
Soft Comput (2006) 10: 796–804
DOI 10.1007/s00500-005-0009-7

FOCUS

Ning Xiong · Peter Funk

Construction of fuzzy knowledge bases incorporating feature
selection

Published online: 12 October 2005
© Springer-Verlag 2005

Abstract Constructing concise fuzzy rule bases from
databases containing many features present an important yet
challenging goal in the current researches of fuzzy rule-based
systems. Utilization of all available attributes is not realistic
due to the “curse of dimensionality” with respect to the rule
number as well as the overwhelming computational costs.
This paper proposes a general framework to treat this issue,
which is composed of feature selection as the first stage and
fuzzy modeling as the second stage. Feature selection serves
to identify significant attributes to be employed as inputs of
the fuzzy system. The choice of key features for inclusion is
equivalent to the problem of searching for hypotheses that
can be numerically assessed by means of case-based rea-
soning. In fuzzy modeling, the genetic algorithm is applied
to explore general premise structure and optimize fuzzy set
membership functions at the same time. Finally, the merits of
this work have been demonstrated by the experiment results
on a real data set.

Keywords Fuzzy rule-based systems · Feature selection ·
Case-based reasoning · Fuzzy modelling ·Genetic algorithm

1 Introduction

Fuzzy rule-based systems have been widely applied to con-
trol [9], modeling [12] and classification [3] problems. Rules
based on fuzzy logic provide an effective means to describe
uncertain, ill-defined systems using vague and imprecise state-
ments. The major merits of fuzzy linguistic rules [19] lie in
the close relationship to human reasoning and the facility of
robust and flexible representation of knowledge in countless
practical situations.

Generating fuzzy if-then rules from numerical examples
gains great importance when no explicit human expertise is
available. The purpose is to extract useful knowledge and

N. Xiong · P. Funk
Department of Computer Science and Electronics,
Mälardalen University, SE-72123 Västerås, Sweden
E-mail: ning.xiong@mdh.se

information hidden somewhere from historical data. Data
based knowledge discovery demonstrates various application
potentials, including behavioral cloning of human operation
skills, gaining insights into complex processes, identifying
prospective customers in e-commerce, as well as understand-
ing behavior of internet surfers to mention only a few cases.

Frequently, real-world scenarios produce great amounts
of data with ten or even hundreds of features. Such high input
dimension would make decision borders very complex and
thus numerous rules required. An over-sized knowledge base
is undesired due to interpretation difficulty apart from heavy
computational burden. How to deal with large databases for
deriving compact and comprehensible fuzzy rule sets turns
out to be a challenging issue for intensive research.

Some attempts were made to determine the inputs of
fuzzy-rule based systems by seeking the best feature combi-
nation relative to the performance of fuzzy modeling. Sugeno
and Yasukawa [14] proposed to select fuzzy model inputs
according to a regularity criterion (which entails fuzzy mod-
eling on two separate data subsets). Grid-based premise
structure was adopted in [11] for evaluating usefulness of fea-
ture subsets in fuzzy classification. Takagi and Hayashi [15]
employed fuzzy neural networks to identify significant in-
put variables by eliminating irrelevant features successively.
A common property of these methods is that they all en-
tail training fuzzy/neural network models for performance
assessments. They are computationally expensive as repeat-
edly requesting to build system models for many feature sub-
sets under consideration. A different method which enables
assessing individual features in parallel was given in [13]
where an information measure was defined to quantify the
impacts of input features on the decision process, leading to
a possible input dimension reduction. However, it is a sort
of posteriori data analysis requiring the establishment of a
fuzzy model with full features in advance.

This paper advocates incorporating feature selection into
fuzzy knowledge base construction directly.The general frame-
work is shown in Fig. 1 in which feature selection is treated
as the first step to filter out irrelevant and unnecessary fea-
tures and fuzzy modeling as the second step to build fuzzy

Construction of fuzzy knowledge bases incorporating feature selection 797

Complex

process

Feature

selection

Fuzzy

Modelling

Fuzzy

system

Fig. 1 Construction of fuzzy knowledge bases incorporating feature selection

Fig. 2 The proposed sketch for feature selection

rule-based systems using selected features as inputs. Feature
selection prior to fuzzy modeling brings the following
benefits:

1. System accuracy and reliability can be improved by
discarding irrelevant features that intrinsically have no
influences on process outcomes at all;

2. The use of a smaller set of features reduces the problem
space of fuzzy modeling as well as the complexity of the
generated fuzzy system;

