
Towards boosting the OpenMBEE platform with
model-code consistency

Robbert Jongeling
Mälardalen University
Västerås, Sweden

robbert.jongeling@mdh.se

Antonio Cicchetti
Mälardalen University
Västerås, Sweden

antonio.cicchetti@mdh.se

Federico Ciccozzi
Mälardalen University
Västerås, Sweden

federico.ciccozzi@mdh.se

Jan Carlson
Mälardalen University
Västerås, Sweden

jan.carlson@mdh.se

ABSTRACT
Eventual consistency between design and implementation is im-
perative for the quality and maintainability of software systems.
Towards achieving this consistency, engineers can analyze the gaps
between models and corresponding code to gain insights into dif-
ferences between design and implementation. Due to the different
levels of abstraction of the involved artifacts, this analysis is a
complex task to automate. We study an industrial MBSE setting
where we aim to provide model-code gap analysis between SysML
system models and corresponding C/C++ code through structural
consistency checks. To this end, we propose an extension of the
OpenMBEE platform, to include code as one of the synchronized
development artifacts in addition to models and documentation. In
this paper, we outline our initial research idea to include code as a
view in this platform and we propose to explicitly link the code to
generated documentation, and thereby to the model.

CCS CONCEPTS
• Software and its engineering → Model-driven software engi-
neering; Maintaining software.

KEYWORDS
Consistency checking; Model-based systems engineering
ACM Reference Format:
Robbert Jongeling, Antonio Cicchetti, Federico Ciccozzi, and Jan Carl-
son. 2020. Towards boosting the OpenMBEE platform with model-code
consistency. In ACM/IEEE 23rd International Conference on Model Driven
Engineering Languages and Systems (MODELS ’20 Companion), October
18–23, 2020, Virtual Event, Canada. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3417990.3421409

1 INTRODUCTION
In model-based development (MBD) of complex software systems,
a gap between abstract system representations and their concrete
implementation is expected. MBD practices can take many forms,
from informal whiteboard sketches to complete code generation
from models. In the latter case, the gap between model and code
is usually small, i.e. the model contains the same information as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8135-2/20/10. . . $15.00
https://doi.org/10.1145/3417990.3421409

the code and the code can be created from the model by automated
means. However, in typical industrial model-based systems engi-
neering (MBSE), this gap is larger, i.e. the model contains a much
more abstract representation of the system and the code is not
supposed to be automatically generated from it.

Generally, it is understood that inconsistencies between dis-
parate views of the same system are inevitable during development
but they can be problematic if not identified in time [2]. To aid en-
gineers in identifying possible inconsistencies between the model
and code, we propose to introduce structural consistency checks.
These checks can indicate structural differences between model
and code that can be symptomatic of more serious lacks in the
conformance of the code to the model. In particular, we propose to
introduce model-code consistency checks in the Open Model-Based
Engineering Environment (OpenMBEE) platform1.

With this short paper, we aim to discuss with the OpenMBEE
community the idea of extending the OpenMBEE platform to in-
clude code as a view. We argue that this extension would allow for
simple structural consistency checks between the SysML system
model and C/C++ code and providing engineers and managers with
insights into model-code consistency.

2 MOTIVATION
The MBSE paradigm is applied in many different ways in indus-
trial practice. Well-known standards guiding these practices are
ISO42010 [5] and the INCOSE handbook for systems engineer-
ing [11], also commonly referenced is Friedenthal’s “a practical
guide to SysML ”[4]. What follows in this section is a description
of key characteristics of the MBSE setting as it is at our industrial
partner. Although the specific setting serves as background and mo-
tivation for some of the design decisions we make in our proposed
approach in Section 3, the approach does not depend on it.

2.1 An industrial MBSE setting
In broad strokes, the MBSE practice in the studied setting consists
of: (i) the creation of a systemmodel, (ii) the automatic generation of
documentation from it, and (iii) the manual implementation of the
system based on the generated documentation. The system model
captures the decomposition of the system into components, as well
as the interactions between those components. The entire process is
a collaborative effort in which system engineers are responsible for
designing features in the system model and communicating their
designs to software engineers in handover meetings. The software
engineers implement the design, based on the information in these

1https://www.openmbee.org/

https://doi.org/10.1145/3417990.3421409
https://doi.org/10.1145/3417990.3421409
https://www.openmbee.org/

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Robbert Jongeling, Antonio Cicchetti, Federico Ciccozzi, and Jan Carlson

meetings and the generated documentation, but do not directly
interact with the system model.

