName → Var∗, in which the function
params(x,m) returns the list of formal parameters of the
method m of the reactive class which the actor identified
by x is instantiated from.

– svars:AID → P(Var) which returns the names of the
state variables of the reactive class which actor identified
by x is instantiated from.

– evalv:Expr → Val abstracts away the semantics of
expressions by evaluating an expression within the spe-
cific context v : Var → Val. Note that Val contains
all possible values that can be assigned to the state
variables or to be used within the expressions. Here,
we have Val = Z ∪ {True,False}. We assume evalv
is overloaded to evaluate a sequence of expressions:
evalv(〈e1, e2, . . . , en〉) = 〈evalv(e1), evalv(e2), . . . ,
evalv(en)〉.Note that evalv(e1), evalv(e2),. . .,evalv(en)
are evaluated sequentially not in parallel.

– unify : 〈(Var → Val)〉 → (Var → Val) is a function
that returns the union of a sequence of contexts which is
given as its input. This function helps in finding all the
variableswhich are definedor inherited in a reactive class.
Note that using inheritance, state variables of a reactive
class consists of the inherited state variables. The formal
definition of this function is given below.

unify(A) =
{
An ∪ unify (A′)|D(An) A = 〈A′|An〉
∅ A = ε

Using this definition resolves name clash among state
variables as it considers the closest variable’s declaration
in the inheritance hierarchy.

– level : AID × MName → N returns the level that the
closest definition of the message server / methodMName
for the actor AID that is found in its hierarchy. As we will
show later, level is used to restrict the access of amessage
server / method to the state variables which are defined
or inherited from its ancestors. For example, assume that
there are reactive classes A, B, C, and D such that B is
derived from A,C from B, and D from C. Also, themethod
m() is defined in B. In the case of callingm from the actor
ac which is instantiated from D, although ac contains
all the state variables of A, B, C, and D, but m only has
access to the state variables of A and B. In this case, the
value of level is set to 2.

– upVar : {(Var → Val)}∗ × VName × newVal →
{(Var → Val)}∗ updates the value of the closest vari-
able name to the value val for the given function
upVar(v, name, val). The formal definition of upVar
is given below.

upVar (vs,n, v) =

⎧⎪⎨
⎪⎩
T ⊕ vs′[n → v] vs = 〈T |vs′〉,

n ∈ D(vs′)
upVar(T , n, v) ⊕ vs′ o.w.

Now, the semantics of Rebeca with inheritance can be
defined. For a given Rebeca model M, the semantics of
the model is defined in terms of transition system TS =
(S, s0, Act,→, AP, L), where S is the set of states, s0 is
the initial state, Act is the set of actions, →⊆ S× Act × S is
the transition relation, AP is the set of atomic propositions,
and L : S → 2AP is the labeling function, described as the
following.

– The global state of a Rebeca model is represented by
a function s : AID → (Var → Val) × PN(Msg) ×
(Stat∗, N), which maps an actor’s identifier to the local
state of the actor. The local state of an actor is defined by
a tuple like (v, q, (σ, l)), where v : Var → Val gives the
values of the state variables of the actor, q : PN(Msg)
is the message queue of the actor, σ : Stat∗ contains the
sequence of statements the actor is going to execute to fin-
ish the service to the message currently being processed,
and l shows the level of the currently executing message
server. Here, Msg = AID × MName × (Var → Val) is
used as the type for themessageswhich are passed among
actors. In a message (i,m, r) ∈ Msg, i is the identifier
of the sender of this message, m is the name of its cor-
responding method, r is a function mapping argument
names to their values. Note that the sequence of state-
ments is put as a part of the states to make the operation
semantics easier to understand and more readable not for
supporting dynamic statement definition and configura-
tion. Also, as mentioned before, we assume that actors
communicate viamessage passing and put their incoming
messages into message bags.

– In the initial state, the values of state variables and con-
tent of the actors’ message queues are set based on the
statements of their constructor methods.