3. A reduced input dimension leads to requirement of fewer
training data and helps to avoid the risk of over-fitting.

Several related but independent works have been reported
concerning selection of significant features as inputs to fuzzy
rule-based systems. Casillas et al. [2] presented a genetic fea-
ture selection process which is integrated into a multistage
genetic learning method for fuzzy rule-based classification
systems. Such a feature selection process uses the so-called
k-NN rule to evaluate feature subsets and specifies, a priori,
the number of features to be selected. Sorting features prior
to building the final fuzzy classifier was addressed in both
[6] and [10]. A heuristic method was introduced in [6] to
assess the fitness degrees of individual features, while [10]
calculated fuzzy entropy for every underlying attribute as
a measure of its discriminating power. Evaluating features
in isolation of each other simplifies the problem on one side
whereas ignores possible interdependence among certain fea-
tures or their joint effects on the other side.

The rest of the paper is organized as follows. Sect. 2 ex-
plains the details of feature selection including hypothesis
testing and search algorithms. Fuzzy modeling using selected

features as inputs is described in Sect. 3. In Sect. 4, we show
the experimental results with Wine database. Finally, the con-
cluding remarks are given in Sect. 5.

2 Feature selection as input identification

The task of feature selection for deciding system inputs can
be considered as a problem of finding a correct hypothesis
about key features which must be accepted. As every attri-
bute will be either accepted or rejected, the total number of
hypotheses for K features is 2K . Evidently, the number of
hypotheses will become too large for us to check every of
them exhaustively when K is of high magnitude.

We aim at learning reliable hypotheses through a sys-
tematic mechanism. The basic sketch proposed is outlined in
Fig. 2, where a certain search algorithm is applied to search
in the hypothesis space for optimal or reliable solutions. The
result from the search process appears as a feature subset
containing selected attributes to be used as system inputs in
the second step of fuzzy modeling.

The purpose of the “verification” block in Fig. 2 is to
provide hypothesis evaluation. It is required to give a numer-
ical index about how well an underlying hypothesis behaves.
The intention is to verify the hypothesis based on the train-
ing data to see how well it is consistent with the available
examples. As the verification procedure serves as trial evalu-
ation for the search algorithm, it should not only be simple in
nature but also guarantee a rough equivalence between (reli-
able) hypotheses and (good) performance indexes. In other
words, the verification procedure must meet the following
requirements:

798 N. Xiong and P. Funk

Fig. 3 Verification of a hypothesis through case-based reasoning

1. replying good performance indexes for reliable hypothe-
ses;

2. replying bad performance indexes for absurd hypotheses;
3. being computationally simple for implementation.

The answer of how to verify hypotheses might not be
unique. Any data analysis scheme is adequate to serve this
purpose as long as it satisfies the above three requirements.
Here in this paper, we suggest one alternative via case-based
reasoning [1,8,18] as shown in Fig. 3. The main idea is to
transform the problem of hypothesis verification to the one of
checking the quality of case-based reasoning, which relies on
attributes adopted by the hypothesis to reason about the out-
come of an object from a set of known examples. Undoubt-
edly, a reliable hypothesis will give rise to high accuracy
of case-based reasoning and vice versa. The performance of
case-based reasoning under a hypothesis is estimated using
the training data and by means of a “leave-one-out” proce-
dure. This means that the outcome of an object from the train-
ing data is derived in terms of other cases in the same data set
and this calculation is repeated for every training example.
In this way, the performance estimation of the case-based
reasoning can be expected to be both accurate and unbiased,
since all samples in the training data are used for testing.
On the other hand, in order to keep the input-dimension of a
fuzzy system as low as possible, we should consider the num-
ber of attributes selected by the hypothesis as well. Hence the
number of inputs is incorporated as the second criterion into
the evaluation function to penalize any feature included.

2.1 Hypothesis testing via case-based reasoning

The general idea of verifying hypotheses by means of case-
based reasoning has been highlighted previously. In this
subsection we first give necessary details of the case-based
reasoning method used for our purpose and then present an
unbiased error estimate for hypotheses by checking results
from the case-based reasoning.

Central component of case-based reasoning systems is a
library of recorded cases. Each case in the library is identi-
fied by an index of features and an associated output. More
formally we let (a1, a2, . . ., ak) be a group of attributes used

to index the cases and y be the outcome variable. A special
case i in library can be represented by a (K+1)- tuple (ai1,
ai2, . . ., aiK , yi) where aij corresponds to the value of the jth
attribute for this case and yi is the value in the outcome.