Despite this separation between the development of the system
model and the code, the two artifacts should eventually be consis-
tent with each other. Manually assessing this gap and the degree to
which model and code are consistent becomes infeasible with the
increasing size and complexity of systems. Therefore, automated
means of guiding engineers to achieve eventual consistency, or at
least alerting them of inconsistency, are valuable additions to the
development process.

In the studied setting, the system model is the core development
artifact capturing the decomposition of the system into several dis-
tinct function blocks. Those function blocks are further decomposed
into system components, which represent units of functionality,
each of which can be implemented as either software or hardware.
In the remainder of this work, we focus on those system compo-
nents that shall be implemented as software. These components are
contained in software blocks in the system model. Their structure
is captured in several block definition diagrams (BDDs) and inter-
nal block diagrams (IBDs). Activity diagrams are used to describe
the behavior of methods and state machines are used to denote
the life cycle of blocks, including possible interactions with other
blocks. Furthermore, the interfaces between different components
are defined using proxy ports. The system model defines both the
communication protocol for interfaces and the messages that are
to be sent over them.

2.2 Consistency checking
The described system model is refined into the implementation. In
general, code and model can be inconsistent in terms of missing in-
formation in two directions: absence (elements in the model are not
represented in the code) and divergence (elements in the code have
no corresponding element in the model) [9]. It is worth noting that
of course many detailed elements in the code are expected to not be
represented in the model, so these divergences are limited to cases
in which the elements would be expected to have a representation
in the model. Furthermore, we consider contradictions between
model and code as inconsistencies. As an example, consider the
following code and the simple state machine of an automatic door
in Figure 1.

Opening

Opened

Closing

Closed

close

open

blocked

Figure 1: Simple state machine
of an automatic door.

vo id c l o s e () ;
vo id open () ;
/ ∗ absence : ∗ /
/ / vo id b l o cked () ;
/ ∗ d i v e r g en c e : ∗ /
vo id f o r c eC l o s e () ;

Based on the described MSBE practice in the studied setting, we
identify several types of inconsistencies as relevant for our struc-
tural consistency checks to detect. We want to check rudimentary
conformance of the code to the model. In particular, the following
model elements should be represented in the code:

• Interface operations,

• Operations defined in state machines,
• Attributes of methods of system components, and
• Blocks in BDDs expected to be implemented as classes.

Symmetrical cases are of interest for ensuring the code does not
diverge from the model. Checking for such divergences is challeng-
ing because many code elements by definition do not have model
counterparts, because of the refinement relation between model
and code. Therefore, we plan to check only consistency between
method definitions in the code and their counterparts in the model.
Contradictions can reveal themselves in several forms, e.g. interface
violations, type violations, or even naming inconsistencies. If the
names of explicitly linked model elements and code elements have
a low degree of syntactic similarity, perhaps the link is outdated,
or one of the elements should be updated.

Explicit correspondence links between model and code elements
would allow us to analyze the artifacts with respect to the outlined
structural consistency. Indeed, if we know which model and code
elements should represent the same concepts, then the correct-
ness and completeness of these links can be checked and possi-
ble inconsistencies indicated. Manual creation of such traceability
links is often infeasible due to the size of the model and hence the
number of required links. Therefore, we propose to: (i) limit the
number of created traceability links, and (ii) simplify the creation
and maintenance of them by allowing for their creation within
the current development process. Since, in our setting, software
engineers currently already base their implementation on the gen-
erated documentation, we expect the additional effort of manually
linking code elements to the documentation to be small. Since the
documentation is merely a generated view on the model, these links
transitively also link the code to the system model, as depicted in
Figure 2.

Model
element X

Document
element X

generate

automatically
linked

Code
element X

manually
linked

manually
implemented

Figure 2: Proposed correspondence links are automatically
generated between model and documentation, and manu-
ally created between documentation and code.

