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Väster̊as, Sweden



Copyright c© Markus Nilsson, 2004
ISSN 1651-9256
ISBN 91-88834-47-6
Printed by Arkitektkopia, Väster̊as, Sweden
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“CBR is Just Hype”
– Ian Watson1

1Chapter 9.2.4. In Applying Case-Based Reasoning: Techniques for Enterprise
Systems





Abstract

Complex measurement classification is often difficult, as in the medical
domain, and it usually takes a long time to fully master all aspects in-
volved. An automated measurement classification system would ease the
diagnostic process for treatment personnel, especially for less experienced
clinicians. This thesis contains results from research in the field of Ar-
tificial Intelligence (AI) applied to medical measurement classifications.
Artificial Intelligence may be described as a variety of computational
methods and techniques that exhibit intelligent behaviour. These meth-
ods and techniques enable problem solving comparable to humans. The
thesis presents a novel approach for multiple time-series analysis based on
Case-Based Reasoning (CBR). CBR is an AI method based on a plausi-
ble cognitive model of human reasoning. The approach analyses parallel
streams of measurements and uses CBR as well as other AI methods for
classification and domain reduction. The approach is implemented as
a system for classification of Respiratory Sinus Arrhythmia (RSA). The
time-series are composed of physiological measurements as the system
identifies dysfunctions within the RSA. RSA is identified by analysing
the heart and the pulmonary systems of the human body. The devel-
oped system, named HR3modul, functions as a decision support tool
for treatment personnel in the field of psychophysiological medicine. A
classification proposal is presented to the user. The proposal is based on
stored knowledge and current physiological time-series.
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Chapter 1

Introduction

Classification of complex measurements is essential in many diagnostic
tasks. Correct classification of measurements may in fact be the most
critical part of the diagnostic process. Diagnosing psychophysiological
dysfunctions is a medical field where measurement classification is diffi-
cult and complex.

Clinicians use sensors to measure physiological parameters in order
to diagnose and treat stress related psychophysiological dysfunctions.
The clinicians make a manual classification of the measurements before
they can make a reliable diagnosis. This is difficult, even for experienced
clinicians. A system with an ability to automatically classify these mea-
surements would ease the clinicians work and increase the reliability
of the diagnosis, especially for less experienced clinicians. Case-based
reasoning (CBR) is a concept that is recognized in medical domains and
has been applied in a number of medical diagnostic projects [1, 2, 3], but
not for direct classification of complex sensor readings from patients, as
in this research. CBR is an Artificial Intelligens (AI) method and is
described in section 1.2. Section 1.3 contains further information on
psychophysiology.
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4 Introduction

1.1 Motivation

The motivation can be viewed from both a computational and a medical
side. The reader may choose which s/he prefers as both are motivated.

AI point of view

The medical domain is often regarded as one of the most difficult do-
mains for a computer system to analyse. Case-Based Reasoning (CBR)
is an interesting AI method for building medical applications. One of
the more intuitively and attractive features of CBR in medicine is that
the concepts of patient and disease lend itself naturally to a case repre-
sentation.

Another attractive feature is the knowledge storage. Knowledge is
not lost as it is stored as an individual case. The entire case may be
retrieved at any time. This aspect is pleasing for a physician as the AI
system may explain its reasoning by saying I believe this is a good so-
lution, as it is similar to this already solved case I have in my memory.
Hence, no uncertainty exists on how the system came to its conclusion.

This research has provided a novel approach to the classification of
complex measurements. The new AI system makes classifications of
complex measurements in a domain without the availability of explicit
domain knowledge, and the system is able to sugest solutions based on a
sparse number of examples. The system handles multiple physiological
time-series in order to classify physilogical dysfunctions.

Medical point of view

There is a limited number of experts working in psychophysiological
medicine since psychophysiology is a relatiely new area in medical com-
munity. Hence, it is not widely known how to make an accurate diag-
nosis. A general practitioner could possibly make a basic diagnosis in
psychophysiology if he or she had a decision support system to aid them.

We have concentrated our research on a decision support system for
classification on Respiratory Sinus Arhhythmia (RSA). RSA is one of
the more important factors in a psychophysiological diagnosis. RSA is
described in section 1.3.2. We have also developed a research tool for
the psychophysiological domain. A research tool enables the researchers
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to generate new knowledge within the domain. The research tool is
integrated in the decision support system. We have identified the main
requirements a decision support system must have to be sucessfull in
psychophysiological medicine. The requirements are:

• The system must handle multiple online physiological parameters,
i.e. measurements. The parameters include a continious stream of
time-series measurement from sensors. There exist approximately
10 parameters. We concentrate on the carbondioxide and heart
rate parameters as we are classifying the RSA.

• Have the ability to identify features. In this case it is to identify
the respiration period and notches in the heart rate.

• Be able to classify heart rate patterns.

A research tool would also benefit from a couple of additional fea-
tures. These features are:

• The ability to go beyond the imposed limitations of a decision
support system. As an example, the ability to laborate with mea-
surements and the classification system.

• Be able to analyse arbitrary measurements at the will of the user.

• Facilitate monotonous but necessary work, such as gather statis-
tics.

An AI system with a feature identification and a pattern classifica-
tion capability [4, 5, 1] would fit the requirements of an online decision
support system in the field of psychophysiology.

1.2 Case-Based Reasoning

Case-Based Reasoning [6, 7] is an AI method. The method is partly
based on cognitive psychological research. The CBR approach is psycho-
logical plausible as it has been shown in empirical studies that humans
use specific past experience to solve new problems [8, 9].

CBR is based on a four step model. The four steps are Retrieve,
Reuse, Revise and Retain (see figure 1.1). A CBR systems knowledge
is its knowledge base. The knowledge base consists of previously stored
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Figure 1.1: The four (Retrieve, Reuse, Retain, Revise) step Case-Based
Reasoning model. The figure is adapted from Aamodt-Plaza [8].
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experience. Experience is stored as cases, and the cases are stored in a
case library. A case represents explicit, specific knowledge, often includ-
ing a problem, the solution and the result of applying the solution. CBR
uses these cases in its reasoning process, hence the name Case-Based
Reasoning. Domain knowledge may exist, and that knowledge is stored
as general knowledge in form of rules, weights, etc.

The retrieve part tries to find already stored cases that resemble
the new case. Matching techniques weight and compare the features in
the cases. A search on the matched cases is used to rank and find the
cases with the highest similarity to the new case, i.e. the problem. The
retrieved cases plus the new case are sent to the reuse part, as seen on the
right side in figure 1.1. The reuse part modifies, combines, adapts, etc.
(if needed) the retrieved cases in order to find a solution to the problem,
i.e. the new case. The CBR system will then suggest the solution for an
external evaluation. The evaluator may for instance be a domain expert
or another system. The solved case is then sent to a revision part, on
the condition the evaluator has not objected to the solution (otherwise,
the system returns to the retrieve part for another solution). The solved
case is then verified for correctness by the revision. If the solution is
valid, it will be presented as a confirmed solution to the problem.

The new case can be added to the case library if the case contain
new experience not previosly captured in the case library. This process
takes place in the retain step. Cases may also merge, if they for instance
cover similar problem areas.

1.2.1 Measuring similarity

Case-Based Reasoning is dependent on a good retrieval. The retrieval is
a vital part of CBR because the retrieved cases are supposed to be the
best candidates for solving the new problem, i.e. the new case.

A new case may contain any kind of parameters. For instance, ECG
measurements, time of day, age of a patient, etc. These parameters are
represented by variables. The variables are often arranged in a vector
formation. The variables are features describing the vector in an N-
dimensional space, hence the name feature vector. The N-dimensional
space is variable, the size depends on the number of features the vector is
constucted of. Every feature adds a new dimension to the N-dimensional
space. A 2-dimensional space is illustrated in figure 1.2.
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Figure 1.2: The area shows a 2-dimensional space. An arrow marks the
euclidian distance between the new case and the closest case in the case
library.
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A variable is not constrained to a numerical value. The variable may
for instance contain subjective knowledge, such as big, brighter or bad.
Some sort of pre-determined transformation of the subjective variables
is required, if such variables are a part of the feature vector.

The new case is compared with all stored cases in the case library.
A similarity measure is calculated between the new case’s feature vector
and the current case’s from the case library. A common approach to the
similarity comparison, i.e. the matching is to use a Nearest Neighbour
algorithm (k−NN). The k−NN tries to find the k closest feature vec-
tors by calculating the euclidian distance between the compared vectors.
A feature is often compared with its counterpart in the opposing vector.
That is, a feature from the new case is compared with the same feature
in the stored case.

similarity(sC, nC) =
n∑

i=1

Wi × fi(sFeaturei, nFeaturei) (1.1)

A feature may not be of the same importance as other features in
the vector. For instance, the feature is the heart beating? is probably
more important than age of the patient, at least for a heart monitor-
ing system. Domain knowledge may be integrated in order to solve
similar situations. The domain knowladge is implemented as weights.
Each feature is weighted, W , accoring to its importance. All features
in the vectors, Featurei, are weighted and compared. The fi() func-
tion calculates the distance between the features. A similarity value is
then calculated for the entire feature vector, similarity(). The k closest
matching vectors (cases) are then returned as the result of the k − NN
algorithm. A typical similarity matching using Nearest Neighbour is il-
lustrated in equation 1.1, where a similarity value is calculated between
the stored case, sC, and the new case, nC. n is the size of the feature
vector, i.e. number of features used for matching. The matched cases
are then ranked in a one dimensional array. The case with the highest
similarity to the new case is at position one, the second closest is at the
second position, and so on.
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k−NN is often a sufficient matching technique in most CBR systems.
Another approach to case matching is to use Artificial Neural Networks
(ANN) [10, 11]. A large set of training cases is often required when
ANNs are used as retrieval techniques in CBR. The integrity of the case
base should not be altered too often, as the ANN has to be retrained
and validated on every alteration.

