

Component-based approach for embedded systems

Ivica Crnkovic
Mälardalen University, Department of Computer Science and Engineering,

Box 883, 721 23 Västerås, Sweden
ivica.crnkovic@mdh.se, www.idt.mdh.se/~icc

Abstract: This paper addresses component-based approach
for embedded systems. Due to the specific characteristics of
embedded systems the general-purpose component
technologies such as COM, .NET, or EJB have not been the
most appropriate choices for their development. Although
attractive, component-based approach has not been
successful in this domain as in other domains. However in
recent years the interest for component-based approach in
embedded systems increases. The experience has shown
that existing technologies cannot be used, or at least used
directly. On the other hand an increasing understanding of
principles of component-based approach makes it possible
to utilize these principles in implementation of different
component-based models, more appropriate for embedded
systems. This paper gives an overview of basic
characteristics of embedded systems, their requirements and
constraints, and the implications to component models for
these systems.

1 Introduction
Embedded systems cover a large range of computer
systems from ultra small computer-based devices to large
systems monitoring and controlling complex processes. The
overwhelming number of computer systems belongs to
embedded systems: 98% of all computer systems belong to
embedded systems today. IEEE has the following definition
for embedded systems:

An Embedded Computer System: A computer system that is
part of a larger system and performs some of the
requirements of that system; for example, a computer
system used in an aircraft or rapid transit system. (IEEE,
1992).

Most of such embedded systems can also be characterized
as real-time systems, (i.e., systems in which the correctness
of the system depends not only on the logical result of the
computations it performs but also on time factors [9]).
Embedded real-time systems contain a computer as a part
of a larger system and interact directly with external
devices. They must usually meet stringent specifications for
safety, reliability, limited hardware capacity etc. The
increased complexity of embedded real-time systems leads
to increasing demands with respect to requirements
engineering, high-level design, early error detection,
productivity, integration, verification and maintenance.

Component-based development is an attractive approach in
the domains of embedded systems. In particular for the
development of many variants of products the component-
based approach is attractive. In spite of this attractiveness
the adoption of component-based technologies for the

development of real-time and embedded systems is
significantly slower. Major reasons are that embedded
systems must satisfy requirements of timeliness, quality-
of-service, predictability, that they are often safety-critical,
and can use severely constrained resources (memory,
processing power, communication). The widely used
component technologies such as EJB, .NET, CORBA
component models are inherently heavyweight and
complex, incurring large overheads on the run-time
platform; they do not in general address timeliness,
quality-of-service or similar extra-functional properties
that are important for real-time systems. In their present
form they start to be deployed in large, distributed, and not
safety critical systems, e.g., in industrial automation, but
are not suitable for deployment in most embedded real-
time environments.

This paper gives a short overview of basic characteristics
of embedded software and the problems and challenges
the developers met. Further it describes a current state of
the practice in different industries and research trends in
applying component-based principles for embedded
systems. The paper is based on work and results of several
research projects, EU IST ARTIST1, CBSENet Network2
Swedish SAVE3 project, and on communication and
cooperation with several companies such as ABB, Volvo,
Ericsson and Philips.

The rest of the paper is organized as follows. Section 2
gives and general characteristics and the most important
requirements of embedded systems. Section 3 gives some
examples of embedded systems in which a component-
based approach has been used or has recently being
developed. Chapter 4 lists the basic characteristics of
component-based approach for embedded systems and
finally chapter 5 summarizes the current challenges and
need for further research.

2 Specific requirements of embedded
systems

In most of the cases embedded systems are real-time
systems. In many cases embedded systems are safety or
mission critical systems. Embedded systems vary from
very small systems to very large systems. For small
systems there are strong constrains related to different
recourses such as power or memory consumption. For
these as well as for large embedded systems the demands

1 http://www.systemes-critiques.org/ARTIST
2 http://www.cbsenet.org
3 http://www.mrtc.mdh.se/SAVE

on reliability, robustness, availability and other
characteristics of dependable systems are important.
Finally, in many domains, the product life cycle is very
long – in can stretch to several decades.

