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ABSTRACT
This paper addresses the scheduling of industrial time-critical ap-
plications on multi-core embedded systems. A novel scheduling
technique under partitioned scheduling is proposed that minimizes
inter-core data-propagation delays between tasks that are activated
with different periods. The proposed technique is based on the
read-execute-write model for the execution of tasks to guarantee
temporal isolation when accessing the shared resources. A Con-
straint Programming formulation is presented to find the schedule
for each core. Evaluations are preformed to assess the scalability
as well as the resulting schedulability ratio, which is still 18% for
two cores that are both utilized 90%. Furthermore, an automotive
industrial case study is performed to demonstrate the applicability
of the proposed technique to industrial systems. The case study
also presents a comparative evaluation of the schedules generated
by (i) the proposed technique and (ii) the Rubus-ICE industrial tool
suite with respect to jitter, inter-core data-propagation delays and
their impact on data age of task chains that span multiple cores.
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1 INTRODUCTION
The requirement for high computational power to support compute-
intensive features in embedded system applications has drastically
increased in the past few years [17]. To meet this requirement, the
developers of these applications have started to employ multi-core
architectures as opposed to the contemporary single-core architec-
tures. However, the transition from single-core to multi-core is not
trivial, especially in the case of real-time embedded systems, which
have stringent timing requirements, e.g., timing constraints on the
response times of tasks and data-propagation delays through chains
of tasks [3, 5, 16, 21]. In the case of multi-core real-time embed-
ded systems, the interference introduced due to the contention for
shared resources such as the system bus and memories can lead to
potentially unbounded delays [13, 31, 36]. Schedulability analysis
techniques are used to ascertain if the specified timing constraints
are met or not. Real-time scheduling and schedulability analysis
for single-core real-time embedded systems are well developed and
well adopted by the industry [10, 28]. Whereas, these techniques
for multi-core real-time systems are still evolving [18].

When transitioning from single-core to multi-core architectures,
many industrial systems need to retain legacy functionality, i.e., the
transitioned system is required to be backward compatible with
the legacy single-core functionality [7]. In this regard, partitioned
scheduling [1] is well suited to such systems as it allows to statically
allocate the tasks to cores and the tasks are not allowed to migrate
among the cores at runtime. This, in turn, supports the reuse of well-
established single-core real-time scheduling techniques, thereby
enabling the reuse of the previously certified single-core Real Time
Operating Systems (RTOSs) on each core. However, the downside
of using this approach is that the schedules generated for individual
cores are not optimized from the perspective of tasks communicat-
ing across core boundaries as the schedulers of the individual cores
do not inherently take the inter-core interference into account. For
example, this is the case of the ISO26262 [12] certified Rubus RTOS
and corresponding tool suite (Rubus-ICE), which have been used in
the automotive industry for over 25 years [19, 20]. Specifically, we
focus on inter-core data propagation delays where register commu-
nication is used between the cores. That is, communicating tasks
access a shared variable using the last-is-best semantic [2, 14]. As
communicating tasks might execute at different periods and the
communication does not require direct signaling between tasks the
problem is not trivial.

https://doi.org/10.1145/3394885.3431515
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This paper aims at providing a technique1 to optimize the core
schedules under partitioned scheduling by avoiding shared resource
contention by design as well as by minimizing the inter-core data-
propagation delays2, which is the latency between reading of a
communication variable at the consumer, and the time the variable
was last written by the producer task. The main contributions
in the paper are as follows.
• A scheduling technique based on a Constraint Programming
(CP) formulation, structured according to the Read-Execute-Write
(REW) model, under partitioned scheduling in multi-core architec-
tures, such that the contention on shared memory is avoided by
design and tasks are scheduled optimally from the perspective of
inter-core data-propagation delays. The technique is usable with
multi-rate communication, where the tasks are time-triggered
and can have different activation periods.

• Extensive evaluation of the proposed technique from the perspec-
tive of assessing the scalability of the technique and the resulting
schedulability ratio on a set of realistic synthetic test cases.

• An automotive industrial case study is conducted to perform a
comparative evaluation of the schedules generated by (i) the pro-
posed technique and (ii) the Rubus-ICE industrial tool suite. The
evaluation parameters considered in the case study include the
start time jitter of individual tasks, inter-core data-propagation
delays, and age delays of task chains.