Generally speaking, case-based reasoning is tasked to
determine the output of a new case based upon the library
of historical cases. This new case can be represented by a
probe consisting of a K-tuple P=(u1, u2,..., uK) in which uj

corresponds to the value of the jth attribute in the probe.
According to the given probe we are required to search the
case library for neighboring cases. The outcomes of these
neighboring cases are then fused to estimate the output for
the current new case.

A neighborhood can be found from the library for the
current new case via two essential steps. In the first step, the
individual features of a case in the library are compared with
the corresponding attributes in the probe to see how they are
compatible with each other. This step is called attribute or
feature matching and it results in a collection [mi1, mi2, . . .,
miK], where mij ∈[0, 1] is a measure of compatibility on the
jth attribute between the probe and the ith case in the library.
The second step is aggregation of compatibility measures for
individual attributes to acquire an overall matching value of
a library case to the probe. Such a matching value can be
regarded as a similarity degree between the new case and a
remembered case. These similarity degrees are then utilized
to establish a fuzzy neighborhood from the library for the
new case being considered. Finally, the outcome for the cur-
rent case is estimated according to its neighboring cases in
history.

In the feature matching stage we must distinguish be-
tween relevant and irrelevant attributes. For an irrelevant
attribute the measure of compatibility is always unity
regardless of both attribute values. On the other side, the
compatibility measure for a relevant attribute depends on the
difference between two values concerned. The bigger this
difference appears, the lower the compatibility value should
be. A fuzzy set ‘small’ shown in Fig. 4 is adopted to de-
fine the measure of compatibility for a relevant feature. This
means that the compatibility measure for a relevant feature
is equal to the membership grade of the attribute difference
to the fuzzy set ‘small’. The parameter w in this membership

Construction of fuzzy knowledge bases incorporating feature selection 799

Fig. 4 The fuzzy set ‘small’ for defining compatibility measure

function is a coefficient to be specified by human operators.
Since the purpose here is to examine the relative quality of
hypotheses, the testing result is expected to be insensitive to
the variations of w.

Obviously the measure of compatibility gets its maximal
value of unity when there is no difference at all. In other cases,
this measure decreases with the increment of the difference
between two feature values until a zero membership degree
is reached. Generally, the measure of compatibility mij for
the jth attribute can be written as:

mij =
{

µsmall(aij − uj) if aj is relevant,

1 otherwise.
(1)

In the context of this article, case-based reasoning is car-
ried out for hypothesis verification, such that it has to accept
hypotheses as ‘prior relevance information’ for guiding the
feature matching procedure, i.e. to determine the calcula-
tion of compatibility measure in (1). The accuracy of the
case-based reasoning reflects the reliability of the hypothesis
guiding it.

As a result of feature matching, we obtain a vector [mi1,
mi2, . . ., mik] for a given case in the library. Each element mij

in this vector is a number in the unit interval indicating the
truth value that the jth probe attribute is compatible with the
jth attribute of the case being matched. The next problem is
how to aggregate these individual measures to get an overall
score, namely the similarity degree between the probe and the
library case. Since similarity between case and probe is con-
ditioned upon compatibility on all attributes, the similarity
degree between library case and probe P should be a t-norm
of the measures of feature compatibility. Using the operator
of algebraic product as implementation of the t-norm, we
have:

Sp(ei, P) = mi1 ×mi2 × . . . ×miK (2)

Given probe P its neighborhood can be built as a fuzzy
subset upon examples in the library. A library case belongs
to this neighbor set with a degree equal to its similarity mea-
sure with the probe. Let N be the number of examples in the
library and denote ei as the ith known case, the neighborhood
of probe P can be notated as:

Neigh(P) = {
e1

/
Sp(e1, P), e2

/
Sp(e2, P), ,

. . . , eN

/
Sp(eN, P)

}
(3)

Furthermore, since each case ei has an associated out-
come yi , the score SP (ei , P) provides a measure of appro-
priateness of solution yi to the current case. The final stage

of the case-based reasoning is to use this information to fuse
solutions of neighboring cases to yield an estimate for the
new case being inspected. Suppose that the output space is
discrete: {C1, C2, . . . , CW }, we just need to pick one of the
values as the estimation. For this purpose, we assign a voting
strength (VS) to each discrete value c∈{C1, C2, . . ., CW} by

V S(c) =
N∑

i=1

{
Sp(ei, P) ifyi = c,

0 ifyi �= c.
(4)

The outcome for probe P is estimated to be the value with
the largest voting strength, i.e.,

Out(P) = arg max
c∈{C1,C2,...CW }

V S(c) (5)

The case-based reasoning technique stated above is ap-
plied for evaluating the performance of a hypothesis through
a “leave-one-out” procedure. In this procedure one object
from the training data set containing M samples is used for
testing and the other M−1 samples constitute a library for
case-based reasoning. We employ this library to reason about
the outcome of the sample that is withheld for testing. Such
a calculation is repeated for every training example and the
portion of wrong judgments is treated herein as the error esti-
mate for the hypothesis being evaluated.

