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Abstract 
We propose monitoring of software compo-

nents, and use of monitored software components, 
as a general approach for engineering of embed-
ded computer systems. The concept is general in 
the sense that it addresses the whole product life-
cycle including development, debugging, testing 
and maintenance. Also, reuse across multiple 
product versions and variants are facilitated by our 
approach to monitor components. 

The approach is mainly targeting the follow-
ing 4 software engineering goals: Engineering 
with, and of, certified components, system level 
testing and debugging, run-time contract checking, 
and observability of system-internal behaviour. 
These goals are achieved by monitoring 4 aspects 
of component-level properties: Timing behaviour, 
memory usage, event ordering, and input-output 
sanity checks. Fulfilling these engineering goals 
will significantly reduce the costs, efforts and risks 
involved with developing dependable embedded 
systems. 

We propose an engineering approach where a 
component's execution is continuously monitored 
and experience regarding component behaviour is 
accumulated. As more and more experience is 
collected the confidence in the component grow; 
with the goal to eventually allow certification of 
the component. Continuously monitoring is also the 
base for contract checking, and provides means for 
post-mortem crash analysis; an important prereq-
uisite for any company to start use 3rd party com-
ponent in their dependable systems. 

 
Keywords: Component Monitoring, Predict-

able Assemblies, Embedded Systems, Component-
Based Software Engineering, CBSE, Run-time 
contract checking  

1. Introduction 
In this paper we propose monitoring of soft-

ware components and use of monitored software 
components as a general approach for engineering 
of embedded computer systems. Industrial devel-
opers of distributed, heterogeneous, reliable, 
resource constrained, embedded, real-time control 
systems (in this paper denoted embedded systems) 
are facing increased challenges with respect to 
increased demands on profitability, functionality 
and reliability, while at the same time having to 
decrease development times, project costs and 
time-to-market. Since development costs only 
constitute a fraction of the total project cost for 
software projects (about 20% [24]), a general 
approach for engineering embedded systems must 
consider not only the development phase; also the 
debugging, testing and maintenance phases need to 
be addressed. Furthermore, since most systems are 
developed incrementally, where new versions are 
based on previous versions, and product-line 
architectures [1] are becoming increasingly impor-
tant, a general approach for engineering embedded 
systems needs to consider reuse of components 
between product versions and product variants. 
Another emerging key-issue in engineering of 
embedded systems is safe and predictable integra-
tion of third-party functions, and the associated 
legal matters regarding contract fulfilment and 
liability issues. 

Our approach for monitoring software-
components, and use of monitored software-
components, will address the following key-areas 
within engineering of embedded systems: 

 
 Certifiable components. By monitoring com-

ponent-based software, information about the 
component properties can be extracted. This 
information can be used to fully (or partially) 
describe the components by their externally 
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visible properties. These properties provide a 
basis for trust in components and for system 
predictions. By reusing certified components, 
predictable component assemblies are facili-
tated. 

 System-level testing and debugging. By 
monitoring individual components and com-
ponent interactions, errors can be found and 
traced. Monitoring can also be used to sup-
port replay debugging [17], where erroneous 
system-executions are recreated in a lab envi-
ronment to allow tracing of bugs. 

 Run-time contract checking. This will allow 
surveillance of third party components. Both 
functional (e.g. range of output values) and 
non-functional (e.g. memory usage) proper-
ties can be monitored. During acceptance 
testing, the contract checking is used to vali-
date that a component does not violate its 
specification. In systems that fail after system 
deployment, logs from the contract checking 
can be used in post-mortem analysis to iden-
tify failing or contract-breaking components. 