2 RELATEDWORK
The contention for shared resources in multi-core real-time embed-
ded systems can lead to additional interference, which can incur
unbounded delays [8, 33, 34] rendering the traditional schedulabil-
ity analysis techniques for single-core systems not applicable to
these systems [31]. Research in this area has received significant
attention in recent years. Maiza et al. [18] provide an exhaustive
survey of the state-of-the-art and categorize research into timing
verification of multi-core systems into four main areas: full inte-
gration, integrating interference effects into schedulability analysis,
mapping and scheduling and finally temporal isolation, on which we
mainly focus in this paper. Temporal isolation provides an upper
bound on the delays experienced by a single task, independent of
the tasks executing on the other cores [13].

In this paper, we focus on the REWmodel [4], which allows each
task to be split into memory access phases (typically a read and a
write phase) and a computational phase. If tasks are structured in
such a way, contention for the shared memory can be avoided by
simply not overlapping the memory phases of concurrent tasks [25]
[22] [4]. The execution semantics of this model are similar to those
that are used in the AUTOSAR standard [30] (in the case of implicit
communication) in the automotive domain and the Acquisition,
Execution, and Restitution (AER) model considered for the avionics
domain [11]. This model is shown to produce the best results among
several other execution models [25].

Several works focus on the generation of schedules using re-
source optimization techniques [32] [23] [4] [6]. Tompkins [32]
proposes a mixed integer linear programming approach for solving
1The source code of the implemented technique is publicly available
https://github.com/tvidovic1/optimization_engine
2We use the terms “inter-core data-propagation delay" and “inter-core communication
delay" interchangeably throughout the paper.

complex scheduling problems in distributed multi-agent systems.
Puffitsch et al. [23] investigate ways of enforcing timing predictabil-
ity in safety-critical multi-core embedded systems and use con-
straint programming techniques to create offline schedules. Becker
et al. in [4] and [6] schedule REW structured tasks on clustered
many-core platforms with memory constraints and use constraint
programming techniques to generate a contention free schedule as
well as the data allocation to memory.

In this paper we employ constraint programming techniques to
create offline schedules under partitioned scheduling in multi-core
architectures, where the contention for shared resources is avoided
by design. The CP approach is shown to scale better than the Integer
Linear Programming approach when it comes to industrial sized
applications in [24] and [35]. In addition to this, the technique we
propose also minimizes inter-core data-propagation delays between
tasks of different periods, where the tasks are time-triggered.

3 SYSTEM MODEL
This section presents the system model. First, the platform assump-
tions are presented, followed by the application model.

3.1 Platform Model
The embedded system application is executed on a multi-core plat-
form with 𝑀 homogeneous cores. Each core has its own private
cache and no shared caches are present. It is important to note that
the code of all tasks is assumed to be prefetched into the local cache
of the appropriate core, which is assumed to be large enough to hold
the code binaries of all tasks assigned to it. This prevents additional
memory accesses at runtime. The cores operate synchronously with
the system clock, which therefore assures mutual synchronization
among the cores. The task execution can be simultaneous for tasks
running on different cores. Shared memory is used for communi-
cation between tasks and accessed via the system bus in a 32bit
granularity. The memory controller uses round robin arbitration to
arbitrate between memory accesses of the different cores.

While this architecture is generic, it is in line with the several
prominent commercial off-the-shelf (COTS) micro controller ar-
chitectures in the automotive domain, e.g., MPC5675K [26] and
MPC5777C [27] micro-controller architectures.

3.2 Application Model
The applicationmodel considers the usage of partitioned scheduling.
An application consist of 𝑁 tasks that are statically allocated to 𝑛
cores. Tasks use the register-communication paradigm [2, 14] where
shared variables store the communication data. These communica-
tion variables are stored in the shared memory of the platform that
is accessed by all cores. Such a communication form allows tasks to
be executed independently as there is no direct signaling between
them. In order to provide temporal isolation when accessing the
shared memory, this paper considers that the tasks are executed
according to the REW model [4]. According to this model, a task’s
execution is split into three distinct phases, read, execute, and write.
In the read phase, local copies of the task’s communication vari-
ables are created, and during the write phase the values of the local
variables are written back to the shared memory. Thus, there is no



Optimizing Inter-Core Data-Propagation Delays in Industrial Embedded Systems under Partitioned Scheduling ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

need to access the shared memory in the execution phase [22] [4].
Each of these phases is executed non-preemptively.