All these characteristics have strong implications on
requirements. Most of the requirements of embedded
systems are related to non-functional characteristics (better
designated as extra-functional properties or quality
attributes). These properties can be classified in run-time
and life cycle extra-functional properties. The most
important are:

- Real-time properties. The real-time system functions
are time-related; a violation of time requirements even
of a proper functional response violates the system
functionality. There are numbers of real-time
properties: Response time or latency, execution time,
worst case execution time, deadline etc.

- Dependability. Dependability is defined as an ability of
a system to deliver service that can justifiably be
trusted and an ability of a system to avoid failures that
are more severe and frequent than is acceptable to the
users. The main means to attain dependability are
related to avoidance of faults: fault prevention, fault
tolerance, fault removal and fault forecasting [1].
Dependability is characterised by several attributes and
according to [1], these are the following: Reliability,
availability, integrity, safety, confidentiality and
maintainability. All these attributes are run-time
properties except maintainability. These attributes are
combination of several properties. For example
availability is dependent on real-time properties, but
also on reliability and even maintenance; safety is
strongly related to reliability, etc.

- Resource consumption. Many embedded systems have
strong requirements for low and controlled
consumption of different resources. The reasons may
be the size of the systems and/or the demands on lower
production costs. Examples of such restrictions and
constraints are power and memory consumption,
execution (CPU) time, computation (CPU) power, etc.

- Life cycle properties. In general embedded systems are
tightly coupled with their environment and the absence
of their services can have large consequences on the
environment. In many domains the embedded systems
have very long life time running round the clock year
after year. During the lifetime of a system several
generations of hardware and software technologies can
be used. The long life systems must be able to cope
with these changes introduced either into the
surrounding environment or into the systems
themselves.

We can conclude that many of the most important
requirements of the embedded systems are related to extra-
functional properties. This has an implication that
development and maintenance of such systems are very
costly. In particular activities related to verification and
guaranteed behavior (formal verification, modeling, tests,

etc.) and maintenance (adaptive maintenance, debugging,
regressive testing, etc.) require a lot of efforts. For these
reasons the technologies and processes that lead to lower
costs for these activities are very attractive and desirable.

3 State of the practice and experience for
Embedded Systems

Embedded systems comprise a scale from ultra small
devices with simple functionality, through small systems
with sophisticated functions, to large, possibly distributed
systems, where the management of the complexity is the
main challenge. Further we can distinguish between
systems produced in large quantities, in which the low
production costs are very important and low-volume
products in which the system dependability is the most
important feature. All these different requirements have
impact on feasibility, on use, and on approach in
component-based development. A common characteristic
of all systems is increasing importance of software. For
example, software development costs for industrial robots
make today about 75% of total costs, while in car industry
it is today about 30%. Some ten, fifteen years ago this
number was about 25% for robots and neglectable for cars.
A second common characteristic is increasing
interoperability. While previously the embedded systems
were mainly used for controlling different processes today
they are integrated with information systems of
infotainment technologies.

In this section we give a short overview of some typical
embedded systems.

3.1.1 Automotive Industry
Cars are typically manufactured in volumes in the order of
millions per year. To achieve these volumes, and still offer
the customer a wide range of choices, the products are
built on platforms that contain common technology that
have the flexibility to adapt to different kinds of cars by
adding different components or different variants of the
components.

The components are to a large extent provided by external
suppliers, who work with many different car companies
(or OEMs, original equipment manufacturers). The role of
the OEM is thus to provide specifications for the
suppliers, so that the component will fit a particular car,
and to integrate the components into a product.
Traditionally, suppliers have developed physical parts, but
in modern cars they also provide software.

Within the automotive industry, the component-based
approach has a relatively long tradition, as these systems
are typically built from system components that are either
developed in-house or provided by external suppliers.
Today, the entire control system of an advanced car
includes a number of Electronic Control Units (ECUs)
equipped with software that implements vehicle functions.
ECUs are treated as system components that can be
developed and build independently of each other and of
the entire system. A system control architecture is shown
in Figure 1. The ECUs are connected to the system (the

car) through sensors and actuators and between themselves
via one or several buses. Usually the buses are integrations
points and their protocols specify the communications
between the ECUs.

