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Abstract— Path finding for multiple robots is one of most
important problems in robotics when to find a way to move
robots from their starting positions to reach their respective
goals without collisions. However, in the case of a complex en-
vironment with the presence of humans and other unpredictable
moving objects, fixing a single path to the goal may lead to a
situation where there are a lot of obstacles on the planned path
and the robots may fail to realise the moving plan. To address
this issue, a new approach of using multiple path planning
where each robot has different options to choose its path to the
goal is introduced in this paper. The information about planned
moving paths are shared among the robots in the working
domain, combined with obstacle avoidance constraints in local
ranges, and formulated as an optimisation problem. Solution
of the problem leads to the optimal moving plans of robots.
The effectiveness of the proposed approach is demonstrated by
experimental results.

Keywords— multiple path planning; multiple robot; au-
tonomous navigation; obstacle avoidance

I. INTRODUCTION

Path planning and obstacle avoidance are important compo-
nents of robotic navigation. Advances in key technologies,
in combination with public acceptance, have opened the
way towards allowing several autonomous robots coexist
with humans in unstructured environments. This assumes
autonomous navigation. One of the challenges in this regard
is handling navigation failures of multiple-robots when they
are operating together in a shared working space, which is
also complex and cluttered. To avoid complete failures, the
robots should have recovering mechanisms so that they are
able to come back to their normal activities. In this context,
the complete failures happen when the robots stop working
and cannot finish their navigation tasks. The common pro-
cedure assumes that the global path planning searches for a
path, from a start to a goal, through an empty space within a
map of static obstacles. The local obstacle avoidance drives
the robot to follow the planned global path while taking into
account possible collisions with other robots and dynamic
obstacles.

Relying on a single and a fixed global plan could lead to
a deadlock, or livelock situation where a robot take a very
long time to reach its goal, or will not even be able to do
so. This could happen in the case of multiple robots moving
in a narrow area, with respect to the size of the robots e.g.,
2x2 of a robots diameter. Since the local navigation to avoid
obstacles only takes into account the collision with other
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robots within a close range, a robot must turn back to the
configured path to be able to reach its goal. However, if two
robots are routed through a very narrow area, like a corridor,
and enter it through two opposite sites, the robots may face
a situation where they repeat the same moving trajectories
within that area again and again without ever finding the path
to the goal.

Factory workshops, and other industrial spaces (also out-
door), have emerged as important cases for navigation of
multiple robots. In this case the robots transport objects
between different stations, thus shared the same space with
humans. In the most common setup, automated guided
vehicles (AGVs) are deployed. They are configured with a
predefined moving path. Due to safety reasons, the operation
of an AGV is terminated when a human enters the working
zones or crosses the moving trajectory of a vehicle. Yet,
replacing these systems with robots that do not follow a
predefined path, and have autonomous path planning, have
the potential of allowing more flexible solutions, in presence
of humans and other moving objects also in unfamiliar
environments. During the process of controlling the paths
of multiple robots, by sharing location information to each
other, robots are able to avoid collisions by moving toward
any open area without interfering with trajectories of others.
However, the presence of humans introduces uncertainty,
since robots are not able to know the intended movement
of the humans. To deal with such uncertainty, the footprint
i.e., the representation of human obstacles are enlarged with
respect to the probability of uncertainty, or to the safety level,
to prevent the collision of human with robot. A big footprint
combined with a unpredictable trajectory of a human could
increase the chances of blocking all feasible moves of the
robot to realise the defined global moving plan.

From the described scenarios above, it is evident that
relying on a single path planning could lead to a navigation
failure when there is no feasible way to implement the
path due to the obstacle avoidance function. Therefore it is
important for a robot to have alternative paths to reach its
goal and the robot must be able to proactively switch among
solutions whenever necessary to prevent deadlock situations.