A task 𝜏𝑖 in an application is represented by the tuple 𝜏𝑖 =

(𝐶𝑅𝑖 ,𝐶𝐸𝑖 ,𝐶𝑊𝑖
,𝑇𝑖 , 𝑝𝑖 ), where 𝐶𝑅𝑖 , 𝐶𝐸𝑖 and 𝐶𝑊𝑖

are the worst-case
execution times (WCETs) of its read, execute and write phases, re-
spectively,𝑇𝑖 is its period, and 𝑝𝑖 defines the core that the task is allo-
cated to. The relative deadline𝐷𝑖 of the task is not explicitly defined,
but it is considered to be equal to the period. All tasks that are exe-
cuting on a core𝑚 are grouped into a task set Γ𝑚 . The hyperperiod
𝐻𝑃 of all 𝑁 tasks is obtained by calculating the least common multi-
ple (LCM) of their periods, i.e. 𝐻𝑃 = 𝐿𝐶𝑀 (𝑇𝑖 |𝜏𝑖 ∈ {𝜏0, . . . , 𝜏𝑁−1}).

Furthermore, the 𝑗𝑡ℎ instance of a task 𝜏𝑖 is denoted by 𝜏𝑖, 𝑗 .
Where 𝑟𝑖, 𝑗 is the absolute release time of the 𝑗𝑡ℎ instance of task
𝜏𝑖 . These parameters implicate the existence of the following pa-
rameters: 𝑠 (𝑟 )𝑖, 𝑗 , 𝑠 (𝑒)𝑖, 𝑗 and 𝑠 (𝑤)𝑖, 𝑗 which represent the absolute
start times of the read, execute and write phases of the task in-
stance respectively, and 𝑒 (𝑟 )𝑖, 𝑗 , 𝑒 (𝑒)𝑖, 𝑗 and 𝑒 (𝑤)𝑖, 𝑗 which represent
the absolute end times, of the read, execute and write phases of the
task instance respectively, and 𝑑𝑖, 𝑗 which represents the absolute
deadline of the task instance.

Inter-core communication between a task 𝜏𝑖 and a task 𝜏𝑘 is
realized by register communication and denoted by Ψ𝑖

𝑗
. Note that 𝜏𝑖

and 𝜏𝑘 may have different periods which leads to over-sampling or
under-sampling introducing further complexity to the application
model. The set of all inter-core communication is defined as S.

4 OPTIMIZATION TECHNIQUE
We use CP with interval decision variables to create the schedules.
These variables are tailored for constraint-based scheduling prob-
lems and are used to model activities that last for a certain period of
time. These type of variables are for example supported by the state-
of-the-art CP solver IBM ILOG CP Optimizer [15], which supports
interval decision variables alongside some specialized scheduling
constraints, to efficiently model and solve scheduling problems.

4.1 Interval Decision Variables
For each of the𝑀 task sets Γ𝑚 , the read, execute and write phase
of each task instance within the hyperperiod 𝐻𝑃 are modeled with
an interval decision variable and stored in a set J𝑚 . Additionally,
helper variables are created to represent the final instance of each
task in the previous hyperperiod. As these helper variables rep-
resent the same execution as the last instance of each task in the
created schedule, their timing parameters are linked by constraints.
The reason for considering the final instance of each task in the
previous HP is that an instance of a task may communicate with
the last instance of the previous HP. The notions of the created
interval decision variables are shown in Table 1. In addition, an
interval decision variable is defined for the complete task instance,
denoted by 𝜏𝐴𝑙𝑙

𝑖, 𝑗
. This is necessary as no second task is allowed to

execute during potential idle time between the phases of 𝜏𝑖, 𝑗 as
otherwise local memory might be compromised. The start of 𝜏𝐴𝑙𝑙

𝑖, 𝑗

can therefore be linked with the start of 𝜏𝑅
𝑖,𝑗
, the end can be linked

with the end of 𝜏𝑊
𝑖,𝑗
, and the length of 𝜏𝐴𝑙𝑙

𝑖, 𝑗
is constrained by the

interval [𝐶𝑅𝑖 +𝐶𝐸𝑖 +𝐶𝑊𝑖
,𝑇𝑖 ].