 Observability. Computer systems in general, 
and embedded systems in particular, are in-
famous for the difficulty of observing their 
internal behaviour. This has drawbacks 
throughout the whole debugging, testing and 
maintenance phases. Systems whose behav-
iour is unobservable become very difficult to 
analyse and validate. Also after deployment, 
observability is an important feature, allow-
ing inspection and performance tuning of 
running systems. Aftermarket tools can be 
used to plug into deployed systems to extract 
information about both hardware and soft-
ware state. 
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Figure 1: A conceptual overview of monitoring software 
components 

 
The ultimate goal of component monitoring is 

to be able to compose predictable assemblies by 
reusing information gathered from well-tested 
software components. The proposal of this paper is 
that this can be achieved by the iterative process of 
refinement described in  

Figure 1. When a new component (or a 3rd 
party component) is included in an assembly, its 
run-time properties (such as execution time or 

memory consumption) are estimated by well-
founded guesses. During testing (component-level 
and assembly-level), these guesses are validated 
and refined, producing a tested component. As the 
tested component is deployed in a target-system 
assembly, its behaviour is continuously monitored, 
allowing for further refinement of the component 
run-time behaviour description. This refinement 
process will eventually lead to a certified compo-
nent, which can be used to compose predictable 
assemblies. In order to achieve a high level of 
predictability, all four key-areas mentioned above 
needs to be considered. 

Monitoring of components will allow infor-
mation about the dynamic behaviour of the com-
ponent to be recorded. This information allows 
static and dynamic properties of newly (or partly) 
constructed systems to be predicted. Interesting 
aspects to monitor (on component level) and 
predict (on system level) include timing properties, 
such as end-to-end response times, and resource 
utilisation, such as memory consumption. 

The outline of the rest of this paper is as fol-
lows: Section 2 describes properties of embedded 
systems. In Section 3, we present a survey of 
related work in built-in monitoring support for 
component-based systems and existing monitoring 
practices in commercial component technologies. 
In Section 4, the impacts of monitorable compo-
nents on predictable assemblies are discussed. In 
Section 6, we discuss the industrial benefits using 
monitored components, and finally, in Section 7, 
we summarise and present our ideas on future 
work. 

2. Embedded Systems 
In this paper we are addressing software engi-

neering of resource-constrained, embedded, dis-
tributed real-time control systems. We will in this 
section discuss the prerequisites for Component-
Based Software Engineering (CBSE) for such 
embedded systems. We will also give a brief 
example of a typical embedded system and an 
introduction to component monitoring. 

2.1. CBSE for Embedded Systems 
In CBSE, software applications are built by 

composing software components into component 
assemblies. CBSE is gaining more and more 
acceptance in the business segment of of-
fice/Internet applications [9][11]. Unfortunately, 
the market segment of embedded real-time systems 
is, to a large extent, left behind this positive devel-
opment. Reusing components, i.e. one of the main 
drivers for introducing CBSE, is both complex and 
expensive for embedded real-time systems [2], 
since such components must work together to meet 
functional and temporal requirements in a resource 
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constrained environment, while at the same time 
prohibiting functional errors from propagating and 
leading to unsafe states.  

However, by building embedded-system soft-
ware out of well-tested components, we could gain 
an increase in the predictability of the behaviour of 
the software; provided that experience from com-
ponent behaviour has been collected. In the area of 
embedded real-time systems, predictable run-time 
behaviour is crucial. A component assembly is 
predictable if its run-time behaviour can be pre-
dicted from the properties of its components and 
their patterns of interactions [15]. Predictability 
requires analysis, and analysis techniques require 
information about the system.  

When analysing a system built from well-
tested and functionally correct components, the 
main issues are associated with composability. The 
composition process must guarantee non-functional 
aspects of the system, such as communication, 
synchronisation, memory, and timing [2]. How-
ever, research projects tend to focus on how to 
design and analyse component technologies, 
leaving predictable assemblies using run-time 
information gathered from well-tested and trusted 
components unexplored [7]. Thus, very few com-
ponent technologies include support for run-time 
monitoring.  

2.2. Embedded System Example 
In order to exemplify the typical settings, in 

which the software components are considered, we 
have studied some characteristic vehicular elec-
tronic solutions [12]. An electronic vehicular 
control-system can be characterised as a resource 
constrained, safety-critical, distributed real-time 
system. The computer nodes, called Electronic 
Control Units (ECUs), are distributed to reduce 
cabling and to allow for division into subsystems. 
Vehicular systems are usually heterogeneous, 
meaning that nodes of different architecture and 
computational power cooperate in controlling the 
vehicle. The ECUs vary from extremely light-
weighted nodes, like intelligent sensors (i.e. proc-
essor-equipped, bus-enabled sensors), to PC-like 
hardware for non-control applications, such as 
telematics, and information systems.  