More concretely, the output of every sample ei in the train-

ing data is estimated based on the case library: (
M∪

k=1
ek)\ ei .

Thus we can write:

ŷi = CBR

{(
M∪

k=1
ek

)
\ei, (ai1, ai2, . . . , aiK)

}
(6)

where ŷi is the estimated output for the sample ei and CBR
denotes a case-based reasoning function which accepts a li-
brary of M−1 training examples and a probe as its input ele-
ments to make classification about the output value. Finally
by defining the function dis(·) as

dis(yi, ŷi) =
{

0 if ŷi = yi,

1 otherwise.
(7)

we acquire the error estimate for the hypothesis (under which
the case-based reasoning is performed) as:

err =
[

i=1∑
M

dis(ŷi , yi)

] /
M (8)

Usually this error estimate is combined with the penalty of
selected features, producing a cost function of hypotheses in
support of the search algorithms discussed in the next sub-
section.

2.2 Search algorithms for hypotheses

Having defined the assessment function for hypotheses, we
now turn to discussing search engines for finding desirable
ones. The search space is a state space (as exemplified in
Fig. 5 with blackened circles denoting selected features) in

800 N. Xiong and P. Funk

Fig. 5 State space and its operators for a four-attribute problem

which each state represents a hypothesis in the form of a fea-
ture subset and operators determine the connectivity between
the states, i.e., adding or deleting a single feature with respect
to a state. Two heuristic search algorithms (hill climbing and
best-first), powerful for finding feature combinations, will be
presented here. In principle, a search procedure might start
with nothing and successively add attributes or begin with full
attributes and successively remove part of them. However,
considering the fact that case-based reasoning will become
much faster under a hypothesis with few attributes selected,
an empty feature subset is suggested being the initial state
for our purpose.

2.2.1 Hill-climbing search engine

Hill-climbing is the simplest search technique, also called
greedy search or steepest descent. It expands the current node
and moves to the child with the lowest cost value, terminat-
ing when no child improves over the current node. A formal
description of this algorithm is given below:

The hill-climbing search algorithm

1. Let S← initial state.
2. Expand S: apply all operators to S to produce its children.
3. Apply the cost function f to each child c of S.
4. Let S∗ = the child with the lowest cost value f (c).
5. If f (S∗) < f (S) then S← S∗, go to Step2.
6. Return S.

2.2.2 The best-first search engine

Best-first search is a more robust method than hill-climbing.
The main idea is to choose the most promising node gener-
ated so far that has not already been expanded. It is worthy
noting that the best-first search engine used for input identi-
fication varies slightly from the standard version, since there
is no explicit goal condition in our problem. Best-first search
usually terminates upon reaching the goal. Our goal is to find
an optimal hypothesis about relevance of attributes, so the
search can be stopped at any point and the solution found so

far can be returned, thus making it an anytime algorithm. In
practice, the search process must be stopped at some point
and we can use here what is called a stale strategy: if an im-
proved node has not been found in the last k expansions, the
search is terminated. The best-first search engine devised for
our purpose is formally described as:

The best-first search algorithm

1. Put the initial state in the OPEN list, CLOSED list← ∅,
Best← initial state.

2. Let S = arg minc∈OPEN f (c) (get the state from OPEN
with minimal cost value).

3. Remove S from OPEN, and add S to CLOSED.
4. If f (S) < f (BEST), then BEST← S.
5. If BEST changed in the last k expansions, go to the next

step, otherwise return BEST.
6. Expand S: apply all operators to S to produce its children.
7. For each child neither in the OPEN list nor in the CLOSED

list, evaluate and add it to the OPEN list.
8. Go to Step 2.