Table 1: Interval decision variables for the REW phases.

Phase Notion Start length

Read 𝜏𝑅
𝑖,𝑗

[𝑟𝑖, 𝑗 , 𝑑𝑖, 𝑗 −𝐶𝑅𝑖 −𝐶𝐸𝑖 −𝐶𝑊𝑖
] 𝐶𝑅𝑖

Execute 𝜏𝐸
𝑖,𝑗

[𝑟𝑖, 𝑗 +𝐶𝑅𝑖 , 𝑑𝑖, 𝑗 −𝐶𝐸𝑖 −𝐶𝑊𝑖
] 𝐶𝐸𝑖

Write 𝜏𝑊
𝑖,𝑗

[𝑟𝑖, 𝑗 +𝐶𝑅𝑖 +𝐶𝐸𝑖 , 𝑑𝑖, 𝑗 −𝐶𝑊𝑖
] 𝐶𝑊𝑖
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Figure 1: Potential communication between 𝜏𝑖 and 𝜏 𝑗 .

4.2 Integer Decision Variables
A set of integer decision variables I is created that model the inter-
core data-propagation delays between potentially communicating
producer-consumer instance pairs for each inter-core communica-
tion ∈ S. If two task instances 𝜏𝑖, 𝑗 and 𝜏𝑘,𝑙 , where Ψ𝑖

𝑘
∈ S, are able

to potentially communicate, i.e. there exists such a schedule, an in-
teger decision variable 𝑍 𝑖, 𝑗

𝑘,𝑙
is introduced that denotes the potential

communication delay between the two instances (i.e. the difference
between the start of the read time of 𝜏𝑘,𝑙 and the end of the write
time of 𝜏𝑖, 𝑗 ).

In order to determine task instances that potentially commu-
nicate, the concept of data interval and read interval is used [2].
The read interval 𝑅𝐼𝑘,𝑙 = [𝑟𝑘,𝑙 , 𝑑𝑘,𝑙 − (𝐶𝑅𝑘 + 𝐶𝐸𝑘 + 𝐶𝑊𝑘 )] de-
scribes the interval in which 𝜏𝑘,𝑙 may read its input data, while
still meeting its timing requirements. Similarly, the data interval
𝐷𝐼𝑖, 𝑗 = [𝑟𝑖, 𝑗 +𝐶𝑅𝑖 +𝐶𝐸𝑖 , 𝑑𝑖, 𝑗+1−𝐶𝑊𝑖 ) describes the interval in which
the data produced by 𝜏𝑖, 𝑗 may be available to other tasks. This is,
from the earliest time 𝜏𝑖, 𝑗 may write the communication variables,
until 𝜏𝑖, 𝑗+1 latest overwrites the data of 𝜏𝑖, 𝑗 . Consequently, an in-
stance 𝜏𝑘,𝑙 is potentially communicating with any instance of 𝜏𝑖
whose data interval overlaps with its read interval, (i.e. there exists
a schedule in which the instances communicate). Fig. 1 exemplifies
this. Read and data intervals of several instances of 𝜏𝑘 and 𝜏𝑖 are
shown. In addition, the overlap in the read intervals are highlighted
using grey background. For example, 𝑅𝐼𝑘,𝑙 overlaps with 𝐷𝐼𝑖, 𝑗−1
and 𝐷𝐼𝑖, 𝑗 . Thus, the variables 𝑍

𝑖, 𝑗−1
𝑘,𝑙

and 𝑍
𝑖, 𝑗

𝑘,𝑙
are added to I. To

ease the later presentation we denote the cardinality of I by 𝑐 .
Since the tasks communicate via register communication with

no additional signaling between them, in the final schedule a task
only consumes the data produced by exactly one instance of the
producer task. Even though an instance of a consumer task can
potentially communicate with multiple instances of a producer task.
Thus, a consumer instance 𝜏𝑘,𝑙 is considered to be communicating
with a producer instance 𝜏𝑖, 𝑗 if, in the final schedule, 𝜏𝑘,𝑙 reads
the data from the shared memory that was written there by 𝜏𝑖, 𝑗 .
Therefore, for each potential communication 𝑍

𝑖, 𝑗

𝑘,𝑙
an additional
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helper integer decision variable 𝐻
𝑖, 𝑗

𝑘,𝑙
is created to distinguish if

the producer-consumer instance pair actually communicates in the
final schedule. The set of all such variables is denoted by H and
the total number of created 𝐻 variables is also equal to 𝑐 .