In this paper, a new navigation system with multi-path
planning is introduced. Each robot is able to frequently
establish multiple paths from its current position to reach the
defined goal. All robots in the working domain share their
sets of possible planned paths to each other via a commu-
nication channel. Consequently, an optimisation problem is
formulated to find the next move of the robots with respect to
the constraints, which are to ensure no interference between



the planned paths among different robots and no collisions
between robots and other moving obstacles. In overall, the
proposed multi-path planning algorithm presents an effective
mechanism for fault tolerance to recover the robot activities
to handle up to some levels of failures of the navigation
system.

The rest of the paper is organised as follows. Section 2
presents related works. Section 3 describes the methodology
of the proposed approaches. Section 4 provides experimental
results for evaluation. Finally, Section 5 concludes the paper
with discussion.

II. RELATED WORKS
A. Multiple Path Planning

The multi-agent path finding (MAPF) problem has been
introduced to find collision-free paths for multiple robotic
agents from starting positions to their goals. A MAPF algo-
rithm considers multiple paths for each agent and searches
for a path to optimise a criteria function like a minimum total
traveling distance. However, a MAPF algorithm is mainly
suitable for well-defined environment without unpredictable
obstacles.

For the graph-based solutions, the robots move on a
connected graph from a vertex to its neighbors in one search
iteration to reach their goals. A conflict happens when two
robots are to occupy a single vertex at the same time. Thus,
the main aim of solving the MAPF problem is to find a
set of paths passing through non-conflict vertices on the
defined graph. To limit unnecessary search, an extra cost
function, namely sum-of-cost, like the total maximum time
for all robots to reach their goals (or the cost of the paths) is
introduced as an optimal condition for the search. Since the
problem is non-deterministic polynomial-time (NP) hard [1],
numerous approaches have chosen to seek for a close optimal
solution to reduce processing time. The A*-based search uses
a heuristic function to find an optimal solution among all
combinations of assigning k-agent into the graph. To deal
with the exponential growth of the state-space with respect
to the number of robotic agents, different methods have been
applied. For instance, independence detection (ID) method
by Standley [5] focused on single robot and only considered
a group of multiple robots jointly when necessary.

Alternative to A*, the increasing cost tree search (ICTS)
[2] proposed two-layers including high-level and low-level
searching where the lower is used as a goal test of the
higher. Another solution different from A*, conflict based
search (CBS) method is introduced by Sharon et al. [3]. In
CBS method, agents are constrained by a triple of parameters
including the agent, occupying vertex, and time step. It
means that the agent at the particular time step is refused
to occupy an occupied vertex. The path is found only if all
agent’s constraints are satisfied. The searching is completed
when the paths for every agents are resolved.

Beside the above solutions, there have been suboptimal
solutions for the MAPF problem. For instance, hierarchical
cooperative A* (HCA*) approach [4] introduced a reser-
vation table which is used to store the path assigned into

an agent. The other agents will, according to their priority,
search for paths not registered in the reservation table and,
after the paths are found, update the table accordingly. In an
improved version of HCA* like Windowed-HCA* (WHCA*)
[4], the reservation table is only applied for a limited time
slot, i.e. window, when the other agents are rejected to
reserve to the table. In overall, the heuristic search A* and
its variants are still costly computational solutions.

There have been researches developed to reduce the run-
ning time of the search-based algorithms with rule-based
algorithms. Specific rules are defined for the movement of
the agents to reduce searching time. Yet, the resulted paths
from the rule-based algorithms are not always optimal. Alter-
natively, in the work of Yu and Lavalle [6], the path planning
problem for multiple agents is modeled as a network flow
and the collision-free paths are found by the integer linear
programming (ILP) solver.

Most of the presented solutions for the MAPF problem are
based on an assumption of a working environment without
the presence of humans. It is due to that the mathematics
model of those works are not defined to cover both obstacle
avoidance and multiple-path planning into one combined
framework. As a result, the operation of robot will be
terminated as a human enters the safety regions of robots,
making the solution limited to specific applications like
robotics warehouse system. In the presented work, a new
method of multiple path planning is proposed to consider
both the human as well as other uncontrolled moving objects
as factors into the path planning problem. This helps to en-
hance autonomous functions of robot navigation by allowing
more flexibility of robots to continue working even with the
presence of other robots in an unfamiliar environment.