1.2.2 Adaptation

A single unaltered case may not be sufficient to propose a viable solution.
Adaption of a case, or cases is sometimes required. Cases may be altered
or combined in order to find a suitable solution to a problem. The
adaptation, i.e. the revision process, identifies prominent differenses
between the retrieved case(s) and the new case. Adaptation methods
range from null adaptation, i.e. no adaptation at all to complex model-
guided repair [12], where the features themselves may be substituted.
Adaptation is more often used in systems where the solution is complex
and the problem domain is well understood.

1.2.3 Case libary

The case library is a database where all the cases are stored. Cases are
retained, i.e. stored, in to the case base in the retain step. A CBR
system do not normally store every new case. Retention is often decided
by an external supervisor.

The computational performance of a CBR system is connected to
the number of cases the case base contain in retrieval methods such as
k−NN . Methods like inductive retrieval index the entire case base offline
for better retrieval performance [12]. A position in the N-dimensional
space is calculated for each case and a decision tree is constructed with
the indexed cases as a basis. A retrieval is fast since it is only necessary
to traverse the decision tree to find matching cases. The drawback with
inductive retrieval is that the decision tree has to be rebuilt every time
the case library is changed.

Case library maintenance is sometimes necessary. The case base may
for instance grow too large to handle efficiently without some sort of
case maintenance. A common case library maintenance method is to
cluster cases into stereotypical classes, or prototypes. A prototype is a
generalisation of the cases it represents.



1.3 Psychophysiology 11

1.3 Psychophysiology

Stress is a fuzzy and widely used word which triggers many different as-
sociations. This section defines stress within the terms of psychophysio-
logical dysfunctions. Psychophysiological dysfunctions range from Burn-
Out syndrome to involuntary anxiety attacks. An extreme example of a
patient who was suffering from a psychophysiological dysfunction was a
torture victim. The patient had nightmares and violent anxiety attacks
long after the apparent physiological scars healed. The patient was di-
agnosed and treated with methodologies within psychophysiology. The
methods are almost always non invasive. Treatment personnel do some-
times need, for example arterial blood samples for an accurate diagnosis
[13]. Exdermal sensors is otherwise the standard method for gathering
physiological data.

Clinicians concentrate on two out of three systems within the Auto-
nomic Nervous System (ANS) when they diagnose psychophysiological
dysfunctions. These two systems are the sympathetic and the parasym-
pathetic systems. Clinicians may for instance study the the balance
between the sympathetic and the parasympathetic systems as a part of
a diagnosis. The third part of the ANS is the enteric nervous system,
which is not of immediate interest for a diagnosing clinician.

1.3.1 Heart rate variability

The pulse is not constant. It is well known that the pulse increases
during physiological exercises. What is not widely known outside the
medical community is that the pulse constantly oscillates, with or with-
out physiological strain. As en example, the pulse oscillates even during
sleep. The pulse is often measured in the terms of the interval between
two consecutive heart beats. The intervals is mean-valued to reflect the
number of beats per minute. Heart rate variability (HRV) [14, 15] is this
natural oscillation of the heart beat. HRV is the basis for measuring the
balance between the sympathetic and the parasympathetic systems [16].
The oscillation of the heart rate is illustrated in figure 1.3.

A major component in the occurance of HRV is the state of the vagus
nerve. The vagus nerve enervates the heart, larynx and the gut. The
vagal tone (signal strength) decides the activity level of the sympathetic
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and the parasympathetic levels, which controls the heart rate. A high
vagal tone inhibits the sympathetic system, which leads to a slower heart
rate.

Beats per minute

Figure 1.3: An example of heart rate measurements. This example il-
lustratates the heart rate variability, i.e. the oscillating effect of the
heart beat. The large oscillation of the heart beat mainly caused by
the pulmonary system. The heart rate increases during inhalation and
decreases during exhalation.

1.3.2 Respiratory sinus arrhythmia

The definition of Respiratory Sinus Arrhythmia (RSA) is somewhat dif-
ficult for an layman to absorb. We will open with a definition of RSA,
followed by an explanation.

Respiratory Sinus Arrhythmia (RSA) [17, 18] is defined as centrally
modulated cardiac vagal and sympathetic efferent activities associated
with respiration [19]. RSA is also often referred to as a non-invasive in-
dex of parasympathetic cardiac control [20]. RSA is a form of variability
found in the HRV. HRV is as described an effect of the ever changing
state of the vagal tone. The pulmonary system has an important in-
fluence on the vagal tone, as the heart rate increses remarkably during
an inhalation and consequently decreases during an exhalation. This is
RSA. The effect the breathing has on the heart rate is clearly visible
in figure 1.3, where oscillating heart rate measurements are shown. A
common method of observing the RSA, as well as other components in
the HRV, is to make a frequency spectrum analysis of the HRV.
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1.3.3 Quantification methods

RSA is as mentioned one of the components of the HRV. RSA is quan-
tified in the same manner and with the same methods as the HRV, as
RSA is the major component of the HRV. But it is important to recog-
nise the other non respiratory related components of the HRV, as they
contamine a quantification. There exist a couple of methods to calcu-
late, or more accurately, estimate RSA from time-series of discretisised
heart rate samples. The methods are naturally divided into two groups.
The first group contains methods for sample transformations, and the
second group contains statical and geometrical methods. Both groups
seem to be equally influenced by non respiratory related components
[20]. This implies that the best choise of quantification method for RSA
is application dependant rather than method dependant.

Transformation methods

A common approach to quantification is to calculate a frequency spec-
trum [14, 19] through a discrete Fourier Transformation. A Fast Fourier
Transformation (FFT) [21, 22] is often sufficient. The FFT produces a
vector of complex numbers. The numbers represent the power and an-
gle of each frequency from 0Hz to Fs/2 Hz. Fs represents the sample
frequency of the transformed samples.

The FFT is not always sufficient, because the output vector does not
say where the frequencies occur in time, only that they occur somewhere
inside the sample sequence. Wavelets [23, 21] solve the time-domain
issue by using a dynamic function window instead of a static window.
The window expands in the time-domain during lower frequencies while
contracting the window on the higher frequencies.

Statical and geometrical methods

A quantification can be achieved without transforming the samples. The
quantification is produced directly in the time domain, by either statis-
tical or geometrical methods [14].

Statistical methods are more often used on measurements recorded
from longer time periods, normally 24h periods. The sample sequence
is created by measuring either the Normal-to-Normal (NN) heartbeat
interval or the differences in the NN interval. There exist a couple of
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statistical methods, but they are basically the same since they are all
based on standard derivations of the NN.

Geometric pattern methods use sample density distributions in their
quantifications. The geometrical calculations are based on NN his-
tograms; and are often in the form of geometrical shapes. 24h recording
periods are recommended for the geometrical methods.

Figure 1.4: The figure shows the VLF, LF and HF frequency bands in
the HRV. The ULF is the tiny black dot farthest to the left (between
0Hz and VLF). These frequencies are quantified with a FFT based on
the measurements in figure 1.3.

Interpretation

Clinicians are only interested in specific frequency bands when they
study the quantified HRV. These frequency bands range from 0Hz up to
0.4Hz. Four bands exist within this range, the Ultra Low Frequencies
(ULF), the Very Low Frequencies (VLF), the Low Frequencies (LF) and
the High Frequencies (HF). The frequency bands is illustrated in figure
1.4.

The ULF frequency band is in the range of 0 − 0.003Hz,
followed by VLF at 0.003− 0.04Hz, LF at 0.04 − 0.15Hz,
and finally the HF band at 0.15 − 0.4Hz.
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The HF band is only affected by the parasympathetic system. The
lower frequencies is affected by both the sympathetic and the parasym-
pathetic systems. Other biological systems is also detectable at the lower
frequencies. For instance, changes in the body temperature during the
diurnal rythm, is detectable in the VLF band.

Parasympathetic activities related to respiratory activity can be iso-
lated during so called paced breathing, or pacing. Pacing is a method
for breath control. The patient is in this case coached to breathe at ex-
actly 6 breaths per minute. A peak appear at 0.1Hz when the patient is
breathing steadily at 6 breaths a minute. The peak is a good indicator
of the vagal tone.

1.3.4 Treatment methods

Biofeedback training [24, 15, 17, 18] is often the prefered method for
treating psychophysiological dysfunctions, such as post traumatic stress
and Burn-Out syndrome. The biofeedback method is often focused on
breathing techniques. The patient gradually learns how to control their
respiration. The controlled breath improves the balance between the
parasympathetic and the sympathetic systems. Other methods of treat-
ments include relaxation techniques combined with regular exercises [25].





Chapter 2

Related work

The research in medical CBR is concentrated to Europe and US, as
with CBR in general. The medical domain of CBR is generally focused
on producing systems for specific tasks, such as diagnosing a specific
symptom. These systems are rarely in every-day-use and they are seldom
commersially exploited [1]. Most of them are still purely academic.

Some CBR issues are especially interesting for the medical domain.
Fault tolerance is one of the more important issues. Bichindaritz et al
[26, 27] has developed a medical CBR system based on a safety-insurance
plan to insure that no local faults are spread beyond its scope. Limi-
tations of CBR in medical systems are addressed by Schmidt and Gierl
[28, 3] where they approach the difficult task of case adaptation. Atz-
mulluer et al [29, 30] approach the issue of handling multiple faults,
or diagnoses, in a medical system. Their solution is to decompose the
problem part of a case into several smaller ones and find solutions to
them instead. When the system comes up with solutions to the smaller
problems they combine all solutions to solve the original problem.

A description of some of the the closest related medical CBR systems
is given in the next section.

17



18 Related work

2.1 System descriptions

The headlines of the following system descriptions indicate the name of
the specific system. The main author is in the headline if the system
lack a formal name.