Figure 1. Component-based architecture of vehicular
systems

Modern vehicular systems contain several tens of computer
nodes. As the number of ECUs increases, the entire system
becomes more complex. This requires sharing different
types of resources (sensors, actuators, time,
communication, memory, and CPU consumption). With
increasing complexity, system reliability and safety become
major problems. A satisfactory handling of safety-critical
functions, such as emerging brake and steer-by-wire
systems, require the integration of methods for establishing
components and compositions of different aspects:
functional and temporal correctness, safety and reliability,
etc.

Today ECUs include proprietary software, mostly owned
by subcontractors. This makes the entire system inflexible
and inefficient in utilizing resources, makes it difficult to
implement complex functions, and expensive to add new
ECUs. The next major step in designing these systems is to
go from the current situation with one node one supplier to
a situation with one node several suppliers, i.e. there will be
several software components of different origins executing
on a typical node. Also to enable delivery of more complex
applications, it should be possible to spread out software
components through several nodes.

3.1.2 Industrial Automation
Typical application domains of industrial automation are in
control of industrial processes, power supply, industrial
robots. Industrial automation domain comprises a large area
of control, monitoring and optimization systems. They
typically include large pieces of software that have been
developed over many years (often several decades). Most
control systems are manufactured in rather large volumes,
and must to a large extent be configurable to suit a variety
of customer contexts. They can be classified according to
different levels of control [4]: (i) Process level (for
example, a valve in a water pipeline, a boiler, etc.), (ii)
Field level that concerns sensors, actuators, drivers, etc. (iii)
Group control level that concerns controller devices and
applications which control a group of related process level
devices in a closed-loop fashion, (iv) Process control level
i.s. operator stations and processing systems with their
applications for plant-wide remote supervision and control

and overview the entire process to be controlled, (v)
Production or manufacturing management level that
includes systems and applications for production planning.

Notice that, even if the higher levels are not embedded,
they are of uttermost importance as they need to be
interoperable with the lower level which greatly influences
the possible choices of the component model and in fine
the design choices. The integration requirements have in
many cases led to a decision to use component
technologies which are not appropriate for embedded
systems but provide better integration possibilities.
Depending on the level, the nature of the requirements and
the implementation will be quite different. In general, the
lower the level, the stronger are the real-time requirements
(including timing predictability) and the resource
limitations. Also, the component based approach will
include different concepts at different levels. While at the
lowest levels availability, timeliness, and reliability are the
most important quality requirements, at higher levels it
will be performance, usability, and integrability.

3.1.3 Consumer Electronics
Consumer electronics products, such as TV, VCR, and
DVD, are developed and delivered in form of product
families which are characterized by many similarities and
few differences and in form of product populations which
are sets of products with many similarities but also many
differences. Production is organized into product lines -
this allows many variations on a central product definition.
A product line is a top-down, planned, proactive approach
to achieve reuse of software within a family or population
of products. It is based on use of a common architecture
and core functions included into the product platform and
basic components. The diversity of products is achieved
by inclusion of different components. Because of the
requirements for low hardware and production costs,
general-purpose component technologies have not been
used, but rather more dedicated and simpler propriety
models have been developed. An example of such a
component model is the Koala component model used at
Philips [13,14]. Koala is a component model and an
architectural description language to build a large diversity
of products from a repository of components. Koala is
designed to build consumer products such as televisions,
video recorders, CD and DVD players and recorders, and
combinations of them.