3 Fuzzy modeling using selected features

Given selected features x1, x2, . . . , xn, we ought to accept
them as inputs in fuzzy modeling. The fuzzy sets for input xj

are represented by A(j,1), A(j,2), . . .,A(j, q[j]) and q[j] is the
number of its linguistic terms. By p(•) we denote an integer
function mapping from {1,2,..., s(s≤ n)} to {1,2,...., n} satis-
fying ∀ x�= y,p(x)�= p(y). Fuzzy rules that are to be generated
herein are of the general form as:

If [Xp(1)is ∪
k∈D(1)

A(p(1), k)]AND

[Xp(2)is ∪
k∈D(2)

A(p(2), k)]

AND · · ·AND[Xp(s)is ∪
k∈D(s)

A(p(s), k)]

T hen Conclusion B (9)

where D(i) ⊂ {1, 2, . . ., q[p(i)]} for i=1 ,. . ., s, and B∈
{C1, C2, . . ., CW}

If a premise includes all input variables in it (e. g. s=n),
we say that its rule has complete structure, otherwise its struc-
ture is incomplete. Another important property of the rules in
the form of (9) is that a union operation of input fuzzy sets is
allowed in their premises. Rules having incomplete structure
or containing OR connections of input fuzzy sets can achieve
larger coverage of input domain, leading to substantial reduc-
tion of the number of rules [16].

3.1 Learning rule premises by genetic algorithms

The genetic algorithm (GA) introduced by Goldberg [5] is
applied to search for general premises of rules. The approach
is based on the work in [17], with the goal of taking advan-
tage of the strength of genetic search to reach a set of suitable
premise structures together with parameters of membership
functions. The upper limit of the rule number needs to be

Construction of fuzzy knowledge bases incorporating feature selection 801

given by user in advance. It can be considered as an estima-
tion of the sufficient amount of rules to achieve a satisfactory
accuracy. During the running of GA the actual rule number
can be adjusted automatically within this specified limit. In
the following we state briefly about coding scheme, genetic
operators and fitness function which present key points for
the genetic learning.

3.1.1 Genetic coding scheme

The information concerning structure of rule premises can be
considered as a set of discrete parameters, while the informa-
tion about membership functions is described by a set of con-
tinuous parameters. Owing to the different natures between
the information about rule structure and about fuzzy set mem-
bership functions, a hybrid string consisting of two substrings
is used here as the coding scheme. The first substring is a
binary code representing premise structure of a knowledge
base, and the second substring is an integer code correspond-
ing to parameters of fuzzy sets used by rules.

Usually membership functions of an attribute selected as
input are characterized by a set of parameters. Each of these
parameters can further be mapped by an integer through dis-
cretization. The resulting integers are then combined to form
an integer-vector depicting the fuzzy partition of that input.
Merging together integer-vectors for all inputs gives rise to
the integer code as one part of the hybrid string. To ensure
meaningful fuzzy partitions every newly generated integer
vector in the integer code must be rearranged into an ascend-
ing or descending order.

From (9), we can see that premise structure of general
rules is indeed decided by integer sets D(i) (i=1, 2, . . .s).
This fact suggests that a binary code be a suitable scheme
for encoding structure of premises, since an integer from {1,
2, . . ., q[p(i)]} is either included in the set D(i) or excluded
from it. For attribute xj which is included in the premise (i.e.
p−1 (j)�= ∅), q[j] binary bits need to be introduced to depict
the set D(p−1 (j))⊂ {1, 2,...., q[j]}, with bit “1” representing
the presence of the corresponding fuzzy set in the OR-con-
nection and vice versa. If attribute xj does not appear in the
premise, i.e. p−1 (j)=∅, we use q[j] one-bits to describe the
wildcard of “don’t care”. For instance, the condition “if [x1
=(small or large)] AND [x3 = middle] AND [x4= (middle or
large)]” can be coded by the binary group (101; 111; 010;
011).

Further, the whole substring for the premise structure of
the rule base is a merge of bit groups for all individual rule
premises. It is worthy noting that the following two cases by
a binary group lead to an invalid premise encoded: (1) All the
bits in the group are equal to unity, meaning that no inputs
are considered in the premise; (2) All the bits for an input are
zero; this input thus takes no linguistic term in the premise
resulting in an empty fuzzy set for the condition part of that
input. Rules with invalid premises are meaningless, play no
role in the fuzzy reasoning and therefore should be discarded.
Through elimination of invalid rule premises, the actual rule
number can be reduced from the upper limit given by man.

This implies an opportunity to adjust the size of the rule base
within certain constraint by GA.