4.3 Basic Scheduling Constraints
In order for the generated schedule to be considered valid we in-
troduce some basic scheduling constraints. Firstly, for each task
instance we introduce two precedence constraints.

The endBeforeStart(𝑎, 𝑏, 𝑡) constraint specifies that the inter-
val decision variable 𝑎 must end at least 𝑡 time units before the start
of the interval decision variable 𝑏. This constraint type is used to
define a precedence order between the read phase of each instance
and its execute phase. That is, a read phase should be scheduled at
least 0 time units before its execute phase:

∀𝑚 ∈ [0, 1, ..., 𝑀 − 1] ∧ ∀𝜏𝑅𝑖,𝑗 ∈ J𝑚 :

IloEndBeforeStart(𝜏𝑅𝑖,𝑗 , 𝜏
𝐸
𝑖,𝑗 , 0) (1)

Similarly, the second precedence constraint specifies that the
execute phase of each instance should be scheduled at least 0 time
units before its write phase:

∀𝑚 ∈ [0, 1, ..., 𝑀 − 1] ∧ ∀𝜏𝐸𝑖,𝑗 ∈ J𝑚 :

IloEndBeforeStart(𝜏𝐸𝑖,𝑗 , 𝜏
𝑊
𝑖,𝑗 , 0) (2)

The operator noOverlap(𝑎1, 𝑎2, ..., 𝑎𝑛) provides a constraint spec-
ifying that no two interval decision variables in the set {𝑎1, 𝑎2, ..., 𝑎𝑛}
can overlap. As we consider non-preemptive scheduling, the fol-
lowing constraint specifies that task instances on the same core are
not allowed to overlap:

∀𝑚 ∈ [0, 1, ..., 𝑀 − 1] : noOverlap(𝜏𝐴𝑙𝑙𝑖, 𝑗 ∈ J𝑚) (3)

4.4 Memory Access Constraints
As previously mentioned the access to the shared memory is exclu-
sive between all the tasks executing on all cores. To model this, we
introduce an additional noOverlap constraint between all the read
and write phases of all the task instances:

noOverlap(𝜏𝑅𝑖,𝑗 , 𝜏
𝑊
𝑖,𝑗 |𝜏𝑖, 𝑗 ∈ J𝑚∀𝑚 ∈ [0, 1, ..., 𝑀 − 1]) (4)

4.5 Inter-Core Delay Constraints
The inter-core delay constraints are used to assign values to the
integer decision variables that model the communication delay.
Each value 𝑍

𝑖, 𝑗

𝑘,𝑙
∈ I is constrained to represent the write-read

delay of the corresponding, potentially communicating, producer-
consumer task instances:

∀𝑍 𝑖, 𝑗

𝑘,𝑙
∈ I : 𝑍 𝑖, 𝑗

𝑘,𝑙
== IloStartOf(𝜏𝑅

𝑘,𝑙
) − IloEndOf(𝜏𝑊𝑖,𝑗 ) (5)

The operator IloIfThen(𝑎, 𝑏) introduces the constraint 𝑏 if the
condition 𝑎 is satisfied. The second set of constraints ensure that
𝐻 = 𝑍 , if the corresponding 𝑍 variable represents an actually
communicating pair, and that 𝐻 = 0 otherwise:

∀𝐻𝑖 : IloIfThen(isCommunicatingPair(𝑍 𝑖, 𝑗

𝑘,𝑙
), 𝐻 𝑖, 𝑗

𝑘,𝑙
= 𝑍

𝑖, 𝑗

𝑘,𝑙
)