B. Collision Avoidance

A field-based approach is one way to perform obstacle
avoidance. In general, the field consists of a repulsive field
to push the agent away from the obstacles, and an attractive
field to pull the agent towards the goal. For instance, Ok et
al. [7] proposed a method with an uncertainty field which
is build from Voronoi diagram from the start to the goal to
create the attractive field to drive the robot to the goal and
the repulsive field from the robot to the obstacles. The main
issue with using this method is that the repulsive field may
push the agent to reach other obstacles or statures with the
attractive field. Due to this problem, the robot may be trapped
into a local optimum or loose its way toward the goal.

Controlling the speed and directions of a robot is also
another way to provide the robot a collision free path. Owen
and Montano [9] defined velocity obstacle (VO) to estimate
the arrival time of moving objects to a region of collision.
The acceptable velocity is the one that helps the robot to
avoid collision regions. Damas and Santos-Victor [10] devel-
oped a map of forbidden velocity zones which is constructed
as a limit on the velocity of the robot to avoid collision with
obstacles. When the robot enters into the forbidden zones,
it may adjust its speed to avoid the obstacles. In the work
of Berg et al. [8], the reciprocal velocity obstacle (RVO)



is introduced. In this method, the interaction of robots is
modelled in both distributed and an optimal pairwise while
the other agents are assumed to continue moving with the
current speed in a straight line trajectory and a function of
relative velocity may be used to predict further collision.
The extensions of this method are developed by Wilkie
et al. [12] which is generalised for nonholonomic robots,
and are improved by Berg et al. [14] by introducing the
optimal reciprocal collision-avoidance (OCRA) to prevent
the problem of reciprocal dances and casts. Additionally,
Berg et al. [11] integrated the acceleration while Lee et
al. [13] defined the footprint of the robot as an ellipse for
obstacle avoidance. Usually, to follow the global path, the
preferred velocity is defined. Yet, the presence of multiple
obstacles, especially non-static obstacles, usually leads to the
case where no optimal velocity is found for the next moving
steps, which may lead to a deadlock situation.

III. MULTI-PATH PLANNING WITH OBSTACLE
AVOIDANCE

A. Preliminaries

In this paper, a vector is presented in bold x, matrix in
capital and bold X, and a set in mathcal N . All robotic
agents and dynamic obstacles move on a free space on a 2D-
plane. Assume that there are n robotic agents in the working
space, denoted by A = {i|i ∈ 1, 2, ..., n}. The position of
each robotic agent i at time t is presented by a function
ai(t) ∈ R2 with the correspondent velocity vi(t) = ȧi(t).
Correspondingly, let Oi = {j|j ∈ 1, 2, ..., ni} be a set
of moving obstacles detected by the agent i with position
oji (t) and velocity voji (t) = ȯji (t). The footprint of a robot
i is modelled by a closed disk with the radius ri. For
simplicity, every function x(t) by time t has an equivalent
representation of x in short. To check for the collisions
among robots and moving obstacles in a local range, the
concept of velocity obstacle is utilised. The velocity of a
moving robot is considered to be a straight-line constant
velocity within short time, leading to the position is updated
by the equation

a(t) = a(t0) + (t− t0)v, t ≥ t0, (1)

where t0 and a(t0) are the current time and position of the
robot at that time respectively. Given two robots with position
aA and aB , a set of relative reference velocities vAB = vA−
vB leading to the collision within time τ is given by,

VOτAB = {vAB |∀t ∈ [0, τ ], ‖aA− aB + tvAB‖ ≤ rA + rB}.
(2)

This velocity obstacle VOτAB is visualised by a truncated
cone and approximated by the non-convex space formulated
by three half planes (Fig. 1). Once the velocities and posi-
tions of moving obstacles are detected by a robot, the pair-
wise collisions between a robot and an obstacle is modelled
and checked by the similar way. Yet, the moving obstacles
may be seen by one one robot but not others, therefore, the
collision checking between robot-moving obstacle is only
available within local regions.