3.1.2 Crossover

Owing to the distinct nature between the two substrings, it is
preferable that the information in both substrings be mixed
and exchanged separately. Here a three-point crossover is
used. One breakpoint of this operation is fixed to be the split-
ting point between both substrings, and the other two break-
points can be randomly selected within the two substrings,
respectively. At breakpoints the parent bits are alternatively
passed on to the offspring. This means that offspring get bits
from one of the parents until a breakpoint is encountered, at
which they switch and take bits from the other parent. The
crossover rate used is around 0.867.

3.1.3 Mutation

Because of the distinct substrings used, different mutation
schemes are needed. Since parameters of input member-
ship functions are essentially continuous, a small mutation
with high probability is more meaningful. Therefore it is so
designed that each bit in the substrings for membership func-
tions undergo a disturbance. The magnitude of this distur-
bance is determined by a Gaussian distribution function. For
the binary substring representing structure of rule premises,
mutation is simply to inverse a bit, replace ‘1’ with ‘0’ and
vice versa. Every bit in this substring undergoes a mutation
with a quite low probability around 0.033.

3.1.4 Fitness function

An individual in the population is evaluated according to both
the performance and simplicity of the fuzzy system it yields.
The simplicity here refers to the actual size of the rule base. In
fact the number of valid rules is very likely to be smaller than
the upper limit prescribed due to possible invalid premises
encoded. The fitness function to evaluate a (hybrid) string
can be constructed by combining the above two criteria in a
simple linear way as:

Fit (HS) = Acc(HS)− β · Rn(HS) (10)

where Acc(HS), Rn(HS) denote respectively the classification
accuracy on the training set and the actual rule number of the
fuzzy system which is decoded from string HS. β is a coeffi-
cient determined by the user. Because the size of the rule
base is now directly incorporated into the fitness function,
GA searches for solutions with not only best performances
but also minimal complexity.

In order to acquire the value of Acc(HS) for fitness eval-
uation, we must first acquire the whole rule base for making
classification of training examples.This entails determination
of the appropriate rule conclusion under every valid premise
after the hybrid string has been decoded. The next subsection
describes such a procedure as an internal loop embedded in
the genetic learning.

802 N. Xiong and P. Funk

3.2 Determining consequence under a given premise

Given a rule premise we need to choose an appropriate con-
sequent class from the finite set of possible classes. The idea
is to choose such a consequence so that the resulting fuzzy if-
then rule will become most truthful, i.e., obtaining the most
evidences and support from the training examples. The tech-
nical details of this procedure are explained below.

By substituting the premise description of the rule in (9)
with symbol Ã under the definition as

Ã = [xp(1) ∪
k∈D(1)

A(p(1), k)] and [xp(2)is ∪
k∈D(2)

A(p(2), k)]

AND . . . AND [xp(s) is ∪
k∈D(s)

A(p(s), k)] (11)

the rule can be abbreviated as “ If Ã Then B”. The condition
Ã, on the other hand, can be regarded as a fuzzy subset on the
training set UT ={e1, e2, . . ., eM}. The membership value of a
training example to this fuzzy subset is equal to the degree to
which Ã is satisfied by its vector of selected features (inputs).
Thus we write:

Ã =
{

e1

µÃ(e1)
,

e2

µÃ(e2)
, . . . ,

eM

µÃ(eM)

}
(12)

µÃ = µÃ (xi1, xi2, . . . , xin) i = 1, . . . , M (13)

Here (xi1, xi2, . . ., xiM) is the input vector of the example ei

in the training set. Similarly the conclusion B is treated as a
crisp subset on the training set. An example belongs to this
crisp set, if and only if its outcome is the same as B. Therefore
the membership function of the subset for B is defined as:

µB(ei) =
{

1 if Out(ei) = B

0 otherwise
i = 1, . . . , M (14)

The rule “If Ã Then B” corresponds to the implication of Ã

⇒ B, which is equivalent to the proposition that Ã is a subset
of B, i.e., Ã ⊆ B. In this view, the measure of subsethood of
Ã in B is utilized as the truth value of the rule. So, we obtain

truth(Ã⇒ B) = M(Ã ∩ B)

M(Ã)
=

∑
e∈UT

(µÃ(e) ∧ µB(e))∑
e∈UT

µÃ(e)

=

∑
Out(e)=B

µÃ(e)

∑
e∈UT

µÃ(e)
(15)

Table 1 The hill-climbing search procedure for feature selection

The state S for expansion fc (S) The best child S* fc (S*)

Step 1 ∅ — (a7) 0.290899
Step 2 (a7) 0.290899 (a1, a7) 0.160449
Step 3 (a1, a7) 0.160449 (a1, a7, a11) 0.091798
Step 4 (a1, a7, a11) 0.091798 (a1, a7, a11, a13) 0.062472
Step 5 (a1, a7, a11, a13) 0.062472 (a1, a3, a7, a11, a13) 0.072472

where M(Ã) and M(Ã,∩B) indicate the cardinality measures
of the sets Ã and Ã∩B , respectively.