Figure 2 gives an overview of the hardware 
resources of a typical ECU, with requirements on 
sensing and actuating, and with a relatively high 
computational capacity (this example is from a 
power train ECU). 

 

 
 

Figure 2: Specification of a typical power train ECU [12] 
 
An example of a typical vehicular system 

communication solution is shown in Figure 3, 
where two buses are separated by a gateway. This 
is an architectural pattern that is used for several 
reasons, e.g., separation of criticality and real-
timeliness, increased available bus bandwidth, 
increased fault tolerance, or compatibility with 
standards [22][23]. Communicating functions may 
require support for global synchronisation or fault 
tolerance mechanisms. 
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Figure 3: Example sketch of a vehicle network [12]. 

 
Looking at the software part of the system, 

there are a few aspects of interest when building 
the assembly out of monitorable components. A 
source of uncertainty is the level of interrupts in 
the assembly. Typically, a vehicular system is 
heavily loaded with interrupts. When interrupts hit 
the assembly, these will pre-empt the execution of 
the running component, thereby possibly perturb-
ing its monitoring.  

Dynamic memory allocation (and the garbage 
collection that this brings) is usually not allowed in 
control applications, since it compromises the 
determinism and predictability of the application 
behaviour. The only type of memory that is al-
lowed to dynamically shrink and grow in the 
system is the stack space (albeit within a statically 
allocated stack memory area). 

2.3. Monitoring Embedded System Compo-
nents 

Monitoring component-based software re-
quires support in the component technology, and 
the framework used during run-time. Usually, 
when looking at today’s component technologies 

Example Power train ECU in a Vehicular Control-System

 Processor: 25 MHz 16-bit processor 
 Memory devices: 

 Flash: 1 MB used for applications 
 RAM: 128 kB used for the runtime memory usage  
 EEPROM: 64 kB used for system parameters 

 Serial interfaces: RS232 or RS485, used for service purpose 
 Communications: Controller Area Network (CAN) (one or more interfaces) 
 I/O: A number of digital and analogue in and out ports 



4(9) 

suitable for embedded systems with resource 
constrained ECUs, considerable code optimisations 
are done during compile time. This is mainly done 
to minimise the size of the application source code. 
This code optimisation might lead to a loss of the 
design-time component concept, meaning that 
clearly identifiable components with specified in- 
and out-ports are reduced to regular source code 
functions, subjected to, e.g., function in-lining and 
redundant instruction-sequence coalescing. 

Thus, to be able to monitor the components in 
the form described during design-time, and to be 
able to reuse the information gathered during run-
time in the next generation of applications, infor-
mation about the design-time components have to 
be included in the source code. This should how-
ever not be a problem, if the component technology 
satisfies the requirements described in [12], i.e. a 
straight forward port-based object approach, 
illustrated in Figure 4, using a pipes-and-filters 
model of computation.  

 

 
 

Figure 4: Component with required in-ports x1 - xn and 
provided out-ports y1 - ym 

3. Related Work 
 Some existing component technologies in-

clude support for component monitoring. These 
methods, as well as existing techniques for soft-
ware monitoring, are described in Section 3.1 and 
Section 3.2. 

3.1. Monitoring Techniques for Compo-
nent-Based Systems 

Currently, a few component technologies pro-
vide support for run-time monitoring of component 
behaviour. However, there is a multitude of ways 
of performing this monitoring and there is a multi-
tude of run-time aspects to monitor. 

Gao et al. identify three different methods for 
component tracking and monitoring [7]: (A) 
framework-based code insertion, where monitoring 
code (e.g. from a class library) can be inserted by 
component engineers, (B) automatic code insertion, 
where monitoring code is inserted into the program 
by a specialised monitoring tool, and (C) automatic 
component wrapping, where monitoring code is 
automatically added to the external interface of 
components. 