– The set of actions is defined as Act = MName ∪ {τ }.
– The transition relation→⊆ S× Act× S defines the tran-

sitions between states which are taking a message from
the message queue and continuing the execution of state-
ments. The SOS rules of Table 1 define these transitions.
Note that we associated a rule name with τ transitions to
relate τ transitions to their corresponding rules.

– AP contains the name of all of atomic propositions.
– The function L : S → 2AP associates a set of atomic
propositions with each state, shown by L(s) for a given
state s.

Finally, we assumed that Rebeca models are well-formed.
The following rules define the well-formedness of a Rebeca
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Table 1 The SOS rules of Rebeca with inheritance

(take − message)
s(x) = (v, 〈(ac,mg, pr)|T 〉, (ε, ε))

s
mg−→ s[x �→

(v⊕{pr ∪{(self, x)}∪{(sender, ac)}, T , (body(x,mg))⊕endmsgsrv, level(x,mg))]

(method − call)
s(x) = (v, q, (〈method (e)|σ 〉, l))

s
τ−→ s[x �→ (v, q, (body(x, method) ⊕ endm ⊕ level : l ⊕ σ, level (x, method)))]

(assignment)
s(x) = (v, q, (〈var := expr|σ 〉, l))

s
τ−→ s[x �→ (upVar(v, var, evaluni f y(v
 l)(expr)), q, (σ, l))]

(ConditionalT)
s(x) = (v, q, (〈if expr then σ else σ ′|σ ′′〉, l)) ∧ evaluni f y(v
 l)(expr) = True

s
τ−→ s[x �→ (v, q, (σ ⊕ σ ′′, l))]

(ConditionalF)
s(x) = (v, q, (〈if expr then σ else σ ′|σ ′′〉, l)) ∧ evaluni f y(v
 l)(expr) = False

s
τ−→ s[x �→ (v, q, (σ ′ ⊕ σ ′′, l))]

(nondet − assign)
s(x) = (v, q, (〈var :=?(expr1, expr2, . . . , exprn)|σ 〉, l))∨

1≤i≤n s
τ−→ s[x �→ (v, var, evaluni f y(v
 l)(expri ))], q, (σ, l))]

(send)
s(x) = (v, q, (〈y.m(e1)|σ, l)〉) ∧ s(y) = (v′, q ′, (σ ′, l ′)) ∧ p = params(y,m)

s
τ−→ s[x �→ (v, q, (σ, l)) ∧ y �→

(v′, q ′ ⊕ {(m, (map(p, evaluni f y(v
 l)(e1))))}, (σ ′, l ′)]

(skip)
s(x) = (v, q, (〈skip|σ 〉, l))
s

τ−→ s[x �→ (v, q, (σ, l))]

(end − msgSrv)
s(x) = (v, q, (〈endmsgsrv〉, l))

s
τ−→ s[x �→ (v 
 (|v|-1), q, (ε, ε))]

(end − method)
s(x) = (v, q, (〈endm| σ 〉, l))

s
τ−→ s[x �→ (v 
 (|v|-1), q, (σ, l))]

(change − level)
s(x) = (v, q, (〈level : l′|σ 〉, l))
s

τ−→ s[x �→ (v, q, (σ, l ′))]

model which is hard to (or cannot be) described in the gram-
mar, but may be statically checked.

– Unique Identifiers. The actor identifiers are unique
within a Rebeca model.

– Unique Variables. The names of the state variables of
an actor are unique.

– Unique Methods. The names of the methods of an actor
are unique.

– Unique Parameters. The names of the formal parame-
ters of a method are unique and different from the state
variables of the enclosing actor.

– Type Safety. The model is well typed, i.e.,

– expressions are well-typed,
– the type of the right side of an assignment is
upcastable to the type of the left side,

– the conditions of the conditional statements are of
type Boolean, and

– the receiver of a message has a method with the same
name as the message.