Meanwhile, the global map of a set of static obstacles M
is presented by a binary image. To take into account the
size of robot to avoid collisions with obstacles, the global
map image is usually dilated by the radius of the robots’
footprint. Let M(r) be a map with dilated obstacles of the
radius r. The radius is usually set by the maximum radius
rmax among different robots’ footprint.

B. Problem Formulation

From the current position ai(t) of the robot i, there are
available pi paths to its goal. Those paths can be established
by running a random-related algorithm, e.g. rapidly exploring
random tree (RRT), several (multiple) trials or by using
different path finding algorithms, or even by using manual
inputs from users. In this work, the any-angle searching with
Theta* [15] is utilised to generate paths by using sequential
inserting a set of found paths (the thickness of the path is
dilated by the radius of the robot) into an obstacle map.
By this way, the next found path will not overlap with
the previous one. The any-angle searching Theta* is chosen
instead of using A* or Djikstra’s algorithms because Theta*
is able to provide the optimal path with few turns and in the
form of a set of line segments that reduces the changes in
orientations to save energy by maintaining a constant moving
speed and orientation. Also, by this way, it is convenient to
find the intersections of two paths and define constraints for
potential collision areas.

There is a preferred velocity of a robot defined on each
path in such a way that the velocity remains constant along
the path and smoothly decreases when the robot approaches
to its goal. Let Vi = {k|k ∈ 1, 2, ..., pi} be a set of the
available paths for robot i, pi be the number of paths, Pi =
{v̄1
i , v̄2i , ..., v̄

pi
i } be a set of preferred velocities on each path.

The control velocity vi to determine the next move of the
robot is set to be close to one of the preferred velocities as
only one path is chosen among Vi. Let zi = [z1i , z

2
i , ..., z

pi
i ]T

be the binary vector to select the path, zki ∈ {0, 1}. The
optimisation cost function Ci(vi, zi) is defined as follows:

Ci(vi, zi) = ‖vi −
pi∑
k=1

w̄ki z
k
i v̄ki ‖2 +

pi∑
k=1

zki s̄
k
i

s. t.
pi∑
k=1

zki = 1

(3)

where w̄ki and s̄ki are the weights and the travelled lengths of
the path. Without further constraints, minimising Ci(vi, zi)
leads to the selection of the shortest path among candidates.

The joint optimisation function for all robots to find their
optimal paths and velocities is expressed by,

C(v1, v2, ..., vn, z1, z2, ..., zn) =

n∑
i=1

Ci(vi, zi)

s. t.
pi∑
k=1

zki = 1,∀i ∈ [1, n].

(4)

Along with the cost function, a set of constraints are
defined to find collision-free paths for robots considering that



Fig. 1. Formulation of velocity obstacles. (a) The workspace configuration of the two robots RA and RB with their velocities vB and vB respectively.
(b) The translation into velocity space and the resulting VO for robot RA. (c) The VO of an obstacle is truncated at τ = 2. (d) The approximating of
truncated VO.

they have different options to chose their paths and also they
need to avoid any dynamic obstacles on their moving ways.

1) Multi-path conflict-free constraints: Assume that two
robots A and B are configured with multiple paths to goals
(Fig. 2). However, some specific combinations of the path for
the two robots could lead to a potential collision or deadlock.
For instance, if robot A and B selects the path p 2A and
p 2B for their moving plans, there exists an overlapping
segment of the paths where the two robots may meet with
each other. In the case the overlapping segment is bounded
by a narrow area surrounding with static obstacles, there is
a high possibility that the two robots are getting stuck inside
the region. A set of constraints are used to penalise such
combinations,

CF = {zki + zlj ≤ 1|∀i, j ∈ A, k ∈ Vi, l ∈ Vj ,
if there is a potential conflict when robot i

chooses the path k, and j chooses l}.
(5)

Fig. 2. An example of creating multiple paths for two moving robots with
a possible collision zone.