According to Gao et al., each of these meth-
ods has its own pros and cons. As for framework-
based code insertion, it is highly flexible and can 
be used for all types of monitoring. However, the 
method requires access to the component source 
code, and the programming overhead is high. 
Automatic code insertion also requires access to 
the source code, and is much more complex and 
inflexible compared to the framework-based code 
insertion. However, the programming overhead is 
low, since the tracking code is automatically 
inserted. Automatic component wrapping, on the 
other hand, has no need for component source code 
in order to insert tracking code. Therefore, not only 
in-house components, but also Commercial-Off-
The-Shelf (COTS) components can be monitored. 
On the downside, automatic component wrapping 
is not suitable for monitoring anything within 
components, since the monitoring is performed 
exclusively outside the component. 

Considering the use of these methods with re-
spect to the restrictions posted by component-based 
embedded systems, it should be noted that auto-
matic component wrapping can not be used in 
order to extract any component information other 
than that available at the component ports. This 
makes the method unsuitable for monitoring other 
component properties than those available from 
outside the component. Automatic code insertion, 
on the other hand, could be used for all types of 
monitoring, but would introduce a trade-off be-
tween the complexity of the instrumentation tool 
and the amount of data needed to record. Ideally, 
especially in resource-constrained systems, the 
amount of data to record should be minimised. 
However, this calls for an elaborate analysis of the 
internal workings of the component, requiring an 
inflexible (with respect to portability) and highly 
advanced instrumentation tool. Using framework-
based code insertion, no instrumentation tool is 
required, allowing ad-hoc optimisations in the 
monitoring code. In a resource-constrained envi-
ronment, this might be useful, but it must be kept 
in mind that such optimisations might lead to 
unpredictable side-effects in system ordering and 
timing. 

Jhumka et al. [10] propose the use of executa-
ble assertions in order to monitor component 
behaviour. The assertions are included in compo-
nent wrappers, enabling them to test the validity of 
the input and output values of the component. By 
using these wrapper assertions, the pre- and post-
condition sanity checks transforms a regular 
component into a fault-detecting component while 
at the same time simplifying unit-, integration- and 
system-level testing due to standardised means of 
extracting test information at component interfaces. 
Being relatively small and straightforward, execu-

y1 

ym 

x1 

xn 
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table assertions could well be used in order to 
perform sanity checks of embedded system com-
ponents. However, executable assertions can not be 
used in order to monitor other properties, such as 
execution time or memory usage.  

Hörnstein and Edler [8] propose the use of 
Built-In Test (BIT) components in the Compo-
nent+ model [3] for reducing the time spent testing 
prefabricated components in new environments. In 
order to perform these built-in tests, the Compo-
nent+ model makes use of three different types of 
components: BIT Components, Testers and Han-
dlers. BIT Components are regular software com-
ponents with built-in test mechanisms, Testers are 
special components that use the BIT testing inter-
faces of the BIT components and Handlers are 
special components that can be used to obtain 
fault-tolerant systems by handling error signals 
from BIT or Tester components. On the assump-
tion that BIT and Tester components are light-
weighted, this can be an effective way of perform-
ing component sanity checks or run-time contract 
checking. Even though Handler components may 
be effective for achieving fault-tolerant systems, 
this is not the primary subject of this paper. 

Traditionally, software monitoring can be per-
formed by using hardware- or software-based 
probes. Hardware probes come in the form of lab 
instrumentation tools, such as In-Circuit Emulators 
(ICE:s) or logic analysers, or in the form of Sys-
tem-On-Chip (SOC) solutions [4]. ICE:s or logic 
analysers are not suitable for component monitor-
ing, since they cannot be included in deployed 
assemblies. SOC-based monitoring tools, however, 
are designed to be resident in deployed systems. 
Unfortunately, being designed for system-level 
event monitoring (e.g., task-switches), these tools 
are still far too inflexible for component-level 
monitoring. Therefore, today, software probes 
seem to be the preferred alternative for component 
monitoring. However, software-based monitoring 
is not without drawbacks. By including software 
monitoring in the component technology, we also 
introduce problems concerning instrumentation 
perturbation. Software-based monitoring is per-
formed by means of software probes inserted in the 
code. These probes will consume execution time 
and memory space; increasing the spatial and 
temporal resource consumption of the components. 
If the execution times of the probes are non-
constant, the probes themselves will reduce the 
testability of components and assemblies [16]. 
Probes should be left permanently in deployed 
components for two reasons: (1) If the probes are 
removed, the testing performed on the component 
might no longer be valid [5], and (2) by leaving the 
probes in the deployed component, information 
concerning execution behaviour can be gathered 