3.1.4 Other domains
There are many domains in which embedded systems are
used extensively. Some of them are: Telecommunication,
avionics and aerospace, transportation, computer games,
home electronics, navigation systems, etc. While there is
many similarities between these domains there are also
very different requirements for their functional and extra-
functional properties. The consequences are that the
requirements for component-based technologies are
different, and consequently we cannot expect to have one
component model. The expectations are that many
component models will coexist, sharing to less or larger

Vehicle mechanics

ECU

Sensor ActuatorSensor

gateway
(CAN) BUS

ECU

Sensor ActuatorSensor

ECU

Sensor ActuatorSensor

Vehicle mechanics

ECU

Sensor ActuatorSensor

ECUECU

SensorSensor ActuatorSensorSensor

gateway
(CAN) BUS

ECU

Sensor ActuatorSensor

ECUECU

SensorSensor ActuatorSensorSensor

ECU

Sensor ActuatorSensor

ECUECU

SensorSensor ActuatorSensorSensor

extent some common characteristics, such as basic
principles of component specifications through interfaces,
basic composition and run-time services, certain patterns,
and similar.

4 Basic concepts for Component-based
Embedded Systems

In classic engineering disciplines a component is a self-
contained part or subsystem that can be used as a building
block in the design of a larger system. In software
engineering, there are many different suggestions for
precise definitions of components in component based
software development. The best accepted understanding of
component in the software industry world is based on
Szyperski’s definition [11]. From this definition it can be
assumed that a component is an executable unit, and that
deployment and composition can be performed at run-time.

In the domains of embedded systems this definition is
largely followed, in particular the separation between
component implementation and component interface.
However the demands on the binary or executable from is
not directly followed. A component can be delivered in a
form of a source code written in a high-level language, and
allows build-time (or design-time) composition. This more
liberal view is partly motivated by the embedded systems
context, as will be discussed in below.

Many important properties of components in embedded
systems, such as timing and performance, depend on
characteristics of the underlying hardware platform. Kopetz
and Suri [3] propose to distinguish between software
components and system components. Extra-functional
properties, such as performance, cannot be specified for a
software component in isolation. Such properties must
either be specified with respect to a given hardware
platform, or be parameterized on (characteristics of) the
underlying platform. A system component, on the other
hand, is defined as a self-contained hardware and software
subsystem, and can satisfy both functional and extra-
functional properties.

4.1 Component-based approach for small
embedded systems
The specific characteristics of embedded systems lead to
specific requirements of component technologies. In
particular the approaches in development process and
component specifications using interfaces are different
form those implemented in the component technologies
widely used in other domains.

The component interface summarizes the properties of the
component that are externally visible to the other parts of
the system. As for embedded systems non-functional
properties are as important as functional there is a tendency
to include specification of extra-functional properties in the
component interface (for example timing properties). This
allows more system properties to be determined when the
system is designed, i.e. such interface enables verification

of system requirements and prediction of system
properties from properties of components.

In general-purpose component technologies, the interfaces
are usually implemented as object interfaces supporting
polymorphism by late binding. While late binding allows
connecting of components that are completely unaware of
each other beside the connecting interface, this flexibility
comes with a performance penalty and increased risk for
system failure. Therefore the dynamic component
deployment is not feasible for small embedded systems.

Taking into account all the constraints for real-time and
embedded systems, we can conclude that there are several
reasons to perform component deployment and
composition at design time rather than run-time [4]: This
allows composition tools to generate a monolithic
firmware for the device from the component-based design
and by this achieve better performance and better
predictability of the system behavior. This also enables
global optimizations: e.g., in a static component
composition known at design time, connections between
components could be translated into direct function calls
instead of using dynamic event notifications. Finally,
verification and prediction of system requirements can be
done statically from the given component properties.

This implies that the component-based characteristic is
mostly visible at design time. To achieve an efficient
development process tools should exist which will provide
support for component composition, component
adaptation and static verification and prediction of system
requirements and properties from the given component
properties.

There may also be a need for a run-time environment,
which supports the component framework by a set of
services. The framework enables component
intercommunication (those aspects which are not
performed at design time), and (where relevant) control of
the behavior of the components.

Figure 2 shows different environments in a component life
cycle. The figure is adopted from [4].