– Well-Formed Arguments. The list of actual arguments
passed to amessage send statement conforms to the list of
formal parameters of the corresponding method, in both
length and type.
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Table 2 The SOS rules of Timed Rebeca with inheritance

(take − message)
s(x) = (v, 〈(ac,mg, pr , ar , dl)|T 〉, (ε, ε), t, ε) ∧ ar ≤ t ∧ dl ≥ t

s
mg−→ s[x �→ (v ⊕ pr ∪ {(self, x)} ∪ {(sender, ac)}, T , (body(x,mg)) ⊕

endmsgsrv, level(x,mg)), t, t)]

(internal)
s(x) = (v, q, (〈st, σ 〉 l), t, r) ∧ t = r

s
τ−→ s[effect(st, x)]

(time − progress)

s
mg
� ∧ s

τ
� ∧ n1 = minx∈AID{ar |s(x) =

(v, 〈(ac,mg, pr , ar , dl)|T 〉, ε, t, ε)} ∧ n2 = minx∈AID{r |s(x) = (v, q, (σ, l), t, r)}
s → s[∀x ∈ AID · x = (v, q, (σ, l), t, r) �→ (v, q, (σ, l),min{n1, n2}, r)]

(delay)
s(x) = (v, q, (〈delay(e)|σ 〉, l), t, r) ∧ r = t

s
τ−→ s[x �→ (v, q, (σ, l), t, r + evaluni f y(v
 l))]

4.3 Inheritance for extensions of Rebeca

Reviewing the above-mentioned semantic rules illustrates
that only minor modifications are needed to enable the other
extensions of Rebeca to support inheritance. Thesemodifica-
tions are in how to specify state variables of reactive classes,
the scope part of the eval function, resolving nameofmethod-
/message server, and storing the level of themethod /message
server which currently being executed.

Considering TimedRebeca [13], applying thesemodifica-
tions to the semantic rules results inmodifying the set of SOS
rules which are presented in Table 2. Note that the state vari-
able part of all of the other semantic rules has to be modified
which is straightforward

These modifications are sufficient to enable Probabilistic
Timed Rebeca [10] to support inheritance too.

5 The VeriVANca framework

In object-oriented design, inheritance mechanism enables
classes to be derived from another class and form a hier-
archy of classes that share a set of attributes and methods.
Using this approach, VeriVANca is developed as a frame-
work that encapsulates broadcasting mechanism in a reactive
class called BroadcastingActor and all other actors are
inherited from it to use the broadcastingmechanism. Figure 2
illustrates this fact in a UML class diagram.

In BroadcastingActor, the broadcast method
that is shown in Listing 2 mimics the distance-based sending
mechanism of vehicles in VANETs. In VeriVANca behav-
iors of vehicles and warning message dissemination scheme
are implemented in the Vehicle reactive class. Broad-
casting data by a vehicle results in receiving a message

Fig. 2 The UML class diagram of VeriVANca

containing that data by the vehicles in the range of the
sender actor. In the body of this method, all actors —that
are derived from BroadcastingActor— are examined
in terms of their distance to the sender (Line 5). If the
distance between an actor and the sender is less than the
threshold RANGE (Line 6), the data is sent to the actor by
an asynchronous message server call of receive (Line
7). As BroadcastingActor has no idea about the
behavior of vehicles, upon receiving the receive mes-
sage, the template method design pattern [7] is used in
the implementation of receive. So, the receive mes-
sage server is defined as an abstract message server in
BroadcastingActor and its body is implemented in
Vehicle.