2) Moving obstacle avoidance constraints: According to
the definition of VO (Section III-A), the collision between
robot A and another robot or a moving obstacle B is avoided
if vA−vB /∈ VOτAB . This non-convex constraint R2\V OτAB
is approximated by three linear constraints nlAB .vAB ≤ blAB ,

with l ∈ 1, 2, 3 [
cos (α+ β)
sin (α+ β)

]
vAB ≤ 0,[

cos (α− β)
sin (α− β)

]
vAB ≤ 0,

−pAB
pAB

.vAB ≤
pAB − r̄A+B

τ
,

(6)

in which pAB = aA−aB , r̄A+B = rA+rB , pAB = ‖pAB‖,
α = arctan 2(−pAB), and β = arccos (r̄A+B/pAB). The
first and second constraints are to realize the right and left
side of avoidance. The last constraint makes sure that there
are no collision up to up to t̃ = τ .

One of the approaches to add this non-convex constraint
into the optimisation problem introduces extra binary vari-
ables to select one of these linear constraints to apply.
However, the number of binary variables increases rapidly
with respect to the number of agents. To avoid doing so, in
this work (also similar to approaches used in [20]) only one
of the three linear constraints is applied where the constraint
l is selected based on the current velocity of robots at the
current time tcurr,

l∗ = arg min
l

nlAB .(vA(tcurr)− vB(tcurr))− blAB . (7)

3) Static obstacle avoidance: Since the static obstacles
can be treated as moving obstacles with zero velocities,
the static obstacle avoidance can be addressed using VO as
presented in Section III-B.2. However, as the combined VO
areas are proportional to the size and the number of obstacles
in the global map, adding many static obstacle avoidance
constraints may lead to deadlock situations where the opti-
misation of the problem will not be able to find a feasible
velocity. Therefore, in this work, the static obstacle avoidance
is handled with dynamic window approach (DWA), that is
described further in Section IV-A.

Finally, the overall optimisation problem is formulated,
in which the optimal control velocities and selected
global paths [v∗

1:n, z∗1:n] = [v∗1, v∗
2, ..., v∗n, z∗1, z∗2, ..., z∗n] are

estimated in a joint manner,



[v∗1:n, z
∗
1:n] = arg min

[v1:n,z1:n]
C(v1, v2, ..., vn, z1, z2, ..., zn)

s. t.
pi∑
k=1

zki = 1,∀i ∈ [1, n]

CF (Constraint 1)
vi, vj /∈ VOτij ,∀i, j ∈ A (Constraint 2)

vi /∈ VOτioj ,∀i ∈ A, j ∈ Oi.
(8)

IV. EXPERIMENTS

A. ROS-based Implementation

The overall system presented in this work is implemented
with a well known platform for robots, robot operating
system (ROS) [16], with the specific version of Kinetic Kame
installed on Ubuntu 16.04. The evaluation is performed with
the comprehensive Gazebo simulator and robotic mowers
developed based on Husqvarna research platform (HRP)
[17]. Those simulated robots are mounted with an extra
RGB camera, a depth sensor, and a LIDAR laser scanner.
As the system is operated in a centralised manner, a ROS
node is designed as a server to collect information about
planned paths, position updates, and velocities of all robots
as well as moving obstacles detected by the robots in the
working domains. The optimal velocities are computed at
the ROS center node and are sent back to the robots to
control their movements. Human objects are modelled as
actors in Gazebo simulator with either a repeated predefined
trajectory or a random trajectory. The overall optimisation
formulation for the whole system is a mixed quadratic integer
programming (MQIP) problem, and the solution for the
problem is calculated by IBM CPLEX solver.

To apply the estimated optimal velocities to control the
movements of robots, the dynamic window approach (DWA)
[18] is used. The DWA is a commonly sampling-based
approach that allows to generate a set of possible trajectories
of a robot in a short time slot based on feasible velocities and
limited accelerations. The trajectories are scored with regards
to the distance between the robot and obstacles, the distance
to reach the goal, or the deviation from the global path.
The trajectories leading to collisions with static obstacles
on the map are removed from consideration. In this work,
to utilise DWA to realise the estimated controlled velocities
for the robots, the averaged velocity on each trajectory is
approximated by dividing the distance between the start and
end of the trajectory with the traveling time. The DWA
scoring function therefore aims to find the trajectory that
minimizes the differences between the trajectory’s velocity
with the targeted velocity. In this way, both static as well as
dynamic objects are considered when optimizing the possible
path for each robot.