Our intent is to leverage the already established OpenMBEE
platform and boosting it by enabling it to host these correspondence
links and consistency checks. In it, multiple views on a system
model can be synchronized across different tools by creating explicit
correspondence links, or “cross-references” between different view
elements. In Section 3, we introduce the current components of
the OpenMBEE platform and our proposed extension for including
code as a view on the system model.

3 THE OPENMBEE PLATFORM
As outlined, one of the challenges in the described MBSE setting is
to obtain insights on the degree of synchronization between system
model and code. More generally, there is a lack of synchronization

Towards boosting the OpenMBEE platform with
model-code consistency MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

between different engineering artifacts, including documentation.
The OpenMBEE platform provides components that build up a
scalable and collaborative modeling environment in which models
and documents are synchronized across different tools. This is
achieved by considering the system model as the authoritative
source of truth (AST) [10]. In this section, we explore the existing
OpenMBEE components and the possibility of extending some of
them to provide means for structural consistency checking across
artifacts.

3.1 Existing OpenMBEE components
The core component of the OpenMBEE platform is the Model Man-
agement System (MMS). MMS contains a structured data represen-
tation of the system model and provides API functions through
which the model can be inspected and manipulated. Furthermore,
MMS serves as a version control system for this structured data.
Branches can be created in the SysML tool and accessed through e.g.
the view editor. Synchronization of branches and conflict resolution
is supported through Model Development Kits (MDKs). MMS keeps
track of revisions when views are updated.

Cameo Systems Modeler2 is the supported SysML tool through
the Cameo MDK. As part of the MDK, the OpenMBEE platform
provides DocGen, which is a model-based approach for document
generation [3]. To use DocGen, the engineer defines views and
viewpoints within the system model that define the hierarchy and
content of to-be-generated documents.

These generated documents, as well as any other document, may
be edited in the View Editor (VE), which provides a web interface
where different textual views of the model can be edited. VE further
provides the engineer with the ability to define cross-references
between model and document elements by using the MMS APIs.
Once linked by such a cross-reference, elements are automatically
synchronized across model and document.

The solid lines in Figure 3 show existing OpenMBEE compo-
nents and their interactions. To provide our consistency checks,
we propose to link the system model to documentation using the
existing OpenMBEE tooling and further extend it to also link the
code to model and documentation. In the next section, we outline
our proposed usage and extension of OpenMBEE for providing
model-code gap analysis and consistency checking.

3.2 A recipe for enabling consistency checking
in OpenMBEE

In order to provide the links between model and code, as well
as the structural consistency checks introduced in Section 2, we
propose to treat code as yet another view of the system model.
We utilize the existing relationship between model and generated
documentation and provide additional means for engineers to relate
the code they are developing to the generated documentation (and
thereby, transitively, to the model). Finally, we utilize the MMS
APIs to create structural consistency checks based on the created
traceability links. The remainder of this section describes these
ingredients, which are exemplified in Figure 3, using the same
example state machine we saw earlier.

2https://www.nomagic.com/products/cameo-systems-modeler

In the example, the consistency analysis script eventually notices
the discrepancy between the model element (state machine) Door
and the code element (class) Door. In Figure 3, the example output
mentions the absence of a code implementation of the operation
“blocked”. Similarly, we anticipate the method could detect the
divergence of the method “forceClose”, which is present in the code
but not in the model.

3.2.1 Ingredient 1: Generate documentation with cross-references.
In the current development process in the studied setting, docu-
mentation is generated from the model using Rhapsody Publishing
Engine (RPE). Generated documents are based on templates filled
in with details from the model. Since the documentation is com-
pletely generated and not manually changed, it is by construction
synchronized with the system model. In the OpenMBEE platform,
VE allows engineers to create explicit cross-references between
a view and a model, that are then stored in MMS. For example,
a value in a table in a document edited in VE can be linked to a
specific value in a system model. In our setting, we can try to avoid
manually linking model to documentation, since we can benefit
from the document generation process to include cross-references
automatically.

Once these links are automatically established, we can then uti-
lize the existing development process for the manual creation of
traceability links between code and documentation. For example,
the developer would link the method declaration for an operation
in the state machine to the corresponding list item in the documen-
tation. In this way, model, documentation, and code are all kept
consistent with respect to certain structural elements. Clearly, this
is not enough to claim complete consistency between the three
views, but the existence of explicit correspondence links provides
the possibility to implement simple consistency checks, as we will
see in Ingredient 3. First, to enable linking the code to the docu-
mentation in practice, we propose Ingredient 2.

