
Analysing Response-Times for Tasks with Offsets
Tight Resluts at Fast Speed

Jukka Mäki-Turja Mikael Nolin
Mälardalen Real-Time Research Centre (MRTC)

Västerås, Sweden
jukka.maki-turja@mdh.se

MRTC report no. 161, May 2004

Abstract
We present an novel method to calculate approximate upper bounds on the worst-case

response-times for tasks which may have offset relations amongst them. The response-times
calculated are tighter (i.e. lower) than previous methods and the calculation time is signifi-
cantly shorter. We have previously obtained both of these benefits in isolation, and in this
paper the two methods are combined to form a tight and fast response-time analysis for tasks
with offsets.

In a comprehensive simulation study we explore both the tightness and analysis speed of;
exact analysis for tasks with offsets, traditional approximate analysis, our previous fast anal-
ysis, our previous tight analysis, and the novel combined tight and fast analysis. The results
show that adding tightness to our fast analysis has a insignificant (albeit negative) impact on
the analysis time. Since the tight and fast analysis always calculates the same response-times
as those of the tight analysis, our tight and fast method is the preferred method to use in any
situation high-quality response-time estimates are needed within reasonable analysis time.

1 Introduction

A powerful and well established schedulability analysis technique is the Response-Time Analysis
(RTA) [1]. RTA is applicable to, e.g., systems where tasks are scheduled in priority order which
is the predominant scheduling technique used in real-time operating systems today. In this paper,
we present a novel method that enables a fast implementation of a tight approximation of the
worst-case response-time for tasks which may have offset relations amongst them.

Traditionally, industrial use of RTA has been limited. However, with recent advancements in
software development and synthesis tools, such as UML-based tools [2, 10, 13], e.g. schedula-
bility tests using RTA, can be integrated in the normal workflow and tool-chains used by real-time

1

engineers. This kind of tools can be used, for instance, to perform automatic task allocation in
a distributed real-time system or to automatically derive task priorities (priority assignment) so
that task deadlines are guaranteed to be met. Typically, such automatic allocation/assignment
methods are based on optimisation or search techniques, during which numerous possible con-
figurations are evaluated. (There can easily be tens or hundreds of thousands of possible con-
figurations even for small systems.) For each configuration a schedulability test is performed
in order to evaluate different solutions. Hence, schedulability tests must be fast in order to be
suitable in practice for such systems. A system with even greater emphasis on analysis speed
is dynamic real-time systems with on-line admission control of real-time tasks. These systems
needs to be able to quickly evaluate whether a dynamically arriving task can be admitted to the
system or not.

Most real-time systems are also embedded control-systems. Typically an embedded system is
also a resource constrained system. This means that resources are scares and cannot easily be
wasted. In this kind of systems its important that the analysis is tight, i.e., does not unnecessarily
overestimate the resources that are needed.

The first RTA for tasks with offsets was presented by Tindell [14]. He provided an exact al-
gorithm for calculating response time for tasks with offsets. However, this algorithm becomes
computationally intractable for anything but small task sets due to its exponential time complex-
ity. In order to deal with this problem, Tindell also provided an approximation algorithm, with
polynomial complexity, which gives pessimistic but safe results (i.e. the worst case response
times are never underestimated) [14].

In this paper we focus on the approximate analysis presented by Palencia Gutierrez et al. [8] that
formalised and generalaised the work of Tindell. Several researchers have further extended the
approximative analysis [9, 11]. These methods focus on precedence-relations among tasks, and
are orthogonal and complementary to the methods presented in this paper.

We will combine our two earlier, complementary, methods to achieve tight analysis results and
fast analysis time. We have previously presented how the original offset analysis, by Tindell [14]
and Palencia Gutierrez et al. [8], can be speed up by two orders of a magnitude for tasks sets of
non-trivial size [6]. We have also shown how the original analysis can be tightened to calculate
lower (but still safe) approximations of the worst case response-times [5, 7]. Both these improve-
ments have been formally proven correct, safe, and never to calculate higher response-times than
the original analysis. In this paper we show how these two, independent, improvements can be
combined to form a tight and fast response-time analysis.