∀𝐻𝑖 : IloIfThen(!isCommunicatingPair(𝑍 𝑖, 𝑗

𝑘,𝑙
), 𝐻 𝑖, 𝑗

𝑘,𝑙
= 0)

where isCommunicatingPair(𝑍 𝑖, 𝑗

𝑘,𝑙
) is a function that returns true

if the two task instances 𝜏𝑖, 𝑗 and 𝜏𝑘,𝑙 represented by𝑍
𝑖, 𝑗

𝑘,𝑙
are actually

communicating. The function evaluates all 𝑍 variables of the inter-
core communication Ψ𝑖

𝑘
that terminate in the instance 𝜏𝑘,𝑙 , and

returns true, if 𝑍 𝑖, 𝑗

𝑘,𝑙
has the smallest positive value among these

variables. In this case, a negative value indicates that data is written
by a future instance of 𝜏𝑖 , and a positive value that is not the smallest
positive value indicates the data is overwritten before 𝜏𝑘,𝑙 reads it.

4.6 Objective Function
Once all the decision variables and constraints have been specified
the application is ready to be scheduled. The main objective of
the schedule generation is to find the optimal schedule from the
perspective of inter-core data-propagation delays.With this in mind
we define the objective function 𝑓 (𝑥) as follows:

𝑓 (𝑥) = 𝑎𝑟𝑔𝑀𝑖𝑛
∑

∀𝐻 𝑖,𝑗

𝑘,𝑙
∈H

𝐻
𝑖, 𝑗

𝑘,𝑙
. (6)

5 EVALUATION
In this section we evaluate the proposed technique. Synthetic ex-
periments with a large number of task sets are used to evaluate
scalability as well as the resulting schedulability ratio. A case
study illustrates the impact of our method on jitter, inter-core data-
propagation delays and their impact on data age of task chains that
span multiple cores.

5.1 Synthetic Experiments
5.1.1 Experiment Setup. Synthetic task sets are createdwith param-
eters that conform to automotive applications [14]. The utilization
for each task is created using the Randfixedsum algorithm [29]
and periods are selected out of the set [2, 5, 10, 20, 50, 100, 200, 1000]
ms according to the real-world automotive benchmarks [14]. The
size of communication labels is selected between 1 and 64 bytes.
The probability distribution for period values as well as the size of
communication labels are selected based on the values presented
in the benchmarks. Based on the size of communication variables,
the read and write times are determined, assuming memory access
consumes 10 clock cycles per byte and a clock frequency of 300MHz.
These values are consistent with an industrial engine management
system and with MPC5777C micro-controller architecture, which
is a platform used in the automotive domain. To evaluate the CP
problem size, a varying number of cores is considered. For the
remaining experiments a platform with 2 cores is used. Finally,
tasks are partitioned to cores based on the utilization distribution
stated in the respective experiment. A varying number of inter-core
communication between tasks on different cores is specified. For
each data point, 200 random systems are generated and the average
values are presented.

IBM ILOG CP Optimizer is used to solve the CP problem. The
bound on the solving time is set to 3 minutes. If no solution is found
within this time, the task set is deemed unschedulable.

5.1.2 CP Problem Size. In order to evaluate the impact of the sys-
tem configuration on the size of the CP problem, two experiments
are performed.
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Figure 2: Average number of constraints with respect to:
(a) the number of inter-core communicating task pairs, and
(b) the number of tasks.

Fig. 2a depicts the evaluation of the impact that inter-core com-
munication has on the CP problem size. For this experiment, task
sets with 60 tasks are created and partitioned to 2, 4, and 8 cores
with a resulting core utilization of 50% respectively. The amount
of inter-core communication is then varied in the range [0, 2, 4, 8,
16, 32, 64, 128]. The results show that the number of constraints
linearly increases with the number of inter-core communications
(note the scale of the x-axis). It can also be seen that fewer cores
result in a larger number of constraints. This is because the number
of tasks in this experiment is static, which leads to fewer tasks to
be scheduled on individual cores with increasing core count.

In comparison, the impact of the number of tasks on the CP
problem size is shown in Fig. 2b. Here the amount of inter-core
communication is kept static at 32 and the number of tasks is varied
from 15 to 60 tasks in steps of 5 tasks, while the utilization of each
core is set to 50%. It can be seen that the impact of the number
of tasks on the CP problem size is also linear. However, adding
additional tasks increases the problem size by an average of 51.78
constraints, while adding inter-core communication increases the
number of constraints in average by only 2.9 constraints, irrespec-
tive of the number of cores. Thus, the proposed CP formulation
to optimize the inter-core communication delays is efficient in the
number of resulting constraints.