CARE-PARTNER

CARE-PARTNER [27, 26] is a decision support system for the long
term follow-up of stem cell transplanted patients at Fred Hutchinson
Cancer Research Center (FHCRC) in Seattle. The CARE-PARTNER
system gives medical and decision support to the home care providers
that follow up the transplant patients, using the Internet to connect
the home care providers with the FHCRC transplant specialists. The
system uses a multi modal reasoning framework, combining Case Based
Reasoning and Rule Based Reasoning. A safety insurance plan at three
levels (a procedural, a software engineering and a knowledge level) is
adopted to ensure fault tolerance. One main characteristic of the system
is that it uses a rich knowledge base of prototypical cases and practice
guidelines to interpret medical cases and guide the case based reasoning.

ICONS

ICONS [31, 32] is a CBR system which analyses renal time-series. ICONS
forecast kidney functions through an extended CBR cycle. The exten-
sion includes a state abstraction step and a temporal abstraction step.
These steps are located in front of the regular steps in the CBR cycle.
Kidney states are abstracted from renal measurements in the state ab-
straction step. Creatine clearance is always included as a state, other
conditional states are included based on Tverky’s measure of dissimilar-
ity of concepts [31]. Only states that are very probable, i.e. have a low
dissimilarty, are included. The temporal abstraction step makes prog-
nostic models, i.e. trends, from the abstracted states of the kidney. The
revision step has been removed.

Auguste project

The Auguste project [33], is an effort to provide decision support for
planning the ongoing care of Alzheimer’s Disease (AD) patients. The
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first reported system prototype supports the decision to prescribe neu-
roleptic drugs for behavioural problems. The prototype is a hybrid sys-
tem where a CBR part decides if a neuroleptic drug is to be given,
and a Rule-Based Reasoning (RBR) part decides which neuroleptic to
use. The system uses approximately 100 features, manually extracted
from medical charts, in each case for determining the right neuroleptic
drug. The patient is initially screened for behavioral problems before a
Nearest Neighbour match makes a suggestion on whether or not to give
neuroleptics to the patient. If the CBR module finds it appropriate to
give neuroleptics and no contradictions are found, e.g., allergies to cer-
tain drugs etc., the RBR module determines which neuroleptic (of five
available) to use. This prescriptive task, although termed ”planning” in
the vernacular, may be best characterized as one of design.

FM-Ultranet

FM-Ultranet [34, 35] is a medical CBR project implemented with CBR-
Works. FM-Ultranet detects malformations and abnormalities of foetus
through ultrasonographical examinations. The detection, or diagnosis,
uses attributes derived from scans of the mother’s uterus, and identifies
abnormal organs and extremities. Cases are arranged in a hierarchical
and object oriented structure. The hierarchy is organized in 39 concepts,
and every concept has one or more attributes. The attributes consists
of anatomical features, medical history and general domain knowledge.
Similarity between attributes in the concepts (objects) are mathemati-
cally calculated or compared through a look up table, depending on the
attribute type. A report of the system’s findings are generated when the
detection (CBR) process is completed.

Montani et al.

Montani et al. has developed two separate CBR systems for the medical
domain. The first system attempts to integrate different methodologies
into a Multi-Modal Reasoning (MMR) system [36, 37]. The system is
used in therapy support for diabetic patients. The authors argue that
most systems trying to utilize more than one methodology do so only
in an exclusive fashion, with methodologies functioning merely as ex-
tensions to one another. Montani argues that a MMR system needs
much closer integration of technologies to get the full benefits of a multi-
modal solution. Integration allows tackling well known problems of single
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methodologies, i.e. the qualification problem in RBR and the too-small-
a-library problem in CBR. The proposed system tries to use a fuller
integration and utilize CBR, Rule-Based Reasoning, and Model-Based
Reasoning (MBR).

The second system by Montani et al. is focusing on CBR in hemodial-
ysis treatments for end stage renal disease [38]. This system is applied
to the efficiency assessments of hemodialysis sessions. Each new dialysis
session, i.e. assessment, is represented as a case in the system. Patterns
of failures over time, from the patients past history, and cross refer-
ences with other patients, can be found with this solution. Features
are both statically and dynamically collected. The static features are
patient information of a general nature (age etc.), and the dynamical
features originates from online measurements in the form of continuous
time series. The online features used for assessment is mainly derived
from the extracorporeal circuit during a dialysis session, like measuring
the arterial pressure.

Perner et al.

Perner et al has developed a couple of systems. One of the most interest-
ing is the Alzheimer imaging project. They present a system that uses
CBR to optimize image segmentation at the low level unit according
to changing image acquisition conditions and image quality [39]. The
system has been used to detect degenerative brain disease, in particular
Alzheimer disease in CT images of a patient. The cases are comprised of
images and image features as well as non-image information about the
image acquisition and the patient. The solution of a case is the parame-
ters of the image segmentation unit. The control of the parameter of the
image segmentation unit is done by the CBR mechanism. This ensure
high image quality of the output image. Similarity is calculated over the
image information according to a special image similarity measure and
over the non-image information. Finally, both similarity measures are
combined to an overall similarity measure. The system was used at the
Radiology Department at the University of Halle.



Chapter 3

Contributions

Three papers are included in this thesis. The included papers are or-
dered to guide the reader in to my specific area of research, instead of
ordering them in a plain chronological order.

The first paper, paper A, was presented at FLAIRS ’04. FLAIRS
is the annual Florida AI Researchers International Conference, and was
held in South Beach, Miami. The title of the paper is Advancements and
Trends in Medical Case-Based Reasoning: An Overview of Systems and
System Development. The second paper was presented at ICCBR ’03
in Trondheim. ICCBR is the International Conference on Case-Based
Reasoning. ICCBR is arranged every other year. The paper was titled
Complex Measurement Classification in Medical Applications Using A
Case-Based Approach. The third and final paper was written for ECCBR
’04 in Madrid. ECCBR, i.e. the European Conference on Case-Based
Reasoning, is also arranged every other year. The title of this paper is
called A Case-Based Classification of Respiratory Sinus Arrhythmia.
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3.1 Paper A

Paper A contains an analysis of CBR in the medical domain. A number
of systems are analysed, explained and summarised. System architec-
tures are also presented, where the information has been available.

The paper begins with a discussion of the advantages and the dis-
advantages of CBR in the medical domain. The included systems are
categorised accoring to their system properties, i.e. purpose, or typ of
task to perform. Construction oriented properties are also investigated.
Construction oriented trends consist of such things as system architech-
tures, case library sizes, autonomicity etc. Identifiable trends and other
interesting observations conclude the paper.

3.2 Paper B

Paper B is describing a CBR system designed for classification of psy-
chophysiological dysfunctions. The design is divided into three distinct
parts. Each part is responsible for a specific task, and the result of a
part is depending on the input from the previous part.

The first part is the pre-processing. The pre-processing handles the
signals, i.e. the physiological measurements streamed from various hard-
ware sensors. The signals are processed and cleaned from noise and
distortions. The aim is to produce a signal that reflects the original
physiological event. The second part receives the cleaned signals from
the pre-processing. This part is responsible for feature identification.
Features are extracted from the signals by feature extraction templates.
A template contains information on how to identify a specific feature.
All extracted features are collected into a feature vector. Other complex
features like trends and cross referenced features are also added to the
vector. Classification based on the features vectors is conducted in the
third part. The feature vectors are matched against stored cases. The
stored cases contain classifications of psychophysiological dysfunctions.
Cases are ranked in order of importance once a possible dysfunction is
identified. The ranking process uses patient specific information.
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3.3 Paper C

The final paper describes an implementation of a classification system
for Respiratory Sinus Arrhythmia. The system architechture is based on
the design in paper B. The system analyses both time-series of heart rate
and carbondioxide measurements. The carbondioxide analysis identifies
respiration cycles, i.e. individual breaths. The breaths are piped to the
heart rate analysis. Heart rate measurements that are within the same
time period as the respiration cycle are extracted. The extracted heart
rate measurements are processed to fit a case. Some of the processes are
for instance a transformation of the measurements to the frequency do-
main. The carbondioxide measurements, the heart rate measurements
and the processed heart rate measurements are clustered to a feature
vector. Rule based reasoning limits the number of cases the CBR cycle
has to match by counting notches, i.e. dips in the heart rate measure-
ments. CBR matches the remaining cases and suggests similar classes of
Respiratory Sinus Arrhythmia to the user.





Chapter 4

Conclusions

4.1 Summary

The main contributions of this thesis can be summarised into a couple
of statements, they are:

• A novel approach for analysis of physiological time-series.

• A Multi-Modal reasoning system for classification of Respiratory
Sinus Arrhythmia.

• A decision support system for treatment personnel in psychophys-
iological medicine.

A screenshot of the system is pictured in figure 4.1. The system
is christened HR3modul, based on its capability to analyse heart and
respiration time-series (Heart Rate, Respiratory Rate). The screenshot
of the HR3modul system is taken during a learning mode, i.e. when an
expert is pushing new cases to the library.

25



26 Conclusions

Figure 4.1: HR3modul.
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4.2 Future work

An interesting extension to this research would be to incorporate a full
breath classification within the respiration analysis. The current respi-
ration analysis identifies the respiration period, i.e. the beginning and
the end of individual breaths. A full analysis could identify dysfunctions
within the respiration by classify the capnograpy measurements.

Another interesting project is to make an automatic weighting sys-
tem. The weights for the features is manually adjusted in the current
system. The weights could be adjusted offline, that is, when the system
is idle. Such a weighting system could use genetic algorithms to try new
combinations of weights.

A faster retrieval technique may be necessary as the case library
grows. Each case contains, among other things, a FT vector of 1025
points (transformed by a 2048 point FFT). This vector may slow the
matching process as all cases in the case library are currently tested
against the new case. This matching is performed on every breath, and
a normal breath is usually in the range of 4-20 times per minute.
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Abstract

Case-Based Reasoning (CBR) is a recognised and well established method
for building medical systems. In this paper, we identify strengths and
weaknesses of CBR in medicine. System properties, divided into construction-
oriented and purpose-oriented, are used as the basis for a survey of recent
publications and research projects. The survey is used to find current
trends in present medical CBR research.
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5.1 Introduction

Ever since Shortliffe’s seminal work on diagnosis of infection diseases
[24], Artificial Intelligence has been applied in numerous applications in
the health science domain. In the late 1980’s, followed by ground-laying
work done by Koton [13], and Bareiss [3], Case-Based Reasoning (CBR)
appeared as an interesting alternative for building medical AI applica-
tions, and has since been further established in the field. Certainly, one
of the intuitively attractive features of CBR in medicine is that the con-
cepts of patient and disease lends itself naturally to a case representation.
Although several advantages of using CBR in medicine has been iden-
tified, the medical field certainly is not without its problems, some of
them specifically affecting CBR systems.