Given a condition Ã, we choose the conclusion from the
finite candidates such that the truth value of the considered
rule reaches its maximum. This means that the rule conse-
quence can be decided with the following two steps:

Step 1: Calculate the competition strength for each can-
didate as

α(c) =
∑

Out(e)=c

µÃ(e), c = C1, C2, . . . , CW (16)

Step 2: Decide on conclusion B by maximizing the com-
petition strength, i.e.,

B = arg max
c∈{C1,C2,... ,CW }

α(c) (17)

4 Experiments and results

In order to verify the performance of the method of hybrid-
izing feature selection and premise learning, we made a case
study on the well-known benchmark problem of wine classi-
fication. The wine classification data can be downloaded from
the address as ftp.ics.uci.edu/pub/machine-learning-databas-
es. It consists of 178 samples with 13 continuous attributes
(ai : 1≤ i≤13) from three classes. The task was to generate
fuzzy classification rules based upon this data set.

4.1 Selecting features for wine classification

We first attempted to select significant variables from the 13
features. Heuristic search algorithms were applied to seek
reliable hypotheses about feature relevance. The cost func-
tion utilized in experiments to evaluate hypotheses was de-
fined as

fc(Hp) = err(Hp)+ 0.01 · |Hp| (18)

where err(Hp) is the error estimate for hypothesis Hp and
|Hp| denotes the number of attributes selected by it. Clearly
the second part of this cost function serves to encourage
choosing as few attributes as possible for complexity reduc-
tion.

The procedure with the hill-climbing search is illustrated
in Table 1 from which we can see that a feature subset con-
taining a1, a7, a11, and a13 was returned as the best hypoth-
esis. We also utilized the more robust best-first algorithm

Construction of fuzzy knowledge bases incorporating feature selection 803

Table 2 Performance of the rule sets from independent tests

Tests Classification accuracy(%) Number of rules

1 99.4382 5
2 98.8764 4
3 98.3146 5
4 98.3146 3
5 97.7528 3
6 99.4382 4
7 98.3146 4
8 98.3146 4
9 97.7528 3
10 98.8764 5

Fig. 6 The membership functions for input i

for investigation and the result turned out to be identical. As
this is a problem of relatively small scale, heuristic schemes
(hill-climbing and best-first) are believed to be adequate for
arriving at satisfying solutions.

4.2 Modeling wine classification rules

The result of feature selection was then passed on to the sec-
ond step of fuzzy modeling. That is to say that only attributes
a1, a7, a11, and a13 were accepted as inputs in building fuzzy
classification rules. Each input i is associated with fuzzy sets
A(i, 1), A(i, 2) and A(i, 3). By normalizing the values of each
input into the unit interval, the membership functions of input
fuzzy sets are outlined as depicted in Fig. 6. The upper limit
of the rule number in the rule base was set to 16, meaning
that 16 rules were supposed to be sufficient to achieve a good
classification accuracy. GA was then employed to search for
the premise structure of possible rules and to optimize the
parameters (corresponding to the circle in Fig. 6) of the input
fuzzy sets at the same time. The coefficient β in the fitness
function (10) for GA was fixed to be 0.005. In this way, we

Table 3 Comparison with other works

Best Accuracy (%) Worst Accuracy(%) Average Accuracy(%) Rule Number

Corcoran and Sen [4] 100 98.3 99.5 60
Ishibuchi et al. [7] 99.4 97.8 98.5 60
Xiong and Funk 99.4382 97.7528 98.5390 4 (average)

conducted 10 independent experiments and the performance
of the rule sets learned are illustrated in Table 2.

The wine classification data were used by Corcoran and
Sen [4] and Ishibuchi et al. [7] as well for verifying their
genetic-based machine learning algorithms. However, both
works accepted all the 13 attributes as inputs in the rule
construction. The results reported therein are compared with
those of this paper in Table 3. From this table, we can see
that the size of the rule base from our work is surprisingly
much lower than that from the others and the accuracy is
roughly similar. This is very beneficial since the rule set has
now become much more compact but high accuracy still re-
mains. Besides, we should also note that in [4] a total number
of 45,000 trials (with population size as 1,500 and 300 gen-
erations) were called for by GA, whereas in this paper only
10,000 individuals were visited with both the population size
and the generation number being 100. This clearly shows the
other advantage of reduction of computational complexity by
our work.