In a comprehensive simulation we study a large set of analysis techniques; the exact analysis
for tasks with offsets, traditional approximate analysis, our previous fast analysis, our previous
tight analysis, and the novel tight and fast analysis. We study both the calculated response-times
and the analysis execution-time for each technique. This is done for a set of different simulation
scenarios. Since the tight and fast analysis calculates the exact same response-times as those of
the tight analysis (which can have a negative effect on analysis time), our tight and fast method
is the preferred method to use in any situation high-quality response-time estimates are needed
within reasonable analysis time.

2

Paper Outline: In section 2 we revisit and restate the original offset RTA [14, 8]. In section 3
we modify this RTA to calculate tighter response-times, and in section 4 we show how our fast
analysis method works. Section 5 presents the combined tight and fast analysis and section 6
presents the evaluation study. Finally, in section 7 we conclude the paper.

2 Existing offset RTA

This section revisits the existing response-time analysis for tasks with offsets [8, 14] and illus-
trates the intuition behind the analysis and the formulas.

2.1 System model

The system model used is as follows: The system, Γ, consists of a set of k transactions Γ1, . . . , Γk.
Each transaction Γi is activated by a periodic sequence of events with period Ti. (For non-
periodic events Ti denotes the minimum interarrival time between two consecutive events) The
activating events can be mutually independent, i.e., phasing between them is considered arbi-
trary. A transaction, Γi, contains |Γi| tasks, and each task is activated (released for execution)
when a relative time, offset, elapses after the arrival of the external event.

We use τij to denote a task. The first subscript denotes which transaction the task belongs to,
and the second subscript denotes the number of the task within the transaction. A task, τij , is
defined by a worst case execution time (Cij), an offset (Oij), a deadline (Dij), maximum jitter
(Jij), maximum blocking from lower priority tasks (Bij), and a priority (Pij). The system model
is formally expressed as follows:

Γ :={Γ1, . . . , Γk}

Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉

τij :=〈Cij, Oij, Dij, Jij, Bij, Pij〉

There are no restrictions placed on offset, deadline or jitter, i.e., they can each be either smaller
or greater than the period. We assume that the load of the system is less than 100%. (This can
easily be tested, and if not the case some response-times may be infinite; rendering the system
unschedulable.)

Parameters for an example transaction (Γi) with two tasks (τia, τib) is depicted in figure 1. The
offset denotes the earliest release time of a task relative to the start of its transaction and jitter de-
notes the variability in the release of the task. (In figure 1 the jitter is not graphically visualised.)

2.2 Response-time analysis

The goal of RTA is to facilitate a schedulability test for each task in the system by calculating an
upper bound on its worst case response-time. We use τua (task a, belonging to transaction Γu) to

3

1 2 3 4 5 6 7 8 9 100

Oia=2

Cia=2

Oib=5

Ti=10

Jib=1

Cib=1

Jia=8

Time

Figure 1: Example transaction 1

denote the task under analysis, i.e., the task who’s response time we are currently calculating.

In the classical RTA (without offsets) the critical instant for τua is when it is released at the same
time as all higher (or equal) priority tasks [4, 3]. In a task model with offsets this assumption
yields pessimistic response-times since some tasks can not be released simultaneously due to
offset relations. Therefore Tindell [14] relaxed the notion of critical instant to be:

At least one task in every transaction is to be released at the critical instant. (Only
tasks with priority higher or equal to τua are considered.)

Since it is not known which task that coincides with (is released at) the critical instant, every task
in a transaction must be treated as a candidate to coincide with the critical instant.

Tindell’s exact RTA tries every possible combination of candidates among all transactions in the
system. This, however, becomes computationally intractable for anything but small task sets (the
number of possible combinations of candidates is mn for a system with n transactions and with
m tasks per transaction). Therefore Tindell provided an approximate RTA that still gives good
results but uses one single approximation function for each transaction. Palencia Gutierrez et
al. [8] formalised and generalised Tindell’s work. We will in this paper use the more general
formalism of Palencia Gutierrez et al., although our proposed method is equally applicable to
Tindell’s original algorithm.

2.3 Interference function

Central to RTA is to capture the interference a higher or equal priority task (τij) causes the task
under analysis (τua) during an interval of time t. Since a task can interfere with τua multiple
times during t we have to consider interference from possibly several instances. The interfering
instances of τij can be classified into two sets:

Set1 Activations that occur before or at the critical instant and that can be delayed by jitter so
that they coincide with the critical instant.

Set2 Activations that occur after the critical instant

When studying the interference from an entire transaction Γi, we will consider each task, τic ∈
Γi, as a candidate for coinciding with the critical instant.