over long periods of time, while the component 
operates in its field environment. 

3.2. Monitoring Support in Commercial 
Component Technologies 

There are a handful of available component 
technologies suitable for distributed embedded 
real-time systems. Some of these technologies 
include various supports for monitoring the soft-
ware. We have chosen to study two of these tech-
nologies, evaluated with respect to industrial 
requirements in [13], in more detail.  The reason 
for choosing these is that they are deployed in 
industry today, and that they well satisfy the 
industrial requirements stated by the embedded-
system domain [12]. 

The Rubus Component Model (CM) [18] and 
the Rubus Operating System (OS) [19] have 
support for some of the described monitoring 
aspects. Rubus CM and OS are developed by 
Arcticus Systems1 and are used for developing 
heavy vehicle software systems by, e.g., Volvo 
Construction Equipment2 (VCE). When using the 
Rubus CM and OS, all resource allocation of the 
application and the operating system is done pre-
run-time. To facilitate this, information from an 
executing system can be downloaded using after-
market tools.  

The temporal properties needed to obtain 
static timing analysis and schedule generation, 
Best-Case Execution Time (BCET) and Worst-
Case Execution Time (WCET), are monitored by 
the Rubus OS during runtime. Apart from the 
temporal aspects of the software, maximum stack 
usage for each thread and the peak usage of, e.g., 
queues can be monitored using Rubus. The OS also 
gives support for monitoring the CPU utilisation.  

In multi-threaded embedded software, various 
types of relations, such as precedence and exclu-
sion relations, exist. To be able to guarantee the 
behaviour of the system with respect to these 
issues, the Rubus CM includes support for moni-
toring event traces of the program execution, i.e., 
the execution order and the release times of the 
components. This information is dumped on an 
external interface (e.g., CAN or a serial interface 
like RS485) during run-time. Since events are 
related only via time-stamps, this service requires a 
high-resolution hardware timer to work. There will 
be a significant amount of data associated with this 
service, and the accuracy of the log reflects the size 
of the buffer used to store it.  

PECOS3 (PErvasive COmponent Systems) 
[20][21] is a collaborative project between ABB 

                                                           
1 Arcticus Systems, www.arcticus.se/ 
2 Volvo CE, www.volvo.com/ 
3 The PECOS Project, www.pecos-project.org/ 
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Corporate Research Centre4 and academia. The 
goal for the PECOS project is to enable compo-
nent-based technology for embedded systems, 
especially for field devices, i.e., embedded reactive 
systems. The project tries to consider non-
functional properties, such as memory consump-
tion and timeliness, very thoroughly in order to 
enable assessment of the properties during con-
struction time.  

Non-functional properties cannot only be at-
tached to components, but also to ports and con-
nectors, e.g., examining the min and max values 
for an out port, (i.e., a built in sanity check). Since 
PECOS is developed to support resource con-
strained embedded real-time systems, scheduling 
information and memory consumption are crucial 
properties to monitor. Hence, PECOS enables 
support for instrumenting components during run-
time. Every component is instrumented to extract 
information about the WCET and its cycle time. 
The components are also instrumented with respect 
to their code size and data (i.e., information on the 
heap). 

4. Monitoring Software Components 
Although a multitude of component properties 

are of interest when building reliable and reusable 
software components, there are some aspects that 
would significantly help increasing reusability and 
lower the time spent on integration testing. We 
have identified four main aspects of interest. 