Listing 2 Body of broadcast Method in Broadcasting Actor

1 void broadcast(int data) {
2 ArrayList<ReactiveClass>

allActors=getAllActors();
3 for(int i = 0; i < allActors.size(); i++) {
4 BroadcastingActor ba =

(BroadcastingActor)allActors.get(i);
5 double distance = distance (ba , self);
6 if(distance < RANGE) {
7 ba.receive(data) after

(MESSAGE_SEND_TIME);
8 }
9 }
10 }
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Fig. 3 TheUMLclass diagramofPublisher/Subscriber communication
mechanism

11 double distance(BroadcastingActor bActor ,
BroadcastingActor aActor){

12 int xPart = pow(aActor.x - bActor.x, 2);
13 int yPart = pow(aActor.y - bActor.y, 2);
14 return sqrt(xPart + yPart);
15 }

Using this separation significantly improves the usabil-
ity and flexibility of VeriVANca and other not known rebec
based communication mechanisms can be implemented
in the same way. For example, in the case of distance-
based delay in communication, there is no limitation on
the range of message sending but the receiving time is
set based on the location of moving items. This behav-
ior is implemented in Listing 3. As shown in lines 5 and
6, the communication delay for receive message is set
based on the distance of vehicles. Note that the defini-
tion of distance in this example is the same as that of
Listing 2.

Listing 3 Body of distance-based communication delay in Broadcastin-
gActor

1 void broadcast(int data) {
2 ArrayList<ReactiveClass>

allActors=getAllActors();
3 for(int i = 0; i < allActors.size(); i++) {
4 BroadcastingActor ba =

(BroadcastingActor)allActors.get(i);
5 int distDelay = (int)distance (ba ,

self);
6 ba.receive(data) after (distDelay);
7 }
8 }
9 }

In addition to the broadcasting-based communication
mechanisms, more complex communication mechanisms
can be implemented in VeriVANca. For example, publish/-
subscribe communication mechanism can be implemented
using another helper function. Figure 3 shows the UML class
diagram representation of publish/subscribe communication
mechanism in Rebeca and its implementation is presented in
Listing 4.

In this implementation, each actor implements its own
interestedIn method in a way that it returns true if
this actor interested in the given topic as the parameter of
interestedIn.

Listing 4 Body of broadcast method in publish/subscribe communica-
tion mechanism

1 void broadcast(int data, int topic) {
2 ArrayList<ReactiveClass>

allActors=getAllActors();
3 for(int i = 0; i < allActors.size(); i++) {
4 BroadcastingActor ba =

(BroadcastingActor)allActors.get(i);
5 boolean interested =

ba.interestedIn(topic);
6 if(interested) {
7 ba.receive(data) after

(MESSAGE_SEND_TIME);
8 }
9 }

10 }

6 Experimental results

In this section,we present two different case studies and illus-
trate how functional analysis and performance evaluation can
be made using VeriVANca. To demonstrate the applicabil-
ity of VeriVANca, both of them are analyzed in different
configurations. As mentioned before, concurrent behaviors
of the system components may cause uncertainty which is
clearly observable in the presented scenarios, but may not
be detected using simulation-based techniques. For the case
of the TLO scheme, we show that nondeterminism causes
starvation and for the case of the counting-based scheme,
it causes different results in the performance of the algo-
rithm. Furthermore, we illustrate that the approach is scalable
regarding the number of cars with traffic patterns that do
not contain congested areas. Note that the following experi-
ments have been executed on a Macbook Air with Intel Core
i5 1.3 GHz CPU and 8GB of RAM, running macOS Mojave
10.14.2 as the operating system.Development of these exper-
iments are performed in Afra, modeling and verification IDE
of Rebeca family languages [4].

6.1 Counting-based scheme in VeriVANca

The model of Counting-Based scheme in Rebeca is pre-
sented in Listing 5. Note that definition of broadcast
and distance methods is omitted in Listing 5, as it is the
same as that of Listing 2. In the following implementation,
three message servers alertAccident, finishWait,
and receive provide the behavior of the scheme. When
Vehicle actors are instantiated, their constructor methods
are executed resulting in sending one of the following mes-
sages to themselves:

– alertAccindent: sent by the accident vehicle (i.e.,
v1 as shown in Line 65) to start the WMD algorithm
(Line 34),
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– move: sent by the other actors to begin moving with
their pre-defined latency (Line 36); an actor performs
this through sending movemessage periodically to itself
(Lines 39 to 48).