Gierl and Schmidt [10] identify the following key advantages of med-
ical CBR;

• Cognitive Adequateness. CBR resembles the way physicians are
reasoning about patients and the way they use their case expertise.

• Explicit Experience. A CBR system is naturally suited for ad-
justing itself to the specific requirements of a certain clinic or a
surgeon.

• Duality of Objective and Subjective Knowledge. Instead of using
the subjective knowledge of one or more experts to build systems
(as is done for e.g. rule-based expert systems) CBR systems are
built upon existing cases (which may or may not be fully under-
stood).

• Automatic Acquisition of Subjective Knowledge. CBR systems
exhibit an incremental knowledge acquisition, and knowledge can
be abstracted by generalizing cases.

• System Integration. Patient records are already being collected by
hospitals and practitioners and stored on machine readable medi-
ums, which simplifies integration with CBR systems which can
utilize them (after varying degrees of modification).
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However, a number of disadvantages and problems can also be iden-
tified;

• Adaptation. Because of the often extremely large number of fea-
tures involved in a medical case, adaptation of cases becomes prob-
lematic. Generalization and efficient feature identification methods
helps to partly remedy this issue, but generally the problem per-
sists. [20]

• Unreliability. Although the reliability of a CBR system increases
with the proportion of coverage of the problem domain, reliability
cannot be guaranteed. Adding new cases will not necessarily make
a system converge towards greater reliability, as cases add only
local improvement. Indeed, Bichindaritz argues that the strictly
local properties of cases makes convergence an inappropriate notion
for CBR systems.[4]

• Concentration on reference. CBR systems are concentrated on ref-
erence as opposed to underlying diagnostic factors. Thus, systems
cannot function as sources of previous experience unless a suitable
case exists in the case-base.

In this paper, we take a look at a number of the most influential
medical CBR research projects in late years, with the aim of identifying
trends in the development of such systems. Basing our work on the 1998
survey by Gierl and Schmidt [10], we focus primarily on systems created
or reported about after 1998. In particular, we are interested in inves-
tigating if, and to what degree, the focus has changed on what type of
medical CBR systems are constructed, and how they are constructed.

The method of identifying current trends involves examining systems
from recent years by focusing on a set of distinctive system properties.
We divide system properties into purpose-oriented and construction-
oriented, where the first are characterized by the general type of action
the system is supposed to perform (classification, planning, diagnosis,
and tutoring), and the second indicate different types of constructions,
such as systems supporting adaptation, hybrid systems, varying degrees
of autonomicity etc. Additionally, we attempt to find trends of more
general importance, looking at medical CBR systems from a broader
perspective.
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The rest of the paper is organized as follows. Next section contains a
description of the different comparison properties used to differentiate a
system from another. The section Recent medical CBR systems describes
a selected number of influential works in the medical CBR domain. In
section Trends in medical CBR, we present a system property matrix
and identify construction-oriented and overall trends.

5.2 System properties

5.2.1 Purpose-oriented properties

With purpose-oriented properties, we refer to the separation of overall
system purpose into planning, classification, tutoring, and diagnostic.

Diagnostic systems The majority of medical CBR systems belong in
the diagnostic systems category. Diagnostic systems attempt to provide
the user of the system with various degrees of assistance in the diagnosing
process of a medical condition, possibly up to the point of a completely
autonomous diagnose.

Classification systems Classification systems attempt to identify the
group or group affiliations of real-world cases. One typical example is
image classification systems that do not attempt a complete diagnosis.

Tutoring systems A medical tutoring system based on CBR is typi-
cally built closely around the concept of learning by examples, providing
students with access to real patient cases.

Planning systems Planning systems are characterized by their inten-
tion to help in solving a process involving a number of steps. Therapy
support is an often seen example of planning in medical systems.

5.2.2 Construction-oriented properties

Looking at medical CBR systems, we are interested not only in which
systems have been recently constructed, but also how they were con-
structed and the motivation behind their construction. Once again, this
is done to ease the identification of current trends in the development
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of medical CBR. However, in some cases it is not possible to derive the
state of all these properties from the papers describing the projects in
question.

Hybrid systems A hybrid medical CBR system denotes a multi-
faceted solution to a problem space, using CBR as one of a number
of AI technologies forming a complete system. Many such systems use
CBR as the main organizer of data, and data-intense techniques such as
neural networks to handle lower-level case identifications. Others match
CBR with the Rule-Based Reasoning used in traditional expert systems
to gain the advantages of both Rule-Based and Case-Based Reasoning.

Adaptive systems The problem of doing successful adaptation in the
medical domain, because of the often enormous amount of features in
a case, has been documented by Schmidt and Gierl [20]. In the system
summary in section Recent medical CBR systems, we investigate if and
to what degree medical CBR systems from recent years has started to
utilize adaptation methods.

Case library size The size of the case library does not only involve
the actual number of cases in the case library, but also the degree of case
generalisation into prototypes, i.e., the degree to which the system tries
to merge existing cases into more general ones.

Autonomicity The degree of autonomicity is arguably of the most
importance for diagnostic systems, where it denotes the level of inter-
action needed with a physician or corresponding medical expert before
and after the diagnosis is complete. A purely autonomous system would
produce diagnoses that would be accepted and used without having a
human expert look at them, which is rarely the case in current systems.
The degree of autonomicity implies the need for human intervention in
the reasoning cycle and for evaluating its results.

Constraints System constraints concerns reliability and safety-criticality.
Safety-criticality denotes the need to always provide correct answers,
e.g., whether incorrect system behaviour could potentially create dan-
gerous or even life threatening situations. A system is reliable if it is
always operational when needed.
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5.3 Recent medical CBR systems

As was mentioned in the introduction, the focus of the survey is on
systems created or reported about during the last five years. An overview
of medical CBR systems before 1998 was done by Gierl et al. in [10].
From this overview, we adopted the division of systems into diagnostic,
classification, tutoring, and planning systems.

5.3.1 Diagnostic systems

FM-Ultranet [1, 2] is a medical CBR project implemented with CBR-
Works. FM-Ultranet detects malformations and abnormalities of foetus
through ultrasonographical examinations. The detection, or diagnosis,
uses attributes derived from scans of the mother’s uterus, and identifies
abnormal organs and extremities. Cases are arranged in a hierarchical
and object oriented structure. The hierarchy is organized in 39 concepts,
and every concept has one or more attributes. The attributes consists
of anatomical features, medical history and general domain knowledge.
Similarity between attributes in the concepts (objects) are mathemati-
cally calculated or compared through a look up table, depending on the
attribute type. A report of the system’s findings are generated when the
detection (CBR) process is completed.

Perner [18] proposes a system that uses CBR to optimize image seg-
mentation at the low level unit according to changing image acquisition
conditions and image quality. The system has been used to detect de-
generative brain disease in particular Alzheimer disease in CT images of
a patient. The cases are comprised of images and image features as well
as non-image information about the image acquisition and the patient.
The solution of a case is the parameters of the image segmentation unit.
The control of the parameter of the image segmentation unit is done
by the CBR mechanism. This ensure high image quality of the output
image. Similarity is calculated over the image information according to
a special image similarity measure and over the non-image information.
Finally, both similarity measures are combined to an overall similarity
measure. The system was used at the Radiology Department at the Uni-
versity of Halle.
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Jaulent et al. [12] is diagnosing histopathology in the breast cancer
domain. Their system uses cases that are derived from written medical
reports. A case has an internal tree structure, and represents a collection
of macroscopic area. Every macroscopic area is a collection of histolog-
ical areas, and each histological area contains a cytological description
of subjective features, like a big cell size. The features are also weighted
for importance. Cases are compared for structural (structure of the his-
tological tree), surface (semantic resemblance of microscopic areas) and
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feature similarity. A translation transposes the subjective features into
numerical values.

CARE-PARTNER [4, 5] is a decision support system for the long
term follow-up of stem cell transplanted patients at Fred Hutchinson
Cancer Research Center (FHCRC) in Seattle. The CARE-PARTNER
system gives medical and decision support to the home care providers
that follow up the transplant patients, using the Internet to connect
the home care providers with the FHCRC transplant specialists. The
system uses a multi modal reasoning framework, combining Case Based
Reasoning and Rule Based Reasoning. A safety insurance plan at three
levels (a procedural, a software engineering and a knowledge level) is
adopted to ensure fault tolerance. One main characteristic of the system
is that it uses a rich knowledge base of prototypical cases and practice
guidelines to interpret medical cases and guide the case based reason-
ing. CARE-PARTNER’s safety insurance plan is illustrated in figure 5.1.

Schmidt et al. deal specifically with prototypes in [22], where a proto-
type denotes a generalisation occurring as a result of grouping/clustering
single cases into more general ones. The claim is made that generating
prototypes is also an adequate technique to learn intrinsic case knowl-
edge, especially if the domain theory is weak. Storing new cases may
improve the ability to find solutions for similar cases, but to understand
the knowledge included within, generalisation is needed. Schmidt and
Gierl have developed several systems focusing on generalising into pro-
totypes, as described in their 1998 medical CBR survey [10], such as
ICONS [23] for antibiotic therapy advice, GS.52 for diagnosis of dys-
morphic syndromes, COSYL for liver patient treatment strategies, and
TeCoMED for forecasting epidemics of infection diseases. These are
all further described in [10] and [22]. In [22], Schmidt argues that the
reason for using prototypes varies with the type of application and task.
In areas where the domain theory is weak, prototypes help to guide the
retrieval. In other systems, prototypes may correspond directly with the
physicians view and be absolutely necessary for the project. Prototypes
also help to speed up retrieval by decreasing the number of cases. The
general drawback of prototypes is however loss of information when gen-
eralizing.