4.1. Temporal Behaviour 
Having knowledge of the temporal behaviour 

of an execution is particularly important for real-
time systems. If the worst-case and best-case 
execution times of a set of reusable components are 
known, the possibility of successfully predicting 
the temporal behaviour of the component assembly 
will radically increase. Also, other execution time 
metrics, such as average execution time, standard 
deviation, execution time histogram or other types 
of statistical representations of component execu-
tion time behaviour can be helpful to estimate 
statistical temporal properties of component as-
semblies [14]. 

When considering timeliness for embedded 
real-time systems, it is important to be able to 
verify (1) that each component meets its timing 
requirements, (2) that each node (which is built up 
from several components) meets its deadlines, and 
(3) to be able to analyse the end-to-end timing 
behaviour of functions in a distributed system. In 
order to make sure that all deadlines are met, 
temporal analysis is needed. 

                                                           
4 ABB Corporate Research, www.abb.com/ 

This type of analysis is performed using 
schedulability analysis techniques, and requires 
information about the component's execution time. 
Ideally, the bounds for worst-case and best-case 
execution times should be statically computed by 
an analysis tool; this is the only way to be sure that 
the execution-time bounds are safe (i.e. guaranteed 
not to be violated at run-time), see e.g. [5]. Unfor-
tunately, tools for execution-time analysis are 
immature and few commercial tools exist. Hence, 
the industrial practice is to rely on measurement of 
execution-times. However, structured measurement 
of execution-times is a tedious, error-prone and 
expensive process, which has to be re-done after 
each modification to a component. Using moni-
tored components, the correctness of the execution 
time values can be improved gradually, i.e., the 
more execution hours, the better the accuracy [14]; 
this without any extra labour for execution-time 
measurement. 

In general, execution behaviour information is 
used for schedulability analysis and scheduling. In 
hard real-time systems, where it is imperative that 
deadlines are met, deterministic schedulability 
analysis and scheduling (worst-case assumptions 
and information regarding execution times) is 
preferable. However, in practice, many systems 
would settle for high probabilities instead of 
absolute deadline guarantees. Therefore, stochastic 
schedulability analysis and scheduling can be used. 
Depending on the type of analysis intended, either 
worst-case or statistical timing metrics should be 
collected during monitoring. 

4.2. Memory Usage 
Since we are targeting resource-constrained 

systems, it is important to be able to analyse the 
memory consumption and to check the sufficiency 
of the system memory, as well as the ROM mem-
ory. This check should be done pre-runtime to 
avoid failures during runtime. Memory is allocated 
in a static (pre-runtime or during run-time initiali-
sation) or a dynamic (run-time) fashion. As men-
tioned in Section 2.2, dynamic memory allocation 
is usually not allowed when developing embedded 
real-time systems. In order to improve the possibil-
ity of achieving predictable assemblies, informa-
tion of static memory allocation (e.g., component 
binary size) is necessary, but since this information 
can be provided by means of compiler output, this 
property is typically not necessary to monitor. 

The stack memory, however, is statically allo-
cated, but used in a dynamic fashion. In order not 
to end up in a stack overflow situation, stack size is 
often pessimistically over-dimensioned during 
system configuration. In resource-constrained 
environments, this might lead to a situation where 
the high percentage of unused memory leads to 
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increased requirements on the system hardware. 
Therefore, monitoring the stack usage per compo-
nent is most important, since this information can 
be used to predict the stack usage behaviour of 
future assemblies. Due to the high criticality of 
stack overflow, we are not interested in anything 
but worst-case usage during the execution of the 
component. However, in a system allowing dy-
namic allocation, also heap size monitoring would 
be important. 

4.3. Event Ordering 
When testing and debugging software, it is of-

ten helpful to be aware of the occurrence and 
ordering of system events, such as mutex- and 
semaphore operations, message receipts and 
interrupt occurrences. Using the information 
provided by an event log, system designers are able 
to detect improperly synchronised accesses to 
shared data or illegal pre-emption of non-reentrant 
code. In addition, by including event monitoring in 
the component model, we ensure that all compo-
nents conforming to the model will produce event-
trace logs of similar formats. This will reduce the 
problem of obscure tracing code inserted by system 
developers. 