The algorithm of Counting-Based scheme, as imple-
mented in Listing 5, begins by serving alertAccident
message in the accident vehicle. Upon the execution of
receive (Lines 56 to 62), if the counter, which is ini-
tially set to zero for all actors (Line 32), is zero — meaning
that it is the first time the actor is receiving the warning
message— a watchdog timer is started. This is implemented
by sending the finishWait message to the actor itself
with THRESHOLD_WAITING as its arrival time(Line 58). In
addition, the value of counter is set to one to indicate that
this is the first call of receive (Lines 60). The next calls of
receive result in increasing the value of counter, which
represents the number of received warning messages. When
message server finishWait is executed by an actor, show-
ing that the watchdog timer is expired, as shown in Line 51,
the value of counter is compared with C_THRESHOLD,
i.e., the threshold considered for the counter. By not exceed-
ing the threshold, i.e., the area around the actor is not covered
by enough number ofwarningmessages, the actor broadcasts
the warning message (Line 52).

Listing 5 Counting-based scheme in Timed Rebeca

1 env int RANGE = 10;
2 env int THRESHOLD_WAITING = 4;
3 env int C_THRESHOLD = 3;
4 env int RIGHT = 0;
5 env int LEFT = 1;
6 env int UP = 2;
7 env int DOWN = 3;
8 abstract reactiveclass BroadcastingActor(5) {
9 statevars {

10 int id, x, y;
11 }
12 abstract msgsrv receive(int data);
13 void broadcast(int data) { ... }
14 double distance(BroadcastingActor bActor ,

BroadcastingActor cActor) { ... }
15 }
16 reactiveclass Vehicle extends

BroadcastingActor(5) {
17 statevars{
18 boolean isAV;
19 int direction, latency;
20 int destX, destY;
21 int counter;
22 }
23 Vehicle(int vid, int X, int Y, int dir, int

vLatency, int dX, int dY, boolean
isAccidentVehicle) {

24 id = vid;
25 x = X;
26 y = Y;
27 direction = dir;
28 latency = vLatency;
29 destX = dX;
30 destY = dY;

31 isAV = isAccidentVehicle;
32 counter = 0;
33 if (isAV) {
34 self.alertAccident();
35 } else
36 self.move() after(latency);
37 }
38 msgsrv alertAccident() { broadcast(0); }
39 msgsrv move() {
40 switch (direction) {
41 case 0: x++; break;
42 case 1: x--; break;
43 case 2: y++; break;
44 case 3: y--; break;
45 }
46 if (x != destX || y != destY)
47 self.move() after(latency);
48 }
49 msgsrv stop() { stop(); }
50 msgsrv finishWait(int hopNum) {
51 if (counter < C_THRESHOLD)
52 broadcast(hopNum++);
53 else
54 stop();
55 }
56 msgsrv receive(int hopNum) {
57 if (counter == 0) {
58 finishWait(hopNum)

after(THRESHOLD_WAITING);
59 }
60 counter++;
61 }
62 }
63
64 main {
65 Vehicle v1():(0,0,10,RIGHT,1,10,10,true);
66 Vehicle v2():(1,10,0,UP,2,10,10,false);
67 Vehicle v3():(2,-1,0,RIGHT,1,10,0,false);
68 Vehicle v4():(3,0,1,DOWN,2,0,-10,false);
69 Vehicle v5():(4,3,0,LEFT,1,-10,0,false);
70 }

The configuration depicted in Fig. 4a is used for the analy-
sis of the Counting-Based scheme. In this scenario, the value
of C_THRESHOLD is set to 2 and the RANGE is set to 4. The
scenario begins with the vehicle A broadcasting the warning
message (Fig. 4b). This broadcast results in increasing the
counters of the vehicles A, B, C, and E by one. In the next
round two following cases may happen.