MED2000. Goodridge et al. [11] presents a theoretical diagnostic
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model for dealing with medical CBR domain problems. The theoretical
model, referred to as the Case-Based Neural Network Model, incorpo-
rates CBR within a neural network, and the concept of representing
knowledge using frames. The CBR-specific problems addressed are all
of those mentioned in the introduction, but unfortunately the description
lacks a thorough investigation of how, or even if, most of the problems
can be remedied with the proposed method. The heart of the model is
the separation of case information into two layers, keeping all informa-
tion identifiers and case features in layer one, and the actual solutions
in layer two. Doing this, the system can eliminate the problem of case
representation as the information entities in layer one are independent
of the solutions. The paper also introduces the concept of pure cases as
a way of dealing with the adaptation problem, but it is unclear whether
it will actually present an improvement. MED2000 is a hybrid system,
has low autonomicity due to experts accepting/declining every hypothe-
sis, and contains a fairly small number of cases, approximately 40 cases.
The neural network architecture provides a level of ”natural” prototype
usage.

5.3.2 Classification systems

Montani et al. has focused on CBR in hemodialysis treatments for end
stage renal disease [15]. Their system is applied to the efficiency assess-
ments of hemodialysis sessions. Each new dialysis session, i.e. assess-
ment, is represented as a case in the system. Patterns of failures over
time, from the patients past history, and cross references with other pa-
tients, can be found with this solution. Features are both statically and
dynamically collected. The static features are patient information of a
general nature (age etc.), and the dynamical features originates from
online measurements in the form of continuous time series. The online
features used for assessment is mainly derived from the extracorporeal
circuit during a dialysis session, like measuring the arterial pressure.

Costello and Wilson [7] is focusing on the classification of mammalian
DNA sequences, and are using a case library of nucleotide (A,T,G,C)
segments. The stored segments are already classified as exons (carrying
information on how to create proteins) and introns (junk segments that
do not carry any information). The system is identifying exons in a
seemingly random mix of exons and introns in strands of DNA. An edit
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distance calculation of, insertion, substitution and deletion of individual
nucleotides in the tested exons is used to evaluate the similarity between
the test strand and the store exon cases. Matched exons is then grouped
through activation levels (number of similarities) to find new segments
of exons in the test strand.

Nilsson et al. [17] address the domain of psychophysiological dysfunc-
tions, a form of stress. The system is classifying physiological measure-
ments from sensors. The system is divided into smaller distinct parts.
Measurements, like signals from an ECG, are filtered and improved. A
case library of models of distortions etc. is applied to the filters. Features
are extracted from the filtered signals (measurements). An additional
set of features are extracted from the first set, for trend analysis etc.
The features from the first and second set, and patient specific data,
are used as a case. The cases are classified with a k-nearest neighbour
match. The architechture is presented in figure 5.2.

TeCoMED. Further information about the TeCoMED system was
given in [21]. Schmidt and Gierl attempt to use a prognostic model to
forecast waves of influenza epidemics, based on earlier observations done
in previous years. TeCoMED combines CBR with Temporal Abstraction
to handle the problem of the cyclic but irregular behaviour of epidemics.
Trends are discretized into enormous decrease, sharp decrease, decrease,
steady, increase, sharp increase, and enormous increase, based on the
percentage of change. TeCoMED utilizes former courses and similar
cases in a way similar to early kidney problem warnings in the ICONS
system. Attempting to commercialize the system, a small software com-
pany has incorporated warnings that are generated by the system into
web pages of a health insurance scheme and a page of the health author-
ity of the federal state.

Montani et al. [16] attempt to integrate different methodologies into
a Multi-Modal Reasoning (MMR) system, used in therapy support for
diabetic patients. The authors argue that most systems trying to uti-
lize more than one methodology do so only in an exclusive fashion, with
methodologies functioning merely as extensions to one another. Montani
argues that a MMR system needs much closer integration of technolo-
gies to get the full benefits of a multi-modal solution. Integration allows
tackling well known problems of single methodologies, i.e. the qualifi-
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cation problem in RBR and the too-small-a-library problem in CBR.
The proposed system tries to use a fuller integration and utilize CBR,
Rule-Based Reasoning, and Model-Based Reasoning (MBR). The system
architechture is illustrated in figure 5.3.
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Perner et al. [19] has developed a system for the identification of
airborne fungi. The fungal strains have a high biological variability, i.e.
dissimilarity between the features of individual fungi is quite extensive.
A strain can not be generalised to a few cases because of this variability.
The images used originate from microscope enhanced pictures. A case is
described by attributes (features) derived from the images. Attributes
are in the abstraction level of colour, shape, size etc. New and original
cases (descriptions of individual fungi) are retained in the case library,
which is constructed by decision tree and prototype learning methods.

5.3.3 Tutoring systems

WHAT [9] is a tutoring medical CBR system for the education of sports
medicine students. WHAT is designed to give better matching exercise
prescriptions than the conservative rule-based approach taught by most
books. The system provides two separate recommendations for exercise
prescriptions, one which is based on the rules found in the books, the
other uses CBR with a stored case base made by an expert. The pre-
scribed exercises are applied to cardiac and pulmonary disease patients,
as well as issues of general health and lifestyle. The prescriptions are
based on features from the patients’ medical history and on physiologi-
cal tests.

Bichindaritz et al. [6] have evolved CARE-PARTNER into a medical
training system on the Internet. The intention is to help medical students
improve their knowledge by solving practice cases. Prototypical cases
consist of clinical pathways, which can be tailored to generate cases
of varying levels of complexity. The system is also able to evaluate
the solutions given by the students for the practice cases. Due to the
unlikelihood that a student solution matches the stored solution exactly,
a correctness score is calculated and the student solution is placed into
one of three categories: Fails to meet standards, Adequate, and Meets
all standards.

5.3.4 Planning systems

The Auguste project [14], is an effort to provide decision support for
planning the ongoing care of Alzheimer’s Disease (AD) patients. The
first reported system prototype supports the decision to prescribe neu-
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roleptic drugs for behavioural problems. The prototype is a hybrid sys-
tem where a CBR part decides if a neuroleptic drug is to be given,
and a Rule-Based Reasoning (RBR) part decides which neuroleptic to
use. The system uses approximately 100 features, manually extracted
from medical charts, in each case for determining the right neuroleptic
drug. The patient is initially screened for behavioral problems before a
Nearest Neighbour match makes a suggestion on whether or not to give
neuroleptics to the patient. If the CBR module finds it appropriate to
give neuroleptics and no contradictions are found, e.g., allergies to cer-
tain drugs etc., the RBR module determines which neuroleptic (of five
available) to use. This prescriptive task, although termed ”planning” in
the vernacular, may be best characterized as one of design. The design
of the Auguste system is depicted in figure 5.4

Davis et al. [8] are using a planning system based on the ReCall
CBR shell. The system decides what kind of SMARTHOUSE devices
disabled and elderly people need in their homes for independent living.
Features are constructed from manual translations of written reports.
The system contains 10 clustered problem space groups and 14 solution
groups. Every group is subdivided by a C4.5 decision tree for efficiency
and as an easy way to explain the reasoning process.

5.4 Trends in medical CBR

Naturally, the selection of papers in the previous section is highly sub-
jective. None the less, certain trends are distinctive enough to deserve
mentioning.

5.4.1 Property matrix

The research papers used as underlying documentation for the system de-
scriptions does not always contain sufficient information about whether
or not a system exhibits a certain construction-oriented property. For
completion, the system authors were therefore contacted and asked specif-
ically about the missing property information. Additionally, the authors
were asked about the practical use of the systems in every-day life and
whether there had been any attempts at commercialization. The answers
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to the questionnaire are presented in Figure 5.5.

Notably, the majority of systems are multi-modal. Only one of the
systems utilizes adaptation. Generalisation using prototypes appears to
be rare; however, in several projects the intention is to extend the system
with prototypes at a later stage. The majority of systems are dependant
on some level of user interaction in the reasoning cycle.

A few of the systems has been commercialized to some degree, but
typically the projects are kept on a research level. Safety and reliability
constraints are not too common. Systems that do have safety-critical
constraints usually depend on operational reliability as well.

5.4.2 Construction-oriented trends

Looking at the previously defined construction-oriented properties, a
number of trends can be identified.

Hybrid systems, also commonly referred to as Multi-Modal Reason-
ing Systems, constitute the majority of medical CBR systems. The com-
bination of CBR with assisting technologies seems especially successful
when CBR acts as the top level coordinator at the system level. Medical
systems based on a straight CBR approach may suffer from unreliabil-
ity, since all reference information is concentrated to the cases. Hence,
systems like CARE-PARTNER have built in safeguards.

The autonomicity of the majority of systems is relatively low. Con-
sidering the inherent problem of unreliability in CBR, and the fact that
systems typically does not reach a 100% correspondence with reported
correct solutions even for controlled sets of cases, not relying on com-
plete autonomicity appears to be sound.

The use of prototypes through case aggregation seems to be a com-
monly intended future extension, although only partly apparent in the
property matrix. Prototypes are already used by many of the systems
created by Gierl and Schmidt (as described in Diagnostic Systems), and
prototype support is planned for both TeCoMED and WHAT.
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Figure 5.5: System property matrix.
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5.4.3 Overall trends

The majority of systems in the purpose-oriented category belong to clas-
sifying and diagnostic systems. True to the nature of the domain, the
emphasis in the medical AI domain has and probably will continue to
be on clinical use, i.e., systems involved in some sort of treatment.