3.2.2 Ingredient 2: Allowing cross-references between code andmodel.
In addition to the generated links between model and documenta-
tion, additional links are required between code and documenta-
tion. For this functionality, we are inspired by VE, which allows
the explicit creation of cross-references (links) between views. An
example of its usage is the linking of a number in the document
to a value property of a block in the system model. We observe
that this linking could also be used to create a correspondence
relation between variables or operations in the model and their
code counterparts. For example, an operation defined in a full port
in the system model can be mapped to a method definition in the
code. To do so, we propose to implement the core VE functionality
as a plug-in for an IDE, thereby allowing the linking to happen
immediately adjacent to the implementation. The idea is that the
created links are then stored in MMS, in the same way that the
links between the system model and the documentation are stored
in MMS.

In practice, our proposal would be a plug-in for the CLion IDE for
C/C++ development3 that allows for the creation of cross-references
separate from typing the values, but akin to editing the property of
an object. Upon selection of a code element such as a method or

3https://www.jetbrains.com/clion/

https://www.nomagic.com/products/cameo-systems-modeler
https://www.jetbrains.com/clion/

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Robbert Jongeling, Antonio Cicchetti, Federico Ciccozzi, and Jan Carlson

Consistency
Analysis

Script

Modelling tool

Opening

Opened

Closing

Closed

close

open

blocked

MMS

element {
projectid: 1,

id: 2,
name: Door,

...,
},
...

Edit

Cross
reference

operation {
id 2,
...

Door

Documentation

A Door shall have
states Opened,
Closing, Closed, and
Opening. To move
from Closed to
Opening, the
operation open is
performed.

VE

 class Door {

 void open();
 void close();
 void forceClose();

 }

Project
Explorer Edit

Cross
reference:

"Door" in doc.
"door"

Door

IDE plug-in

1Generate
Documentation with
Cross-References

2
Allowing cross-

references between
code and model

Project
Explorer

- project
 > door

-
-

3

In state machine
"Door", Operation
"blocked" does not

have a linked method
declaration in linked

class "Door"

Example output

Door

Figure 3: Schematic view of the proposed ingredients of the consistency checking approach in the OpenMBEE platform.

variable declaration, the plug-in should, in the separate pane, allow
for the creation of a link between the selected abstract syntax tree
node and a term from the documentation. Provided with this plug-
in, the development process in the studied setting can be followed
with minimal alterations. Indeed, documentation is generated now
with links (ingredient 1) and the code is always written based
on the documentation anyway. So, the resulting workflow would
be that the code will be written based on the documentation as
usual. Moreover, the software engineer manually links those code
elements that can be explicitly linked to documentation elements.

Having explicit links between e.g. variable declarations and
model elements allows for rudimentary structural consistency checks.
To allow for more elaborate consistency checks, type information
of model elements should be included in the additionalProp field of
elements4. For example, we could go through all elements of type
Full Port in MMS, get all operations defined within them, and check
if all of those are linked to method definitions in the code.

3.2.3 Ingredient 3: Consistency analysis script. The third ingredi-
ent is proposed to utilize the newly created links between code,
documentation, and model. Despite these links, consistency is not
guaranteed by construction. Indeed, since linked elements can be
syntactically synchronized using the MMS and MDK functional-
ity, semantics is still not entailed. Even when model and code are
consistent when the links are first created, the model may later be
changed, leaving the already implemented code to be potentially
inconsistent with the model. For example, a new child element
may be added to the model element, which is not automatically
reflected in the code. Therefore, we propose to introduce a consis-
tency checking script that can detect inconsistencies based on the
elements and references stored in MMS.

In general, consistency feedback should be provided frequently
for it to be useful. However, constant updates during development

4https://mms.openmbee.org/alfresco/mms/swagger-ui/index.html

may not be helpful, since many of the indicated inconsistencies
would be trivial and a result of work in progress. As amiddle ground,
we propose to run the script as part of the continuous integration
process for code development. In addition, the script should be
executable by developers manually, on demand.