1. The watchdog timer of vehicle E expires after receiv-
ing the message from B: In this case, as the counter
has reached the threshold, E does not forward the warn-
ing message as shown in Fig. 4c. Following this case,
the algorithm continues with vehicles D, H, and F being
selected as forwarding nodes and rebroadcasting themes-
sage (Fig. 4d to f. As a result, it takes 5 hops for all the
vehicles to get informed of the warning message. Note
that the same scenario happenswhenC forwards themes-
sage before the expiration of the watchdog timer of E.

2. Thewatchdog timer of vehicleE expires before receiv-
ing warning message from B and C: In this case, since
the counter of E is less than the threshold, Emust forward

123



F. Yousefi et al.

Fig. 4 A case of the scenario for
the counting-based scheme

(a) (b)

(c)

(e) (f)

(d)

the warning message (Fig. 5a). In the next step, vehicle
F broadcasts the message and all non-informed vehicles
receive the warning message and algorithm finishes in 3
hops.

Achieving two different numbers for performance of this
algorithmshows that beside correctness properties, providing
guaranteed values for performance results requires applying
formal verification techniques as well. We analyzed this sce-
nario with different values for range and counter threshold,
the result of three of them are shown in Fig. 6. The results
show that this phenomenon is not rare and can be observed
in many cases.

For the purpose of scalability analysis, we have modeled
a four-lane street which contains about 30 vehicles. These
vehicles are distributed in a way that there is no congested
area in the street as shown in Fig. 7a. Note that we assumed
cars are fixed and do not move. Analyzing this model using

Afra results in the execution time of 11 seconds, reaching
19,588 states and 110,627 transitions. To examine the scala-
bility of the model, we added new cars in two different areas.
First, we increased the length of the street and added new
vehicles to the tail of the street of Fig. 7a. The newly added
cars follow the same distribution to avoid creating congested
areas. This way of scaling resulted in the execution time of 15
seconds, 23,734 states, and 133,255 transitions for 35 vehi-
cles and 18 seconds, 25,872 states, and 143,727 transitions
for 40 vehicles (i.e., about 1.3 times more than the first case).

In the second way, the newly added vehicles increased
congestion in some areas (Fig. 7b). Scaling in this way
increases the execution time of the model to 120 seconds and
the number of reached states and transitions to 157,086 and
1,265,839, respectively (i.e., about 10 times more than the
previous case). This is because of the fact that in a congested
area, the number of deliveredwarningmessages to each vehi-
cle grows rapidly and all of the possible orders of execution
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Fig. 5 Another case of the
scenario for the counting-based
scheme

(a) (b)

(a) (b) (c)

Fig. 6 Analysis results of the counting-based scheme with different values for the range and counter threshold (Note that Y-axis shows the number
of hops required for termination of the algorithm)

for messages with the same execution time are considered in
the model checking. This results in a sharp growth in the size
of the state space and model checking time consumption.

6.2 TLO scheme in VeriVANca

In the TLO scheme, explained in Sect. 2.1, upon receiving
the warning message for the first time, the runTLO method
is called. In the body of this method, if the actor has not
received the duplicate warningmessage from a selected TLO
node as a sign of its successful broadcast, the isTLOmethod
is called. This property is checked by examining the value of
state variable received in Line 86. The isTLOmethod is
implemented in the BroadcastingActor and checks if
the actor is the furthest node in the range of the sender and
returns the result as a boolean value. If the return value is
true, the actor is the last one in the range and is selected as
the TLO node to forward the warning message.

Then the value of received is set to true to show that
broadcasting has been successful (Line 89). In the case that
the actor is not the last one in the range, the actor should wait
for a while to make sure that the selected TLO node has suc-
cessfully broadcasted the warning message (Line 91 and 92).
To this end, the actor sets the value of isWaiting to true to

show that it is in the waiting mode. In this case, a watchdog
timer is set for the actor by sending message finishWait
to itself by execution time of THRESHOLD_WAITING (Line
92).