5.1.3 Schedulability Ratio. This experiment evaluates the schedu-
lability ratio (i.e. the ratio of schedulable to unschedulable task sets)
of the proposed CP technique for varying utilization of core 0 and
core 1. For these experiments, task sets with 30 tasks are created
that are subject to 16 inter-core communications. Fig.3 presents
the results of the experiments, where the x-axis denotes the uti-
lization of core 1 and for each examined utilization value of core
0 one curve is shown respectively. It can be seen that, with an
increase in utilization in any of the two cores, the schedulability
ratio decreases, with 20% of all evaluated systems being deemed
schedulable at a utilization of 90% on each of the cores while read
and write phases of all tasks are non-overlapping and inter-core
communication delays are optimized.

Figure 3: Schedulability ratio with varying utilization on
core 0 and core 1.

5.2 Automotive Application Case Study
To evaluate different performance characteristics, a case study is
performed. The examined application is based on the model engine
control application presented in [9]. The application is scheduled
on a microcontroller platform found in the automotive industry,
the MPC5777C [27]. The MCP5777C has 2 CPUs which operate
at a clock frequency of 300 𝑀𝐻𝑧. The application’s parameters
have been adjusted to fit the selected platform. The application
consist of 18 tasks whose parameters are given in Table 2. The
application also includes 3 multi-rate task chains, Chain A, Chain
B, and Chain C. The mapping of tasks to cores results in each chain
traversing core boundaries at least once, as shown in Fig. 4. In
addition, periods of tasks are visualized using blue (50ms), green
(100ms), and red (1000ms) color. This highlights the multi-rate
behavior of the different task chains.

For comparison with our CP based method, the application is
also scheduled using the industrial tool suite Rubus-ICE and Rubus
RTOS that have been used in the automotive industry for over 25
years [19, 20]. In contrast to our technique, Rubus does not consider
inter-core communications and each core is managed and scheduled
independently by its certified single-core real-time RTOS.

5.2.1 Start Time Jitter. The schedule generation of Rubus-ICE at-
tempts to minimize the start time jitter of each task. Indeed Rubus-
ICE finds a schedule that results in each task having no start time
jitter, i.e. consecutive instances of each task 𝜏𝑖 are scheduled exactly
𝑇𝑖 time units apart. In contrast, our technique does not consider
start time jitter during the schedule creation. Thus, jitter is present
in the schedule created by our technique. The resulting jitter values
are reported in Table 2, with a maximum start time jitter observed
for the task TransFuelMass with 43.77ms, 43.77% of the tasks pe-
riod. The observed jitter in our technique can be considered as a
trade-off in the optimization for inter-core data propagation delays
and will be further investigated in future work.

5.2.2 Inter-Core Data Propagation Delay. Inter-core communica-
tion takes place 6 times, as shown in Fig. 4. Our CP technique suc-
cessfully minimizes all inter-core communication. Rubus-ICE builds
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Table 2: Tasks used in the automotive application case study and the resulting jitter by the two methods.

Task 𝐶𝑅𝑖[ns] 𝐶𝐸𝑖[ns] 𝐶𝑊𝑖[ns] 𝐶𝑖[ns] 𝑇𝑖[ms] 𝑝𝑖 Jitter CP [ms] Jitter RCM [ms]
CylNumObserver 908 573000 25 573933 1000 0 1.95 0
IgnitionSync 958 2461000 195 2462153 1000 1 8.04 0
MassAirFlow 908 86000 28 86936 50 0 7.48 0
ThrottleSensor 908 169000 55 169963 50 1 1.65 0
APedSensor 908 482000 55 482963 50 0 0.39 0
APedVoter 55 144000 28 144083 100 0 1.81 0
ThrottleCtrl 990 2892000 55 2893045 100 1 3.59 0

ThrottleActuator 1013 2957000 83 2958096 100 0 3.04 0
BaseFuelMass 990 2892000 55 2893045 100 1 42.61 0
ThrottleChange 1013 2957000 83 2958096 100 0 8.06 0
TransFuelMass 1148 3188000 28 3189176 100 1 43.67 0