RTA for tasks with offsets is based on two fundamental theorems:

4

1. The worst case interference a task τij causes τua is when Set1 activations are delayed by
an amount of jitter such that they all occur at the critical instant and the activations in Set2
have zero jitter.

2. The task of Γi that coincide with the critical instant (denoted τic), will do so after experi-
encing its worst case jitter delay.

The phasing between a task, τij , and a critical instant candidate, τic, becomes (slightly reformu-
lated compared to [8], see Appendix A):

Φijc = (Oij − (Oic + Jic)) mod Ti (1)

From the second theorem we get that τic will coincide with the critical instant after having expe-
rienced its worst case jitter delay, i.e., the critical instant will occur at (Oic +Jic) mod Ti, relative
to the start of Γi. From this, the definition of Φijc follows in order to keep the relative offset
relations among tasks within Γi. An implication of this is that the first instance of a task τij in
Set2 will be released at Φijc time units after the critical instant, and subsequent releases will
occur periodically every Ti.

Figure 2 illustrates the four different Φijc-s that are possible for our example transaction of fig-
ure 1. The upward arrows denote task releases (the height of the corresponding arrow denotes
amount of execution released, i.e., Cia or Cib respectively). Figure 2(a) shows the phasing be-
tween τia (2) and τib (5) when τia acts as the candidate critical instant. One can see, for every
task in the transaction, when the first invocation in Set2 is released, in the case that τia coincides
with the critical instant. Figure 2(b) shows the corresponding situation when τib is the candidate
to coincide with the critical instant.

1 2 3 4 5 6 7 8 90 10

ibτiaτiaτ
2=Φiaa

5=Φiba

1 2 3 4 5 6 7 8 90 10

6=Φiab

9=Φibb

iaτ
ibτ ibτiaτ

(a) τic = τia (b) τic = τib

Figure 2: Φ-s for the two candidates in Γi

Given the two sets of task instances (Set1 and Set2) and the corresponding phase relative to the
critical instant (Φijc), the interference caused by task τij can be divided into two parts:

1. The part caused by instances in Set1 (which is independent of the time interval t), ISet1
ijc .

2. The part caused by instances in Set2 (which is a function of the time interval t), ISet2
ijc (t).

5

These are defined as follows:

ISet1
ijc =

⌊

Jij + Φijc

Ti

⌋

Cij ISet2
ijc (t) =

⌈

t − Φijc

Ti

⌉

Cij (2)

The interference transaction Γi poses on τua, during a time interval t, when candidate τic coin-
cides with the critical instant, is:

Wic(τua, t) =
∑

∀j∈hpi(τua)

(

ISet1
ijc + ISet2

ijc (t)
)

(3)

Where hpi(τua) denotes tasks belonging to transaction Γi, with priority higher or equal to the
priority of τua.

2.4 Approximation function

Since we beforehand cannot know which task in each transaction coincides with the critical
instant, the exact analysis tries every possible combination [8, 14]. However, since this is com-
putationally intractable for anything but small task sets the approximate analysis defines one
single, upward approximated, function for the interference caused by transaction Γi [8, 14]:

W ∗
i (τua, t) = max

∀c∈hpi(τua)
Wic(τua, t) (4)

W ∗
i (τua, t) simply takes the maximum of each interference function (for each candidate τic).

As an example consider again transaction Γi depicted in figure 1. Figure 3 shows the interference
function for the two candidates (Wia and Wib), and it shows how W ∗

i is derived from them by
taking the maximum of the two functions at every t.

Given the interference (W ∗
i) each transaction causes the task under analysis (τua), during a time

interval of length t, its response time (Rua) can be calculated. Appendix A shows how to perform
these response-time calculations.

3 Tight Analysis

In our previous work we have shown how to decrease the pessimism of the analysis in section 2
[5, 7]. In this section we shortly present this tight analysis, and we begin with an illustrative
example of how the original analysis overestimates the response-time. Consider a simple trans-
action Γi depicted in figure 4 where jitter (Jij) and blocking (Bij) is zero.