The script shall utilize the MMS API, and potentially the type
information as proposed to be included in the system model. Our
outlined structural consistency checks from Section 2 can then be
implemented as queries on the MMS. For example, we can obtain all
operations of state machines and check that they have a reference
to a code element. If no such reference exists, we would indicate
a potential inconsistency. Furthermore, we can utilize syntactical
similarity scores, e.g. Levenshtein distance, to compare names of
elements and indicate possible inconsistencies in cases where this
score is lower than a predetermined threshold.

3.2.4 Limitations. The proposed setup is limited to structural con-
sistency checking. No functional nor behavioral analysis of code
is performed and we do not compare the functionality described
in e.g. state machines and activity diagrams to the functionality of
the code. In the studied setting, this is an acceptable limitation for
two main reasons. Firstly, the model is mostly about documenting
the structure, it focuses on dividing the system into components
and describing how they are combined to form the system. The
behavior is also included, but much less detailed. Indeed, it would
be impossible to generate code directly from the model. Similarly,
it is impossible to compare the high-level functional descriptions
of activity diagrams to code. The second reason is that, given that
structure is defined in more detail than behavior, structural discrep-
ancies are expected to be a good indicator of potential errors in the
implementation or model.

Another limitation is that the correspondence links between
code and documentation elements have to be created manually.
We see this is an acceptable limitation since the implementation

https://mms.openmbee.org/alfresco/mms/swagger-ui/index.html

Towards boosting the OpenMBEE platform with
model-code consistency MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

is done manually and it is based on the documentation already.
Also, for new projects, there is not a large existing model yet, so
correspondence links can be built up alongside the introduction of
new features in design and implementation. Nevertheless, a future
enhancement of the proposed approach could be to automatically
discover correspondence links, which would be beneficial for appli-
cation in existing projects with large pre-existing models and code
bases. To achieve this, we anticipate mining the revision history for
co-change information on a high level of granularity (e.g. files) [7].
To identify links at lower levels of granularity, we envision to utilize
the names and types of elements. Through the well-defined devel-
opment method in the described setting, we know between which
types of elements traceability links are expected. Furthermore, the
names of elements between which a link should be established are
expected to be similar. Given this type and naming information,
we might step-wise achieve an increasingly accurate prediction of
traceability links [6].

4 DISCUSSION
We could also consider the adoption of SysMLv2 in the described
setting. Both SysMLv2 with its API and MMS can play the role of
an authoritative source of truth in an MBSE setting. Compliance
of OpenMBEE with the SysMLv2 API is on the roadmap, but in a
prototyping phase5. To move from the current industrial setting
described in Section 2 to the proposed approach in Section 3 could
require a considerable effort, e.g. adopting a new modeling tool or
implementing extensions to the OpenMBEE components. Therefore,
possible alternative ways of obtaining the described model-code
consistency checking should be explored. One possibility could be
to adopt SysMLv2 and utilize its APIs to provide a similar consis-
tency checking script as described in Ingredient 3 in Section 3. The
challenge then would be to create the explicit correspondence links
between model and code elements.

Indeed, we do not fully utilize the ability of the OpenMBEE
platform to synchronize across variousmodeling tools in our setting,
since the only model of interest is the system model. Nevertheless,
the main potential strength of introducing the OpenMBEE platform
in the studied setting is the automatic synchronization of model,
documentation, and code, and the insights into their consistency
that this may provide. The main weakness of our proposal is that it
remains limited to structural consistency checks.

5 RELATEDWORK
Conceptually, the presented approach fits the theoretical framework
of consistency checking in which views are frequently synchro-
nized. Perhaps the closest fit is single-underlying model (SUM)
where they propose a single source-of-truth representation and
then different views on it [1]. In a way, MMS provides that here,
the model is a single source-of-truth and then both documentation
and code are views on it. Although we have an authoritative source
of truth, it is not quite the same as a SUM, since the views are
only on synchronized at the points where they have the explicit
cross-references. In the SUM approach, all views are a view of the
single underlying model and any change to any view is in fact a

5https://www.openmbee.org/roadmap.html

change to the SUM. MMS provides APIs to synchronize views in
e.g. view editor with the model.