It should be noted that all the results given in Tables 2
and 3 were derived from using the whole data base as the
training set. Our purpose here is just to show the enhanced
learning ability to acquire more compact fuzzy knowledge
base without undermining modeling accuracy. Currently it
seems not possible to make a fair comparison with [4] and
[7] regarding classification accuracy on test data since such
information is absent from both of them. However, we believe
that, with a much lower number of inputs, our obtained fuzzy
system should be more robust against the risk of over-fitting
compared with those with all 13 features as inputs.

5 Conclusions

This paper deals with high-dimensional feature space in
data-based fuzzy rule construction. The presented frame-
work consists of two separate stages: feature selection upon
known examples and fuzzy modeling using selected features
as inputs. Identifying inputs as priori analysis is strongly
suggested in that it can not only reduce computational com-
plexity in fuzzy modeling but also result in simpler fuzzy sys-
tems with easier understanding. In the second stage of fuzzy
modeling, GA-based premise learning is triggered enabling
exploration of general premise structure and optimization of
input membership functions simultaneously. The experimen-
tal studies on a real data set demonstrates that the roadmap of
combined feature selection and premise learning can give rise
to an excellently compact knowledge base yet still retaining
very high accuracy.

804 N. Xiong and P. Funk

References

1. Aamodt A, Plaza E (1994) Case-based reasoning: foundational is-
sues, methodological variations and system approaches.Artif Intell
Commun 7(1):39–59

2. Casillas J et al. (2001) Genetic feature selection in a fuzzy rule-
based classification system learning process for high-dimensional
problems. Inform Sci 136:135–157

3. Chi Z, Yan H, Pham T (1996) Fuzzy algorithms with application
to image processing and pattern recognition. World Scientific, Sin-
gapore

4. Corcoran AL, Sen S (1994) Using real-valued genetic algorithms
to evolve rule sets for classification. In: Proceeding of 1st IEEE
international conference on evolutionary computation, Orlando,
FL, June 27–29, 1994, pp 120–124

5. Goldberg DE (1989) Genetic algorithms in search, optimization
and machine learning. Addison-Wesley, New York

6. Hong T-P, Chen J-B (1999) Finding relevant attributes and mem-
bership functions. Fuzzy Sets and Systems 103:389–404

7. Ishibuchi H, Nakashima T, Murata T (1999) Performance evalua-
tion of fuzzy classifier systems for multidimensional pattern classi-
fication problems. IEEE Trans Syst Man Cybern B 29(5):601–618

8. Kolodner J (1993) Case-based reasoning. Morgan Kaufmann, San
Francisco, CA

9. Lee CC (1990) Fuzzy logic in control systems: Fuzzy logic con-
troller. IEEE Trans Syst Man Cybern 20:404–435

10. Lee H-M et al. (2001) An efficient fuzzy classifier with feature
selection based on fuzzy entropy. IEEE Trans Syst Man Cybern B
31(3):426–432

11. NakashimaT et al. (1997) Input selection in fuzzy rule-based classi-
fication systems. In: Proceeding of IEEE International Conference
Fuzzy Systems, pp 1457–1462

12. Pedrycz W (ed) (1996) Fuzzy modeling: paradigms and practice.
Kluwer, Norwell, MA, USA

13. Silipo R, Berthold M (2000) Input features’ impact on fuzzy deci-
sion processes. IEEE Trans Syst Man Cybern B 30(6):821–834

14. Sugeno M, Yasukawa T (1993) A fuzzy-logic-based approach to
qualitative modeling. IEEE Trans Fuzzy Syst 1:7–31

15. Takagi H, Hayashi I (1991) NN-driven fuzzy reasoning. Int J Ap-
prox Reason 5:191–212

16. Xiong N, Litz L (2002) Reduction of fuzzy control rules by means
of premise learning – method and case study. Fuzzy Sets Syst
132:217–231

17. Xiong N, Litz L, Ressom H (2002) Learning premises of fuzzy
rules for knowledge acquisition in classification problems. Knowl-
edge Inform Syst 4(1):96–111

18. Yager RR (1996) A unified view of case based reasoning and fuzzy
modeling. In: Fuzzy logic foundations and industrial applications,
(ed) Ruan D Kluwer, Boston pp 5–26

19. Zadeh LA (1973) Outline of a new approach to the analysis of
complex systems and decision processes. IEEE Trans Syst Man
Cybern 3:28–44