Features and feature extraction is an important part of most CBR
systems. One identifiable trend in medical CBR is the continuation of
separate pre-processing methods on the input data, whether it is a hu-
man or an automated process. The datasets are often too large for a
direct CBR analysis, and therefore needs to be pre-processed. Examples
of systems focusing on separate feature extraction are the stress diagno-
sis system by Nilsson et al. and the airborne fungi detection system by
Perner et al.

As was the case in the 1998 medical CBR survey by Gierl and Schmidt
[10], medical tutoring systems utilising CBR are rare. The inherent case-
and example-based nature and the cognitively plausible model of CBR
should be ideal for teaching medical knowledge; still the number of tutor-
ing systems is remarkably low. There is however an increasing number
of systems that could partly be seen as tutorial, i.e. the system covers
more than one of the purpose-oriented properties, including the Auguste
project, WHAT, and FM-Ultranet.

5.5 Conclusions

Although the recent five years has not seen any dramatic changes in
the construction and use of medical CBR systems, the field is evolving
steadily but slowly. The potential for automated systems in clinics is
high, but has yet to reach its full potential. Most systems tend to con-
centrate on diagnostic tasks, but the use of CBR for therapeutic planning
appears to be on the increase. Medical tutoring systems based on CBR
are still rare.

The clear majority of systems built around a combination of CBR and
other AI methods indicates that most medical domain problems looked
into by researchers in recent years have been too complex and multi-
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faceted to handle using CBR alone. Arguably, hybrid systems have been
utilized in the CBR health science domain from the very beginning, with
early projects such as CASEY [13] utilizing a mixture of CBR and RBR.
There is, however, an increasing majority of hybrid systems being de-
veloped, which appears to reflect the increasing complexity and scope of
the problem domains.
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Abstract

In many domains it is sufficient to classify measurements obtained by
sensors by filtering noisy data and performing a classification of the
measurements by means of some mathematical function. Classification
of measurements is difficult in some medical domains, e.g. determina-
tion of stress levels. Measurements and their classification may be too
complex for an algorithmic approach. Matching may result in a number
of classification candidates, historic data (previously classified measure-
ments) may be sparse, and same measurements may indicate several
diagnoses. We propose a Case-Based Reasoning approach in which fea-
ture vectors are matched against cases in a case library, and in which
indeterministic or weak classifications are validated by an experienced
physician, pointing out the features relevant in the classification of psy-
chophysiological dysfunctions. The physician’s classifications are stored
in the case library, continuously improving the system’s performance as
it is being used. If only a few examples of classified measurements are
available, the experienced physician initially points out which feature
combinations are used in the classification/diagnosis.
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6.1 Introduction

In many application domains, classification of complex measurements is
essential in a diagnosis process. Correct classification of measurements
may in fact be the most critical part of the diagnostic process. Diag-
nosing stress, a psychophysiologic dysfunction, is a medical application
in this category and measurement classification is difficult and complex
even for a physician. Case-based reasoning (CBR) is a concept that
is recognized in medical domains and has been applied in a number of
medical diagnosis projects [12], but not for direct classification of com-
plex sensor readings from patients. CBR has good potential for many
medical applications since reasoning from cases is commonly applied in
medicine [5] and also reduces the expertise bottle-neck [2].

Physicians measure physiological activities in the patient with a num-
ber of sensors under different conditions. When measurements made
under different conditions are obtained a physician can begin to anal-
yse the measurements. One such analysis is the balance and recovery of
sympathetic and parasympathetic levels in stressed situations through
observing changes of the heartbeat interval [10]. This enables the detec-
tion of dysfunctions and abnormalities, ideally before the patient notices
any severe physiological symptoms. These dysfunctions can in some
cases be corrected with biofeedback training [3].

Figure 6.1 shows a standard diagnosis and treatment session. Only
experts in the field are able to perform a reliable classification and in-
correct classification of measurements may lead to serious risks for the
patient. Classifications of measurements may also have complex rela-
tions to other measurements, complicating classification further. The
skill of classification is difficult to transfer to less experienced physicians.

In this paper we propose an interactive case-based classification tech-
nique (ICBC) for classification of medical measurements from patients
with stress symptoms. The application has similarities with Case-Based
image interpretation [11] but with a stronger focus on features. ICBC
elicits classifiable features from patient measurements, and at the same
time creates a language of features in which physicians can discuss mea-
surements. ICBC helps physicians determine the features on which they
are to base their classification1 and record these for reuse by other prac-

1It was observed that experienced physicians are able to perform complex classi-
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Visualization of measurements 

Patient 

Experienced physician  
(classifies measurements) 

Figure 6.1: Patient and physician in a diagnosis and treatment session.

titioners (experience sharing among experts). Feedback from physicians
is used together with previously stored feedback to refine matching and
to adjust the weighting of features, an interactive process applied in
some CBR systems. The value of Case-Based Reasoning for diagnostics
in medical applications has been recognized earlier, e.g. in diagnosing
myocardial infarctions [7].

6.2 Classifying Measurements

This section gives a short background to measurement classification and
outlines some of the methods and techniques used to prepare, analyze
and classify measurements, especially in the medical domain.

fications without being able to point out all the features on which they base their
classifications and diagnosis. The ICBC approach transforms implicit knowledge into
an explicit, sharable and transferable skill.
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6.2.1 Preparation and Filtering

Filtering is used to restore the measurement to its ”original” shape, e.g.
by removing noise and distortions. A number of different techniques,
such as adaptive filters, spectral subtraction and linear prediction models
have been developed for filtering and noise reduction (see [1, 13]). The
filtering process may be complicated in some domains by distortion and
certain features important for classification having similarities. Filtering
is a sensitive process and if not well performed, may remove essential
information necessary for a correct classification. Domain knowledge,
e.g. the relation between different measurements and heuristics may be
used to improve filtering. The filtering process should be visible to and
adjustable by the experienced physician.

6.2.2 Features and Feature Vector

Physicians classifying measurements often express themselves in terms
of the presence or absence of features. The approach using feature vec-
tors (example in figure 6.2), as commonly used in CBR systems, is well
received amongst physicians. In many CBR applications feature selec-
tion is obvious, but in medical domains selecting features and creating
a feature vector may require more effort.

[[peak-to-valley 45],[RR frequency 0.2 Hz],[small notch 2.46-2.49],[strong incline 0-2.87]]

Figure 6.2: Example of a simplified feature vector (this is an unusually
short feature vector).

Physicians may look for features on a more intuitive basis and a
cardiologist may need only inspect an ECG (Electrocardiogram) curve
to be able to propose a diagnosis on the basis of his/her experience.
Surprisingly a physician may not always be able to point out all the
features which he/she uses to classify the measurement. The ICBC sys-
tem will aid in the identification of these intuitive features and make
them explicit. Features may also be derived from the sketches of fea-
tures of importance made by experts. Feature identification functions
may be extracted automatically from the drawings or constructed semi-
automatically (with or without interaction with an expert). Fourier
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Transformation (FT) [6] is a common technique transforming an analog
signal to a frequency diagram/phase diagram. FT analysis is a powerful
technique used when searching for specific frequency-dependent features
in signals in medical applications [14] and a physician may need to con-
sider the absence or presence of certain frequencies.

6.2.3 Classification Process

A number of different methods are available for the classification of mea-
surements. The selection of classification method is based on the com-
plexity of the task. A simple classification may only require a single test
(e.g. above or below 37C) for a complete classification. A set of complex
measurements is classified by physicians comparing their features with
the known features of previous measurements.

A different approach to the classification of similar feature vectors is
to use Artificial Neural Nets (ANN). The performance of reliable clas-
sification using the ANN approach requires training with large numbers
of classified measurements. If an interesting new case with an important
classification becomes available, the net must be retrained, and only
after this retraining does the new classification reflect the additional ex-
perience. In the domain of diagnosing stress, the number of classified
measurements required for training is not always available.

6.3 Case-Based Categorization of Measure-

ments

This section gives an overview and introduction to the interactive case-
based classification approach, ICBC. The different steps, pre-processing,
feature identification and curve classification are described in sections
6.4, 6.5 and 6.6, respectively. Online measurements are received from a
patient to whom sensors are attached as shown at the left in figure 6.3. In
medical applications, sensors mostly provide a continuous analog output.
An analog/digital converter is used to produce a bit stream arriving at
the pre-processing. The pre-processing process in figure 6.3 is responsible
for filtering and restoring the measurement to a state as close as possible
to its original state. The pre-processing also uses a library with models
of known distortions to simplify the restoration process as explained in
section 6.4.
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Figure 6.3: Schematic picture of the ICBC system .

In the feature identification process, ICBC uses a two pass model,
first identifying features and then creating a vector with features. For
feature identification a library (case library A in figure 6.3) is used to
identify those relevant. In the second phase of the feature identification,
more complex features based on other features and relations to other
measurements are identified, see section 6.5 for more details.

Once the features are identified, the system classifies the feature vec-
tor. The classification is based on previously classified measurements
(case library B) in figure 6.3. When a new measurement has been clas-
sified, the new case is added to the case library. In medical applications,
the same measurement may be classified differently based on patient
characteristics. The classification process is described in section 6.6.
The measurements are shown to the physician together with their clas-
sification. In the research prototype (not all parts have been fully im-
plemented) normal measurements are shown in green and measurements
indicating dysfunction are shown in red.

6.4 Pre-processing

Sensor data typically contain noise and distortion. Before a classification
attempt is made in ICBC, the sensor data received is pre-processed to
remove as much noise, distortion and unsound data as possible. In figure
6.4 the two pre-processing steps are shown; identification and removal
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of noise and unsound data (first left box), and restoration of distorted
data (right box). A library with models of known noise, distortions and
how to identify and restore unsound data is used (bottom part in figure
6.4).

Noise may be caused by internal/external interference such as elec-
trical interference. Noise is handled in the same way as distortions (next
section). If the preconditions relating to certain noise which must be
filtered have not been set in the model, all the data must be filtered.

 
 

 

Model of unsound 
data/noise and 

corrections 

Library with models of noise 
and distortion, including how 
to remove/correct them 

Pre-processing 
 

Pre-processed  
 sensor data 

Sensor 
data 

Identify and 
correct 

distortions 
 

Filter noise and 
remove 

unsound data  

Figure 6.4: Pre-processing of sensor data in the ICBC process.