Figure 2. Component technology for small embedded
systems

Component
Repository

Composition
environment

Run-time
environment

Components
Component model Composition framework Execution framework

Component
Repository

Composition
environment

Run-time
environment

Components
Component model Composition framework Execution framework

4.2 Component-based approach for large
embedded systems
For large embedded systems the resource constraints are
not the primary concerns. The complexity and
interoperability play much more important role. Also due
complexity the development of such system is very
expensive and cutting the development costs is highly
prioritized. For this reason general-purpose component
technologies are of more interesting than in a case for small
systems.

The technology mostly used in large systems is Microsoft
COM and recently .NET, and to smaller extent different
implementations of CORBA, although no one of these
technologies provide support for real-time. The systems
using these technologies belong to the category of soft-real
time systems. Often a component technology is used as a
basis for additional abstraction level support, which is
specified either as standards or proprietary solutions. The
main reason for wide use of component-based technology is
the possibility of reusing solutions in different ranges of
products, efficient development tools, standardized
specifications and interoperation, and integration between
different products.

One successful example of adoption of a component-based
technology is the initiative OPC Foundation (OLE process
control Foundation, www.opcfoundation.org), an
organization that consists of more than 300 member
companies worldwide, is responsible for a specification that
defines a set of standard interfaces based upon Microsoft’s
OLE/COM and recently .NET technology. OPC consists of
a standard set of interfaces, properties, and methods for use
in process-control and manufacturing-automation
applications. OPC provides a common interface for
communicating with diverse process-control devices,
regardless of the controlling software or devices in the
process. The application of the OPC standard interface
makes possible interoperability between automation/control
applications, field systems/devices and business/office
applications.

Another example of a component-based approach is
development and use of the standard IEC 61131 [5]. IEC
61131 defines a family of languages that includes
instruction lists, assembly languages, structured text, a high
level language similar to Pascal, ladder diagrams, or
function block diagrams (FBD). Function blocks can be
viewed as components and interfaces between blocks are
released by connecting in-ports and out-ports. Function
block execution may be periodic or event-driven. IEC
61131 is successfully used in development of industrial
process automation systems for many years.

Large embedded systems that must fulfill real-time
requirements usually do not use general-purpose
component-based technologies. However in some cases,
such as for ABB controllers, a reduced version of COM has
been used on a top of a real-time operating system [6]. The
reused version includes facilities for component
specification using the interface description language

(IDL), and some basic services at run-time such as
component deployment has been used. These services
have been implemented internally. Different
communication protocols and I/O drivers have been
identified as components (see Figure 3).

5 The needs and priorities in research
The component-based approach on system level, where
hardware components are designed with embedded
software, has been successfully used for many years. Also
large-grain generic components like protocol stacks,
RTOSs, etc. have been used for a long time. In addition to
this, technology supporting a component-based approach
has been developed; either in the form of proprietary
component models, or by using reduced versions of some
widely used component models.

Still, there are needs for a number of improvements. Some
of them are the following (differently important for
different domains):

- There is a lack of widely adopted component
technology standards which are suitable for embedded
systems. For smaller-size embedded systems, it is
important that a system composed of components can
be optimized for speed and memory consumption,
which is still missing in most of the component
technologies available today.

- There is also a need for interoperability between
different component technologies. Specification
technology is not sufficiently developed to guarantee
a priori component interoperability.

- Most current component technologies do not support
important extra-functional properties.

- There is a need for generic platform services, for, e.g.,
security and availability.

- Tools that support component based development are
still lacking.

- There is a lack of efficient implementations of
component frameworks (i.e., middleware), which
have low requirements on memory and processing
power.

Major needs for the further development of component
technology for embedded systems are the following [16].

- Need for adopted component models and frameworks
for embedded systems. A problem is that many
application domains have application-dependent
requirements on such a technology.

- Need for light-weight implementations of component
frameworks. In order to support more advanced
features in component-based systems, the run-time
platform must provide certain services, which
however must use only limited resources.

- Obtaining extra-functional properties of components:
Timing and performance properties are usually

obtained from components by measurement, usually by
means of simulation. Problems with this approach are
that the results depend crucially on the environment
(model) used for the measurements may not be valid in
other environments, and that the results may depend on
factors which cannot easily be controlled. Techniques
should be developed for overcoming these problems,
thereby obtaining more reliable specifications of
component properties.