Ignition 1060 2269000 25 2270085 1000 0 2.53 0
TotalFuelMass 988 677000 28 678016 100 0 3.04 0
OperatingMode 965 19641000 390 19642355 200 1 1.29 0
IdleSpeedCtrl 833 843000 240 844173 200 0 0.31 0

APedSensorDiag 908 118000 0 118908 1000 0 0.09 0
InjBattVoltCorr 28 274000 28 274056 1000 0 0.21 0

Injection 985 1651000 195 1652180 1000 1 0 0

Injection

APedeSensor
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Sensor

MassAirFlow APedVoter

ThrottleCtrl

Throttle
Actuator
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Figure 4: Task chains of the model engine controller and their mapping to cores.

the schedule for each core independently, thus inter-core commu-
nication delay is not directly optimized. This is for example visible
in the third inter-core communication between ThrottleCtrl to
ThrottleActuator tasks in Chains A and B, that has a maximum
communication delay of 91.43ms. Both tasks have an execution
period of 100ms. As Rubus-ICE is unaware of the inter-core com-
munication, the two tasks are executed in such a way that the
receiver is always scheduled just before the sender, thus the data
the receiver task reads is written almost a full period earlier. The
inter-core communication delay for each communication is shown
in Table 3.

Table 3: Maximum inter-core data-propagation delays.
Chain (Producer, Consumer) CP[ms] Rubus-ICE[ms]
Chain A (APedVoter,ThrottleCtrl) 0 54.86

(ThrottleCtrl,ThrottleActuator) 0 91.43
Chain B (ThrottleCtrl,ThrottleActuator) 0 91.43
Chain C (MassAirFlow,BaseFuelMass) 0 2.79

(TransFuelMass,TotalFuelMass) 0 47.21
(TotalFuelMass,Injection) 0 1.38

5.2.3 Impact on Data Age. One of the most important metrics in
the automotive industry is the data age of task chains. The data age

Table 4: Maximum age delays for the task chains.

Chain CP[ms] Rubus-ICE[ms]
Chain A 56.49 153.53
Chain B 9.61 100.4
Chain C 101.65 152.06

describes the maximum time for data to propagate through a task
chain [10]. That is, how long an input value has effect on the output
of the task chain. Table 4 reports the maximum data age for each of
the task chains with the proposed CP method as well as with Rubus-
ICE. For all the chains, Chain A, Chain B and Chain C, the maximum
data age using our technique is improved by 97.04ms, 91.41ms
and 50.41ms respectively. However, it is important to note that
optimizing inter-core data-propagation delays does not necessarily
mean that the data age is minimized as well. For example, in all of
the chains there are at least two successive tasks allocated to the
same core. Since the proposed approach only minimizes inter-core
communication delays, these intra-core communication delays can
negatively impact the overall data age of the chain. This illustrates
that, while optimizing inter-core delays can have a positive impact
on the resulting data age, it is not solely influenced by it.
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6 CONCLUSIONS AND FUTUREWORK
Many industrial domains face the challenge of transitioning to
multi-core platforms while reducing the impact on their legacy
systems. In this work we focus on partitioned scheduling, where
each core of a multi-core platform hosts its own real-time operating
system or scheduler. A constraint programming model is developed
to generate a time triggered schedule for each of the cores, follow-
ing the Read-Execute-Write execution model. Memory phases of
the cores are scheduled exclusively, which allows each core to be
analyzed in isolation. In addition, our technique orchestrates the
execution of tasks that communicate across core boundaries in such
a way that inter-core data propagation delays are minimized.

The proposed technique is evaluated using a large number of
synthetic experiments that demonstrate the scalability as well as
the resulting schedulability ratio of the technique. Indeed, 18% of all
investigated task sets remained schedulable for a utilization of 90%
on each core in our experiments, with 30 tasks and 16 inter-core
communication instances. Additionally an industrial case-study is
performed that highlights key properties of the proposed method
and provides a comparative evaluation of the proposed technique
and an industrial tool suite accompanied by a certified real-time
operating system that are used in the automotive domain.

Future work will incorporate data propagation delay constraints
of task chains, as well as the optimization of jitter together with
the optimization of inter-core data propagation delays.
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