Using event traces, we can gain substantial in-
sight regarding the internal workings of current 
assemblies. This information can be used in order 
to guarantee precedence relations, mutual exclu-
sion and to enhance the efficiency of shared re-
source usage (e.g., field bus- or third-level storage 
usage) in future assemblies. 

This type of monitoring provide a foundation 
to include full support for a replay debugging 
method [17][25][26] in the component technology. 
Replay debugging is a general term denoting 
methods for recording the execution behaviour of 
multi-tasking or truly parallel systems in order to 
use this information to reproduce system failures 
during debugging. Most replay methods require 
both event ordering information (such as interrupt, 
context switch and synchronisation information) 
and data flow information (such as task state and 
external input information) in order to reproduce 
executions. Provided that the assembly infrastruc-
ture (e.g., real-time operating system mechanisms) 
includes support for replay debugging, including 
sufficient monitoring in the components will 
ensure that the entire assembly can be debugged by 
means of execution replay. 

4.4. Sanity Check 
A sanity check is a way of determining the 

soundness of the functional operation of a compo-
nent during run-time with respect to the component 
input and its current state. In other words, given a 
specific input, is the corresponding output realistic? 

During testing, having access to the input values of 
the component that produce erroneous output 
facilitates a more efficient process. This type of 
monitoring could also include properties like 
Mean-Time Between Failures (MTBF). 

Monitoring this during run-time will allow us 
to store erroneous operations of the component and 
(hopefully) to correct these errors in future assem-
blies. If we are unable to correct the faulty compo-
nent, we could still able to prevent unsafe system 
behaviour by taking appropriate actions based on 
knowledge of the errors. 

In addition, this type of monitoring could be 
used to ensure that 3rd party software components 
provide the service they are supposed to. Typically 
a component is equipped with a provided interface, 
specifying the services provided by that compo-
nent, and a required interface, specifying the 
resources needed by the component in order to 
provide the correct services. Formalising and 
standardising these interfaces allows for contrac-
tual-based component development, where the 
behaviour of 3rd party components included in the 
assembly can be specified by contracts. Using 
sanity checks of the inputs and outputs at the 
component interfaces allows for run-time contract 
checking of 3rd party components. 

5. Making use of Monitored Infor-
mation 

In Section 1, four key-areas that would benefit 
from component-level monitor support were listed. 
Table 1 maps these areas to the four monitored 
component aspects discussed in this Section. For 
instance, execution time- and memory information 
can be used in order to check whether 3rd party 
components do not violate their required interface 
(e.g., by memory leaks or deadline misses), and 
sanity checks can be used to check the provided 
interface during run-time. By using event ordering 
and sanity check traces, the observability and 
ability to easily test and debug the assembly can be 
considerably enhanced. Regardless of whether 
replay debugging methods are used or not, event 
traces are helpful during debugging in order to 
visualise the behaviour of the component assembly 
during run-time. 

As for certifiable components, all monitoring 
aspects can be helpful in order to successfully 
predict the future behaviour of components in 
different types of assemblies. Including monitoring 
in a component technology will ensure that all 
components conforming to that technology will 
include identical monitoring support. Hence, 
component properties can be easily compared 
using standardised means of comparison. 

 



8(9) 

Execution Time  

Memory  

Event Ordering  

Sanity Checks  
Run-time contract checking x x x

Observability x x
Debug/Testing x x

Certifiable Components x x x x  
Table 1: Mapping key-areas of interest to key compo-

nent aspects 

6. Discussion of the Industrial Bene-
fits of using Monitored Components 

It is of great interest for embedded-system de-
velopers to be able to build predictable component 
assemblies using 3rd party software components, in 
the same way as done in the office/Internet domain 
(e.g. using EJB, COM or CORBA components to 
develop desktop computer applications) [12].  