There are several related reports on experiences of adoption
OpenMBEE. Although this paper is not an experience report, we can
draw inspiration from the best practices as outlined by others such
as [10]. Best practices of executable systems engineering (ESEM)
have been gathered in the OpenSE cookbook [8], but in our studied
setting, the model is not aimed to be executable, so we are more
interested in comparing the model to the code.

6 CONCLUSION
In this paper, we share our ideas for including code as a view in the
OpenMBEE framework to enable model-code gap analysis through
structural consistency checks. We have presented our ideas of how
this might work and look forward to discussing further possibilities
with the community. Areas deserving special attention are version-
ing and variability of the model. In future work, we aim to at least
partially implement our ideas in an industrial setting. We think the
studied setting can benefit even from adopting OpenMBEE without
our suggested additional ingredients, but it would be interesting
to see if the suggested additions could provide much needed auto-
mated support for checking the consistency between the system
model and the implementation.

ACKNOWLEDGMENTS
This work is supported by Software Center6.

REFERENCES
[1] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. 2010. Orthographic Software

Modeling: A Practical Approach to View-Based Development. In Evaluation of
Novel Approaches to Software Engineering. Springer Berlin Heidelberg, 206–219.
https://doi.org/10.1007/978-3-642-14819-4_15

[2] Robert Balzer. 1991. Tolerating inconsistency. In Proceedings of the 13th interna-
tional conference on Software engineering. IEEE Computer Society Press, 158–165.

[3] Christopher Delp, Doris Lam, Elyse Fosse, and Cin-Young Lee. 2013. Model based
document and report generation for systems engineering. In 2013 IEEE Aerospace
Conference. IEEE, 1–11.

[4] Sanford Friedenthal, Alan Moore, and Rick Steiner. 2014. A practical guide to
SysML: the systems modeling language. Morgan Kaufmann.

[5] ISO/IEC/IEEE. 2011. ISO/IEC/IEEE 42010:2011(E) Systems and software engineering
– Architecture description. Technical Report. 1–46 pages. https://doi.org/10.1109/
IEEESTD.2011.6129467

[6] Robbert Jongeling, Johan Fredriksson, Federico Ciccozzi, Antonio Cicchetti, and
Jan Carlson. 2020. Towards Consistency Checking Between a System Model
and its Implementation. In International Conference on Systems Modelling and
Management ICSMM, 25 Jun 2020, Bergen, Norway.

[7] Huzefa Kagdi, Jonathan I Maletic, and Bonita Sharif. 2007. Mining software
repositories for traceability links. In 15th IEEE International Conference on Program
Comprehension (ICPC’07). IEEE, 145–154. https://doi.org/10.1109/ICPC.2007.28

[8] Robert Karban, Amanda G Crawford, Gelys Trancho, Michele Zamparelli, Se-
bastian Herzig, Ivan Gomes, Marie Piette, and Eric Brower. 2018. The OpenSE
Cookbook: a practical, recipe based collection of patterns, procedures, and best
practices for executable systems engineering for the Thirty Meter Telescope.
In Modeling, Systems Engineering, and Project Management for Astronomy VIII,
Vol. 10705. International Society for Optics and Photonics, 107050W.

[9] Rainer Koschke and Daniel Simon. 2003. Hierarchical Reflexion Models.. In
WCRE, Vol. 3. 186–208.

[10] Benjamin Kruse and Mark Blackburn. 2019. Collaborating with OpenMBEE as
an Authoritative Source of Truth Environment. Procedia Computer Science 153
(2019), 277–284.

[11] David D Walden, Garry J Roedler, Kevin Forsberg, R Douglas Hamelin, and
Thomas M Shortell. 2015. Systems engineering handbook: A guide for system life
cycle processes and activities. John Wiley & Sons.

6www.software-center.se

https://www.openmbee.org/roadmap.html
https://doi.org/10.1007/978-3-642-14819-4_15
https://doi.org/10.1109/IEEESTD.2011.6129467
https://doi.org/10.1109/IEEESTD.2011.6129467
https://doi.org/10.1109/ICPC.2007.28
www.software-center.se

	Abstract
	1 Introduction
	2 Motivation
	2.1 An industrial MBSE setting
	2.2 Consistency checking

	3 The OpenMBEE platform
	3.1 Existing OpenMBEE components
	3.2 A recipe for enabling consistency checking in OpenMBEE

	4 Discussion
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