- Platform and vendor independence: Many current
component technologies are rather tightly bound to a
particular platform (either run-time platform or design
platform). This means that components only make
sense in the context of a particular platform.

- Efforts to predict system properties: The analysis of
many global properties from component properties is
hindered by inherent complexity issues. Efforts should
be directed to finding techniques for coping with this
complexity.

- Component certification: In order to transfer
components across organizations, techniques and
procedures should be developed for ensuring the
trustworthiness of components.

- Component noninterference: Particularly in safety-
critical applications, there is a need to ensure
separation and protection between component
implementations, in terms of memory protection,
resource usage, etc.

- Tool support: The adoption of component technology
depends on the development of tool support.

The clearly identified priorities of CBSE for embedded
systems are:

- Predicting system properties. A research challenge
today is to predict system properties from the
component properties. This is interesting for system
integration, to achieve predictability, etc.

- Development of widely adopted component models for
real-time systems. Such a model should be supported
by technology for generating necessary runtime
infrastructure (which must be light-weight), generation
of monitors to check conformance with contracts, etc.

6 References
1. Avižienis A., Laprie J-C., Randell B.,

Fundamental Concepts of Computer System
Dependability, IARP/IEEE-RAS Workshop on
Robot Dependability: Technological Challenge of
Dependable, Robots in Human Environments,
2001.

2. F. Bachmann, L. Bass, C. Buhman, S. Comella-
Dorda, F. Long, J. Robert, R. Seacord, and K.
Wallnau. Technical Concepts of Component-
Based Software Engineering, Volume II. Technical
Report CMU/SEI-2000-TR-008, Software

Engineering Institute, Carnegie-Mellon
University, May 2000.

3. H. Kopetz and N. Suri. Compositional design of
RT systems: A conceptual basis for specification
of linking interfaces. In Proc. 6th IEEE
International Symposium on Object-oriented
Real-Time Distributed Computing (ISORC),
Hokkaido, Japan, May 2003.

4. I. Crnkovic and M. Larsson. Building Reliable
Component-Based Software Systems.
ArtechHouse, 2002.

5. IEC. Application and implementation of IEC
61131-3. Technical report, IEC, Geneva, 1995.

6. F. Lüders, I. Crnkovic, and A. Sjögren. Case
study: Componentization of an industrial control
system. In Proc. 26th Annual International
Computer Software and Applications Conference
- COMPSAC 2002, Oxford, UK, Aug. 2002.
IEEE Computer Society Press.

7. OMG. Response to the OMG RFP for
schedulability, performance, and time (revised
submission), June 2001. OMG, RFP ad/2001-06-
14.

8. OMG. A uml profile for enterprise distributed
object computing, June 18 2001. ptc/2001-12-04.

9. Stankovic J. and Ramamritham K., "Tutorial on
Hard Real-Time Systems", IEEE Computer
Society Press, 1998.

10. J. Siegel and the O.S.S. Group. Developing in
OMG’s model-driven architecture, Nov. 2001.
OMG, White paper, Revision 2.6.

11. C. Szyperski. Component Software: Beyond
Object-Oriented Programming. ACM, Press and
Addison-Wesley, New York, N.Y., 1998.

12. C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Second edition,
ACM, Press and Addison-Wesley, New York,
N.Y., 2002.

13. R. van Ommering, F. van der Linden, and J.
Kramer. The Koala component model for
consumer electronics software. IEEE Computer,
33(3):78–85, March 2000.

14. R. van Ommering. Building product populations
with software components. In Proceedings of the
24th international conference on Software
engineering,. ACM Press, 2002.

15. N. Wang, D. Schmidt, and C. O’Ryan. Overview
of the CORBA Component Model, Sept. 2000.
White paper.

16. E. Brinksma et al., ROADMAP - Component-
based Design and Integration Platforms,
W1.A2.N1.Y1, Project IST-2001-34820,
ARTIST - Advanced Real-Time Systems