B. Two Robots Crossing Narrow Corridor Scenario

A typical scenario of two robots crossing a narrow corridor
is evaluated in this section to demonstrate how multi-path
planning is used to address the congestion problem. Two

HRP robots are located at two different sides of the corridor.
By applying multiple path planning, each robot has found a
set of two possible paths from its starting position to its goal
(Fig. 3). The two red paths are the paths found by the robot
1, and the green ones are for the other. The yellow paths
are the actual trajectories of the two robots after they have
received optimal velocity control from the center ROS node.
If the first robot chooses to navigate through the corridor,
the other one will choose the other path in order to avoid
congestion in the corridor although this path is longer than
its optimal route.

Fig. 3. Multiple planned paths of two moving robots to reduce the risks
of collisions.

C. Scenario with Robots/Humans Together

A simulated working space with several narrow corridors as
depicted in Fig. 4 is used to further evaluate the system on
congestion and obstacle avoidance. Three HRP robots are
fixed with starting points but randomly assigned goals. In a
half of experiments, two robots are arranged on the two sides
(top and bottom) of the map (Fig. 4) and move from one side
to the other. Two human actors are added with predefined
moving trajectories. The experiments has been repeated 10
times and the proposed algorithm is compared with DWA
and DWA+VOs [19]. A collision happens if the distance
between robot/robot or robot/human is less than 0.5 meters
regarding the size of robots. The results (Table I) show that
the proposed algorithm is superior to previous works with
respect to ability to avoid collisions/dead-locks. Outside the
narrow corridors, the optimal control helps them to avoid
collisions with humans (The minimum distance between
robots and humans in all experiments is 0.51 meters when
robots are controlled by the proposed navigation algorithm).
This is shown by the changing directions on the moving
trajectories of different robots (Fig. 5). It is noted that the
human actors are only visualised on the Gazebo simulator.

V. CONCLUSIONS

This paper presents a novel multiple path planning approach,
which can deal with an uncertain and dynamic environment
containing non-static objects such as humans and robots.
The presented method introduces effective means of a global
planner for avoiding deadlock situations to overcome the risk
of congestion when multiple robots are navigated through,



Fig. 4. The simulated working space with three robots and humans.

Fig. 5. Moving trajectories of robots. The thin trajectories are the two
planned path while the bold ones are the actual moving trajectories of robots.

relative to the robots, a narrow area. The combination of
VO-based method and common DWA planner allows robots
to avoid collisions with moving obstacles. In overall, the
velocities of the robots are transferred into an optimisation
problem to improve the performance of controlling the
robots’ movements. In addition, the ROS based communi-
cation channel allows the robots to negotiate between the
different possibilities to have collision-free path solutions,
and also to allow continuous updates of the positions of each
obstacle in the environment used in calculating new possible
paths. The evaluations in the Gazebo simulator has proved
that the proposed approach with multiple path planning is
effective, safe and promising for an autonomous robot team.
In the future, the decentralised movement control will be
investigated to reduce the dependence of the planning al-
gorithms on communication infrastructure. Also the method
can be improved by applying a delay to be lower the energy
consumption of robots: The robot may, instead of choosing
the longer path, wait for others to follow the shortest path
to reach its goal. Finally, an extensive evaluation with real
robots will be planned.
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TABLE I
MINIMUM DISTANCE AMONG ROBOTS (IN METERS), NUMBER OF

COLLISIONS, AND NUMBER OF DEAD-LOCKS OVER 10 TRIALS.

Distance Collisions Dead-locks
Multi-path planning 0.56 0 0

DWA 0.21 3 5
DWA + VOs [19] 0.57 0 3
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