The message server receive, mimics receiving the
warning message. In the body of this message server, if the
actor is not in the waiting mode, isTLO is executed to select
the TLO forwarding node (Lines 80 and 81). Otherwise,
isWaiting is set to false since this message is interpreted
as a successful broadcast of the TLO node (line 83). The
finishWait message server is executed upon expiration
of thewatchdog timer and it checks the value of isWaiting
(Line 76). In the case of false value for finishWait, the
actor has not received any warning message from the already
selected TLO node; so, runTLO is called to select the next
TLO forwarding node.

Analyzing the mode of Listing 6, a starvation condition
can be detected. Using this implementation of TLO scheme
causes starvation and affects the reliability of the scheme
in some executions. The steps of the scenario is depicted in
Fig. 8. In 8a, the position of the vehicles is shown in the time
of the accident between vehicles A and B. In the next step,
vehicle B starts broadcasting the warning message and vehi-
cles C and D receive the message as they are in the range
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Fig. 7 Configuration of the scenario used for scalability analysis

(a) (b)

(c) (d)

Fig. 8 A scenario of TLO scheme which results in two execution alternatives that one of them causes starvation for vehicle J

of B (Fig. 8b). Upon receiving the warning message, these
vehicles execute the TLO algorithm and since they both have
the same distance from B, they forward the received warn-
ing message and the vehicles E and F receive the warning
message from these two vehicles. When vehicles E and F
execute the TLO algorithm, racing between the following
two scenarios happen.

1. E broadcasts before F: vehicles G and H receive the
warning message from E. Upon execution of TLO algo-
rithm by G and H, Vehicle H is selected as the TLO
forwarding node and forwards the message. Meanwhile,
vehicle G is waiting for receiving the warning message
from H to make sure that the broadcasting has been suc-

cessful. If in the waiting time of G, vehicle H forwards
the warning message, the message will be interpreted as
acknowledgement of the successful broadcast of H and
although G is TLO node in this step, it will not forward
the message. In this case, the vehicle J does not receive
the warning message.

2. F broadcasts before E: vehicle G receive the warning
message from F and after the execution of TLO algo-
rithm, it forwards the message as the selected TLO node
and vehicle J will receive the warning message in this
scenario.

This example shows that concurrent execution of the
algorithm in nodes causes nondeterministic behavior which
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may violate correctness properties of the application. To
avoid such cases, all the possible nondeterministic behaviors
have to be considered in any analysis framework. However,
simulation-based techniques, fail to report a result by con-
sidering all the possible execution traces.

Listing 6 TLO scheme in Timed Rebeca

1 env int RANGE = 9;
2 env int THRESHOLD_WAITING = 2;
3 env int MESSAGE_SEND_TIME = 1;
4 env int RIGHT = 0;
5 env int LEFT = 1;
6 env int UP = 2;
7 env int DOWN = 3;
8 abstract reactiveclass BroadcastingActor (5) {
9 statevars {

10 int id, x, y;
11 }
12 abstract msgsrv receive(int data);
13 void broadcast() { ... }
14 double distance(BroadcastingActor bActor ,

BroadcastingActor cActor){ ... }
15 boolean isTLO () {
16 boolean isTLO = true;
17 ArrayList<ReactiveClass> all =

getAllActors();
18 BroadcastingActor senderData;
19 for(int i = 0 ; i < all.size(); i++) {
20 BroadcastingActor rns =

(BroadcastingActor)all.get(i);
21 BroadcastingActor sn =

(BroadcastingActor)sender;
22 if (rns.id == sn.id)
23 senderData = rns;
24 }
25 double myDistance = distance (senderData

, self);
26 for(int i = 0; i < allActors.size(); i++)