Distortion may be caused by the measurement procedure (e.g. by
the patient moving while being measured) or an imperfect sensor. In
the restoration step, we remove known noise from the data received and
correct any distortion using the models and corrections recorded in the
model library. The models are of different types; simple limit triggering
rules, neural nets, a case-based reasoning system in itself etc. A model
has a specific task, to restore data to its original state, to remove noise
and to correct distortions.

6.4.1 Restoring Data Using Models

To restore the data, knowledge of what to expect of the data is needed,
e.g. characteristics of sensors, including the hardware and the channel
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conveying the signal. This information permits the construction of mod-
els which can be used to identify and remove distortions. The models
may also include correction functions such as compensation for data de-
lays, amplification of signals etc. A model should restore the signal to
its original state with respect to the particular distortion. When sen-
sor data enters the pre-processing stage, the models stored in the model
library are applied to determine if they should trigger and perform rel-
evant correcting actions. In a default situation the correction actions
should always be applied. Unsound data is data that could not possi-
bly have originated as sensor output, given knowledge about the sensor.
Models may be constructed to identify and correct unsound data.

6.5 Feature Identification Process

It is necessary to find a suitable form in which to represent and compress
the information from the sensor data while storing enough information to
be able to classify data correctly. The pre-processed data is divided into
periods, e.g. individual heart beats. Features are identified within the
period and stored in a feature vector (left box in figure 6.5). All feature
vectors are temporarily stored in a database (lower middle in figure 6.5).
A complex feature is a feature that is based on other features in more
than one feature vector. Complex features are identified and appended
to the vector.

The first task in the classification is to identify a number of features
sufficient to perform identification of similar measurements. Figure 6.2
gives an example of a measurement containing some features which the
expert believes should be used in classification. The features are auto-
matically recognised and used to find similar cases in the case library.
If the expert classifies this measurement in the same way, these features
are sufficiently accurate to classify the measurement examples correctly.
The system may also select a number of near misses and ask the expert
to classify these, and if they are classified correctly, the classification is
validated with respect to the selected cases.

The system can thereafter be tested with new measurements, previ-
ously classified by the expert but not used in the training. If the system
is able to classify these correctly we can calculate the accuracy of the
system. If the accuracy is sufficient, the CBR system can be used for
matching and reuse of experience.
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Figure 6.5: Feature identification in the ICBC process.

6.5.1 Feature Identification and Extraction

Extracting the appropriate features is dependent on the kind of data to
be analysed. For heart rate and carbon dioxide levels we use angle of
slopes, notches and peak values, period length etc. Figure 6.2 illustrates
some of these features. If we obtain a derivative of the period data and
combine this information with the measurement before derivation, we
can detect notches and slopes when and where they occur. As within
the pre-processing step, we can use different models to extract additional
information from the data. One such model studies the frequency spec-
trum in a FT (see section 6.2.2). The FT analysis enables us to find
any heart rate variability in the frequency spectra [9] and the relation-
ship between sympathetic and parasympathetic systems [8]. We can also
read the Respiratory Sinus Arrhythmia (RSA) [4] in the FT. RSA is the
natural rise and fall of the heartbeat rate controlled by the autonomic
nervous system, the heart rate increasing with an inhalation. Different
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techniques may be used for the feature extraction models, stored in the
lower left in figure 6.5.

6.5.2 The Feature Vector

A feature vector, illustrated in figure 6.2, is a fairly simple construction.
The feature vector contains some of the features mentioned in the pre-
vious section. A feature vector is basically a list of features found in the
same sample period, i.e. a description of a period with features instead
of with measured values. The amount of data in the ICBC process is
reduced in this representation form.

6.5.3 The Complex Vector

A feature vector is incomplete if all its dependencies on other measure-
ments are not included. To classify a feature vector, we may need to
include additional information which is not present in the period itself.
This information denotes complex dependencies between feature vectors.
All recently created feature vectors are stored in a temporary database.
In this database we collect features from recent vectors with the same
sensor source and also fetch and compare measurements with parallel
or other sensors. By combining information from several feature vectors
we can detect trends over time within the same measurement session.
A complex dependency can also be a relation between feature vectors
with different sensor sources. Finally we create a new feature vector by
combining the complex features with the existing feature vector.

6.6 Measurements Categorisation

The measurements are finally classified as shown in figure 6.6. in which
a feature vector in ICBC is used as a case. The feature vector is matched
with a regular nearest neighbour algorithm against the case library with
previously classified feature vectors. A scored list with the best matching
cases is created, and sent to the patient customisation.

Patient information and physiological domain knowledge which may
affect the final ranking is also taken into account, for example, a patient
may have pre-requisitions that must be observed. A ranked classification
list is created, based on a reordering of the scored case list and with
the additional information from the patient customisation part. The
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Figure 6.6: Classification process in detail.

ranked classification list with the classified complex feature vectors is
now targeted at a specific patient or a group of patients.

6.7 Conclusions

Physicians diagnosing stress-related dysfunctions use different sensor
readings to diagnose the patient. The measurement classification pro-
cess is difficult and long experience is needed to learn the skill of making
accurate classifications.

In this paper we outline how complex measurements are classified
using an interactive case-based classification approach, ICBC. The clas-
sification task is divided into three steps, pre-processing, feature identi-
fication and classification. The pre-processing removes distortion in sen-
sor readings caused by limitations in sensors, patient’s movements and
other outside interference. To remove the distortions, the pre-processing
step uses a case library containing models of possible distortions and
knowledge of how to remove them. In the feature identification step
we identify and extract relevant features used by physicians to classify
measurements and create a feature vector. Some features are based on
relations between different measurements and their features; hence the
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feature identification process is divided in two parts as described in sec-
tion 5. In the third step feature vectors are classified using a nearest
neighbour search and a library with previously classified feature vectors.
The measurements together with the classification of these are presented
to the physician.
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Abstract

Respiratory Sinus Arrhythmia has until now been analysed manually
by reviewing long time series of heart rate measurements. Patterns are
identified in the analysis of the measurements. We propose a design for
a classification system of Respiratory Sinus Arrhythmia through time
series analysis of heart and respiration measurements. The classification
use Case-Based Reasoning and Rule-Based Reasoning in a Multi-Modal
architecture. The system is in use as a research tool in psychophysio-
logical medicine, and will be available as a decision support system for
treatment personnel.
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7.1 Introduction

This paper describe a system for pattern classification of Respiratory
Sinus Arrhythmia (RSA). The patterns are classified with Case-Based
Reasoning (CBR) and Rule-Based Reasoning (RBR) through physiolog-
ical time series measurements. The system is developed to be a decision
support system for treatment personnel, as well as a research tool in
psychophysiological medicine. The next paragraph defines RSA and put
it into clinical context. The reader may skip the next paragraph as it
is not required to understand RSA to comprehend the contents of this
paper.

Respiratory Sinus Arrhythmia is described as centrally modulated
cardiac vagal and sympathetic efferent activities associated with respira-
tion [3]. RSA occurs because the heart rate, i.e. heart beats per minute,
is variable. This Heart Rate Variability (HRV) is an effect of inhibi-
tions on the sympathetic and parasympathetic systems while breathing.
The sympathetic and the parasympathetic systems, which are a part
of the autonomous nervous system, have different activity levels during
different stages of the respiration cycle [7].

Physicians detect irregular heart rate patterns by analysing the RSA.
Some of the irregularities are dysfunctions caused by physiological and/or
psychological stress. A common diagnostic method for detecting dys-
functions in RSA is to manually analyse sampled heart rate measure-
ments together with an analysis of the measurements’ frequency spec-
trum [4, 3, 7]. The dysfunctions are treated with cognitive behavioural
sessions with psychologists, and with biofeedback training [6].

Time-series analysis in medical Case-Based Reasoning has previously
been studied by Montani et al. [9, 10], where they integrate CBR,
RBR and Model-Based Reasoning (MBR) in a Multi-Modal Reasoning
(MMR) platform for managing, i.e. suggesting insulin therapy, for type
1 diabetic patients. Another CBR system which analyses time series is
ICONS [14, 15]. ICONS forecast kidney functions through an extended
CBR cycle which abstracts states from measurements and trends from
the states. Other related medical CBR systems are CARE-PARTNER
[1, 2], Auguste [8] and Perner et al.’s airborne fungi detection system
[13]. Further information of these systems can be found in Nilsson and
Sollenborn’s survey on medical CBR [12].
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We propose a MMR system design for the classification of RSA, where
CBR matches physiological parameters and RBR reduces the domain of
cases. A system design for the classification of RSA is introduced in
the next section. We evaluate the proposed system in section 7.3, and
conclude the paper in section 7.4.

7.2 System Architecture

Heart
analysis

Respiration
analysis

 

Similarity matching
(CBR)

RSA
case

New
case

Respiration
period

Ranked
casesCarbondioxide

measurements

Heart rate
measurements Domain reduction

(RBR)

Case library

Figure 7.1: A design for a classification system of Respiratory Sinus
Arrhytmia.

A classification system for RSA is naturally divided into two initial
analytical stages. Each stage analyses time series measurements. The
first stage analyses the respiration and the second stage analyses the
heart measurements. Cases are there after created based on the find-
ings in the analysis processes. Rules limits the number of cases for the
matching procedure to compare to, and the cases that pass the filter are
matched and ranked. The design is illustrated in figure 7.1. The system
is a revised version of the two later parts of the design described in [11],
the first part is processed in the hardware. Each part of the figure is
detailedly described in the remainder of this section. The respiration
analysis is described in subsection 7.2.1, followed by the heart analysis,
a domain reduction, case matching and finally the user interface.
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As RSA is quantified during a breath (a respiration cycle), a respira-
tion analysis precedes the heart analysis. The respiration analysis locate
where in time the respiration occur and passes that information to the
heart analysis.