The main reason that Commercial-off-the-
Shelf (COTS) components are not commonly used 
when developing embedded systems, is that there 
are no guarantees of the behaviour of the COTS 
components, especially with respect to the non-
functional aspects of the component (e.g. temporal 
behaviour and memory usage). However, many 
types of software developing companies, ranging 
from subcontractors or consulting agencies to 
Original Equipment Manufacturers (OEMs), would 
benefit substantially from using certified software 
components from different suppliers, to compose 
reliable and predictable software systems (see, e.g., 
the projects EAST5 and Autosar6).  

There are, however, no well-tested and reli-
able techniques available to achieve this COTS 
component reuse in a predefined manner, mainly 
because it is hard to guarantee the temporal and 
functional behaviour of the 3rd party software 
components in various environments. It is obvious 
that subcontractors would gain from buying/selling 
COTS components, but it is also our strong belief 
(and also an upcoming industrial requirement, 
when talking to companies within the vehicular 
industry) that OEMs will have to consider using 3rd 
party software components in a larger extent to 
accomplish customer demands and to achieve cost-
effectiveness. Monitoring, as suggested in this 
paper, is a technique that enables use of 3rd party 
software, by predicting and analysing the non-
functional properties of the software components. 

Other important requirements elicited from 
embedded-system developers are that system 
testability and debugability must not suffer when 
introducing software components in the develop-
ment process [12]. Debugging and testing can be 
enhanced when using monitored software compo-
nents, since the event ordering and the sanity check 
can be used to facilitate, e.g., replay debugging 

                                                           
5 EAST Project, www.east-eea.net 
6 Autosar Project, www.autosar.org 

[17] and provides observabiliy of component 
behaviour. 

Analysability of an embedded system requires 
information about the components with respect to 
timing and memory usage. As discussed in [12], 
analysability is considered highly attractive by 
industry, but the lack of pertinent information often 
makes it unsuitable to use in practice. The temporal 
aspects, e.g. worst-case execution-time and best-
case execution time) of embedded-systems are 
essential to be able to schedule the assembly. 
These properties are very hard to calculate, and 
pessimistic estimations are often used in practice.  
However, by monitoring the system timeliness and 
reusing the information extracted to predict the 
behaviour of next generation software, analysabil-
ity can be improved. 

An extension of the sanity check can be used 
to add fault-tolerance. There are two different types 
of features for fault tolerant components: detectors 
(used to detect the fault) and correctors (used to 
correct the fault). System safety can be enhanced, 
by using the built in sanity-checks proposed in this 
paper. In a longer perspective, it is also desirable to 
be able to use the sanity check, and the fault-
tolerance mechanisms, in order to be able to 
analyse quality issues like system reliability and 
safety.  

7. Conclusion and Future Work 
In this paper we have proposed monitoring of 

software components, and reuse of monitored 
components, as a general approach towards engi-
neering of resource constrained, embedded, dis-
tributed, real-time control systems. The concept is 
general in the sense that it addresses not only the 
development phase; rather the whole product life 
cycle, including debugging, testing and mainte-
nance, is considered. The concept also extends well 
into product-line settings, where components and 
architectures are reused over a set of related prod-
uct and product variants. 

We have identified four main component-
aspects that are of particular interest to monitor: (1) 
the execution time behaviour of the components, 
(2) the static and dynamic memory usage, (3) the 
event ordering of the execution and (4) a sanity 
check of the components output based on the input. 
We have also discussed how these aspects can be 
used to enhance four different key-areas within 
engineering of embedded systems: (i) certifiable 
components, (ii) system-level testing and debug-
ging, (iii) run-time contract checking, and (iv) 
observability.  

We have provided a summary of the state-of-
the-art of monitoring support for component 
models and presented a brief survey of the prac-
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tices used in today’s component models for em-
bedded real-time systems. 

As for future work, there are a number of is-
sues we would like to address. We intend to look 
further into the problems of using the same com-
ponent on top of different hardware platforms, 
where some old monitoring information might be 
reused, while other information needs to be dis-
carded on the new platform. Furthermore, the 
trade-off between minimisation of monitoring 
memory and CPU usage and the level of detail of 
monitor information will be investigated. In order 
to evaluate our ideas, we plan to build a test-bed 
implementation to verify the benefits of component 
monitoring.  
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