{
27 BroadcastingActor ba =

(BroadcastingActor)allActors.get(i);
28 double distance = distance (ba ,

(BroadcastingActor)senderData);
29 if(distance < RANGE && distance >

myDistance) {
30 isTLO = false;
31 }
32 }
33 return isTLO;
34 }
35 }
36
37 reactiveclass Vehicle extends

BroadcastingActor(5){
38 statevars{
39 boolean isAV;
40 int direction, latency;
41 int destX, destY;
42 boolean isWaiting, received, isAware;
43 }
44
45 Vehicle (int vid, int X , int Y , int dir ,

int vLatency , int dX , int dY , boolean
isAccidentVehicle) {

46 id = vid;
47 x = X;
48 y = Y;

49 direction = dir;
50 latency = vLatency;
51 destX = dX;
52 destY = dY;
53 isAV = isAccidentVehicle;
54 isWaiting = false;
55 received = false;
56 if (isAV) {
57 self.alertAccident();
58 isAware = true;
59 received = true;
60 } else
61 self.move() after(latency);
62 }
63 msgsrv alertAccident(){ broadcast(); }
64 msgsrv move() {
65 switch (direction) {
66 case 0: x++; break;
67 case 1: x--; break;
68 case 2: y++; break;
69 case 3: y--; break;
70 }
71 if (x != destX || y != destY)
72 self.move() after(latency);
73 }
74 msgsrv stop (){ stop(); }
75 msgsrv finishWait() {
76 if (isWaiting) runTLO();
77 }
78 msgsrv receive(int data) {
79 isAware = true;
80 if(!isWaiting)
81 runTLO();
82 else
83 isWaiting = false;
84 }
85 void runTLO() {
86 if (!received) {
87 if (isTLO()) {
88 broadcast();
89 received = true;
90 } else {
91 isWaiting = true;
92 self.finishWait() after

(THRESHOLD_WAITING);
93 }
94 }
95 }
96 }
97
98 main {
99 Vehicle v1():(0,0,10,RIGHT,1,10,10,true);

100 Vehicle v2():(1,10,0,UP,2,10,10,false);
101 Vehicle v3():(2,-1,0,RIGHT,1,10,0,false);
102 Vehicle v4():(3,0,1,DOWN,2,0,-10,false);
103 Vehicle v5():(4,3,0,LEFT,1,-10,0,false);
104 Vehicle v6():(5,0,-7,UP,2,0,10,false);
105 }

7 Conclusion and future work

Lack of a framework for formal modeling and efficient
verification of warning message dissemination schemes in
VANETs is the main obstacle in using these schemes in real-
world applications. In this paper, we presented VeriVANca,
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an actor-based framework, developed using Timed Rebeca
for modeling warning message dissemination schemes in
VANETs. Model of schemes developed in VeriVANca can
be analyzed using Afra, the model checking tool of Timed
Rebeca. We showed how warning message dissemination
schemes can be modeled using VeriVANca by implement-
ing two of these schemes. Scenarios in these schemes were
explored to illustrate the effectiveness of the approach in
checking correctness properties and performance evaluation
of the schemes. We further explained how easily the model
of a scheme can be transformed to present another scheme
by making minor modifications. Providing this level of guar-
antee in correctness and performance of warning message
dissemination schemes enables engineers to benefit from
these schemes in the development of smart cars.

Considering different members of Rebeca family model-
ing language, VeriVANca can be used for addressing other
characteristics of schemes such as their probabilistic behav-
ior. Since Afra supports different members of Rebeca family,
modelswith these characteristics can be analyzed usingAfra.

VeriVANca can be used for the analysis of scenarios with
limited congested areas.However, to be able to use the frame-
work for large-scale models containing congested areas, we
are going to develop a partial order reduction technique.
This reduction relies on the fact that reaction of a vehi-
cle to received warning messages is independent of their
sender; therefore, different orders of execution (interleav-
ing) for messages received at the same time can be ignored
without affecting the result of model checking.
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