7.2.1 Respiration analysis

A breath begins, by definition, on an inhalation. Hence, the respiration
cycle starts when an exhalation stops and inhalation begins. Capno-
graph [5] measurements are used to pinpoint the beginning and end of
the respiration cycle. The capnograph is a non invasive method, and
measures the contents of carbon dioxide (CO2) in exhaled air. Capno-
graph measurements are depicted in figure 7.2.

exhalation inhalation

Figure 7.2: Capnography measurements illustrating the respiration cy-
cle, divided into inhalation and exhalation. The picture is adapted from
[5].

Finding either the beginning or the end of the respiration cycle is
actually sufficient to determine the entire respiration cycle, since the end
of a respiration cycle marks the beginning of the next. A new breath
start, in the ideal case, when the levels of CO2 dramatically drops from
circa 5% to just above 0%, followed by a steadily low level. This low
level of CO2 occurs during the entire inhalation. The levels of CO2 never
reaches 0% because the surrounding air naturally contain CO2, and it is
also difficult to vacate the measuring sensor from all gases, even with a
pump driven device.

A rough estimate of the respiration period is calculated by searching
for a local maxima followed by a local minima. The maxima represents
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the exhalation and the minima the inhalation. A simulated annealing
algorithm is then used on the first order derivates of the CO2 measure-
ments to find an approximate position between the maxima and minima.
The position is where the exhalation stop and inhalation start, i.e. where
the respiration cycle begins.

Two points are identified, the first as the beginning and a second as
the end of the respiration cycle. The samples in the respiration period are
shifted in time due to lag in the sensor and additional delays associated
with capnography measurements. A major delay is the transportation of
CO2 from the measuring point to the sensor. The CO2 is sucked through
a tube with a pump. The corrected measurements are then sent to the
heart analysis as seen in figure 7.1.

7.2.2 Heart analysis

Beats per minute

Figure 7.3: The heart rate variability, i.e. the oscillating effect of the
heart can easily be seen in these heart rate measurements.

Physicians observe both the HRV and the frequency spectrum of the
HRV when they classify RSA. The beginning and the end of a HRV
period is based on the respiration analysis. The HRV period span over
the same time period as the respiration period, and is calculated from
heart rate measurements. The heart rate measurements are mean-valued
electrocardiogram (ECG) measurements. The conversion from ECG to
heart rate measurements are automatically computed in the hardware 1.
HRV measurements are depicted in figure 7.3.

1The AirPas and cStress hardware environments from PBM StressMedicine are
used to measure physiological parameters.
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n∑
i=1

(
HR(i) −

∑n
j=1 HR(j)

n

)
= 0 (7.1)

The frequency spectrum is calculated when the samples for the HRV
have been determined. However, some pre-processing is required before
a frequency spectrum can be calculated. The physicians are only inter-
ested in the oscillation of the sequence of samples, HR, that make up the
HRV, when they observe the frequency spectrum. The sample sequence
have to be shifted to oscillate around it’s own mean value, as seen in
equation 7.1. If not, a large portion of the lower end of the frequency
spectrum is mixed with non relevant oscillations due to the nature of the
heart rate samples. The heart rate samples are always positive numbers
with a range of about 50-90 beats per minute, which unintentionally
create large sine waves, or low frequencies within the measurement se-
quence.

Figure 7.4: A frequency spectrum of a typical RSA. Physicians are only
interested in the range from 0 to 0.4Hz. The spectrum is divided in
to three major frequency bands. Very Low Frequencies (VLF), Low
Frequencies (LF) and High Frequencies (HF), as various physiological
variables appear within these individual bands.

The output sample rate from the hardware sensors is 2 Hz; and a
normal breath are in the range of 6-12 seconds. Hence, there are usually
too few samples in the HRV to make any useful frequency transformation.
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The solution is to pad, or to add, the sample sequence with zeroes.
Padding with zeroes does not affect the frequency distribution in the
spectrum. The sample sequence is padded to 2048 samples. The samples
are then transformed to the frequency spectrum using a Fast Fourier
Transformation (FFT). The length, or power value, of each frequency is
calculated from the FFT’s output of complex numbers, see equation 7.2,
and figure 7.4.

Power(f) = 2
√

FFTreal(f)2 + FFT img(f)2 (7.2)

Physicians study additional parameters in their classification of RSA.
The additional parameters are notch patterns and peak-to-valley differ-
ences in the heart rate measurements. The peak-to-valley value is the
∆Y difference of the maximum and minimum heart rate sample values.
Notches are irregular dips in the otherwise smooth heart rate oscillation.
The notches have different significance depending on where they occur.
Both peak-to-valley and notches are calculated.

7.2.3 Cases and domain reduction

Cases contain all above described parameters and measurements, with
one addition, first order derivates of the heart rate measurements are
also included. A case belong to one of the stereotypical classes of RSA
identified in [16]. A class can contain an arbitrary number of example
cases. The classes are clustered into larger groups, the clustering criteria
is based on the number of notches the heart rate measurement contain2.
A class is not limited to one group. A RSA class may end up in several
clusters. Rules trigger new cases for notches. This determines which
cluster of classes the matching procedure is to use.

7.2.4 Case similarities

A new case is matched with stored cases by calculating the similarity
of the heart rate measurements and the heart rate frequency spectrum.
The new case is matched with all cases in all the classes of the local
cluster.

2Stereotypical classes and their clusters may change whenever new knowledge from
psychophysiological research is available.
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The frequency match calculates the distance between two frequency
vectors by comparing the spectral density of the lowest common fre-
quency window, for that specific frequency region. This is calculated
throughout the entire length of the vectors. The phase, i.e. the angle, of
the frequency is also taken in to account when the distance is calculated.
A similarity of the entire frequency spectrum is compiled and normalised
to a floating point number in the range of 0 − 1. The heart rate mea-
surements are matched through the first order derivates. The derivates
of the new case are interpolated to match the number of derivates in
the stored case. The distance is calculated for every pair of derivates
and compiled to a normalised similarity number for the entire heart rate
sequence.

Figure 7.5: A screenshot of the application christened HR3modul.
HR3modul is a tool for classification of Respiratory Sinus Arrhythmia.
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The similarities of the measurements and the spectrum are merged
to one similarity value for the entire case. The cases are ranked based on
the similarity value. The cases with the closest similarity are presented
to the user. The similarities of the measurements and frequencies are
also available for the user.

7.2.5 User interface

As mentioned in the introduction, one of the systems task is to serve as a
research tool for researchers in psychophysiology. Hence, a windowed en-
vironment was chosen to display the measurements. The user can freely
choose what measurements or parameters he/she wants to work with,
as well as enabling the RSA classification. A screenshot of the system
is displayed in figure 7.5. The screenshot illustrate the complexity of
classifying RSA.

The system is currently implemented in C++ as an application for
the Windows platform. The application uses OpenGL to display graph-
ics, as it is easier to port the application to other platforms in the future,
due to OpenGL’s OS independent interface.

7.3 Evaluation

This section contains a first evaluation of the RSA classification. The
first evaluation was also the first time leading experts in the field of
psychophysiology came in contact with the system.

The case-base was initialized with stereotypical cases produced by
domain experts. The cases are described in [16]. The cases are supposed
to cover all known classifications of RSA, i.e. cover the entire domain.
Additional cases were also added to the case library. The additional
cases belong to one of the stereotypical classes, and were added to fa-
cilitate an easier matching process. An example of an additional case is
were the heart rate is constant during the entire respiration cycle, i.e.,
∀i(si ∈ S : si = 0) after the conversion in equation 7.1. There exist no
frequencies in a straight line.
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7.3.1 Evaluation data set

A data set of approximate 100 pre-recorded measurements was used in
the evaluation. The measurements are recorded in a cStress system, and
are measured from a normal population of 17 year olds. Pre-recorded
measurements are parsed and simulated in the HR3modul system as if
they are real-time measurements streamed direct from hardware.

7.3.2 Results

The evaluation was conducted with the help of the domain experts.
Cases of special interest for an accurate classification were pushed to
the case library. An evaluation mode was enabled when the case library
contained enough example cases of RSA. The evaluation mode collects
statistics of the accuracy of the classification system. The case library
used in the evaluation consists of approximately 50 cases. The cases
represent the existing stereotypical classes of RSA.

However, as this was the first time the physicians had an opportunity
to view every individual RSA, i.e. the HRV per respiration cycle; new
patterns of RSA were discovered. This invalidates the notion of total
domain coverage by the cases in the case library, since the new RSA
patterns does not fit into any of the stereotypical classes described in
section 7.3.

Nevertheless, statistics were collected from the evaluation. A sum-
mary of the statistics are presented in figure 7.6. The figure represents
the accuracy, i.e. similarity, of the classification system in a comparison
with a domain expert. The leftmost column represents the probabil-
ity that the first RSA class suggested by the system is the same as the
expert would choose. The second column from the left represents the
probability that the expert’s choice of class is the same as either the first
or the second RSA suggested by the system. The rest of the columns
proceed in the same manner, from left to right. All statistics of the sim-
ilarities beyond the 5th suggested class have been summarised in to the
rightmost column.
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Figure 7.6: Evaluation of the classification system. The columns repre-
sent the probability of an accurate classification, ranging from similarity
in the first suggested class to the 5th. The remaining classes, i.e. beyond
the 5th, are summarised in the rightmost column.
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7.4 Conclussions

We have presented a MMR design for the classification of RSA. The
design uses two analytical stages of time series measurements from the
heart and from exhaled air. The analytical stages process the time se-
ries measurements so they will conform in to cases, for later similarity
comparisons. A RBR stage limits the number of RSA classes a new case
have to be compared to, and a CBR stage make a similarity match with
the cases from the remaining RSA classes.

The MMR design for the classification of RSA seems to be reliable,
as 19 out of 20 cases in the evaluation data set was among the three
top most suggested classes. The evaluation also showed that even the
experts benefit from the system, as they discovered new patterns of RSA
while using the system.
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