Also consider a lower priority task, τua, which is the single task in transaction Γu, with Cua = 2
and Dua = Tu = 12. For this simple task set where Bij = Jij = 0, Dua ≤ Tu only one instance
of τua is active at any point in time. This means that the response time formulas (presented in
appendix A), for the low priority task, can be reduced and simplified to:

Rua = Cua +
∑

∀i6=u

W ∗
i (τua, Rua) (5)

6

1 2 3 4 5 6 7 8 90

2

4

6

10 1 2 3 4 5 6 7 8 90

2

4

6

10

1 2 3 4 5 6 7 8 90

2

4

6

10 1 2 3 4 5 6 7 8 90

2

4

6

10

*
iW

iaW

ibia WW &

ibW

t t

tt

Figure 3: Wic(τua, t) and W ∗
i (τua, t) functions for example 1

time0 105

Cia=2 C ib=4 T i=12

O ib=4O ia=0

Figure 4: Example transaction 2

The response-time calculation (by fix-point iteration) is as follows (starting with Rua = 0):

Iter# t Wia Wib W ∗
i Rua

0 0
1 0 0 0 0 2
2 2 2 4 4 6
3 6 6 4 6 8
4 8 6 4 6 8

Where column “Iter#” denotes the iteration number, “t” the time interval, “Wia” and “Wia”
denotes Wic(τua, t) for the two candidate tasks τia and τib respectively. “W ∗

i ” the value of
W ∗

i (τua, t), and “Rua” the calculated response-time for the iteration. In iteration number 4 the
fix-point iteration terminates, and the calculated response time is Rua = 8. However, it can easily
be seen that a task with Cua = 2 can never be preempted by both tasks τia and τib since both
tasks are separated by at least 2 units of idle time. Hence the actual worst case response-time is
Rua = 6.

7

3.1 Using “Imposed” Interference

One property of the ceiling expression of ISet2
ijc (t) in equation 2 on page 6 is that it returns the

amount of interference “released for execution” during t, resulting in a stepped stair interference
function (as shown in e.g. figure 3). In [5, 7] we show that this is overly pessimistic and for the
approximate offset analysis yields unnecessary pessimistic response-times. Instead, we proposed
the concept on “imposed” interference, which more accurately captures the interference a lower
priority task actually experiences during a time interval t.

When we modify ISet2
ijc (t) in equation 2 so that it returns interference “imposed” on τua we get

a slanted stair function. The two slanted stair functions for our second example transaction
(figure 4 on the preceding page) are shown in figures 5(a) and 5(b).

0 12

t

6

0

i

0 12

t

6

0

i

0 12

t

6

0

i

0 12

t

6

0

i

(d)(c)

(b)(a)

Figure 5: Interference imposed by our example transaction

The slanted stairs are obtained by modifying ISet2
ijc (t) defined in equation 2 so that the “last” task

instance, of the periodically activated tasks in Set2, does not interfere with its full execution time
unless the interval t is sufficiently large. Our redefined version of ISet2

ijc (t) is:

ISet2
ijc (t) =

⌈

t∗

Ti

⌉

Cij − x

t∗ =t − Φijc

x =

0 if t∗ < 0

Cij − (t∗ mod Ti) if 0 < t∗ mod Ti < Cij

0 otherwise
(6)

where Φijc is defined in equation 1 on page 5 and x is used to generate the slants of the “imposed”
interference function.

For example 2 in figure 4 on the preceding page the slanted stairs generated by equation 6 are
shown in figures 5(a) and 5(b), and figure 5(c) shows them overlayed. Using our new version

8

of ISet2
ijc (t) in equation 3 on page 6 we get the maximated slanted stairs interference function,

representing the approximation function W ∗
i , shown in figure 5(d).

With the new definition of interference we can now calculate a new response-time Rua for our
example as follows:

Iter# t Wia Wib W ∗
i Rua

0 0
1 0 0 0 0 2
2 2 2 2 2 4
3 4 2 4 4 6
4 6 4 4 4 6

We note that our new definition of ISet2
ijc (t) make the analysis able to “see” the empty slot between

tasks τia and τib something the original analysis overlooked. The calculated response-time is 6,
which is lower than that of the original analysis (which was 8).

4 Fast Analysis

In this section we present our method to speed up the analysis of section 2; our fast analysis
[6]. The method is based on the insight that the function W ∗

i (τua, t) (equation 4 on page 6) has a
pattern that is repeated every Ti time units (which is proved in [6]). A lot of computational effort
is saved by representing the interference function statically, and during response-time calculation
use a simple lookup function to obtain its value.

4.1 Approximation function with lookup

The key to make a static representation of W ∗
i (τua, t) is to recognise that it contains two parts:

• A jitter induced part, denoted J ind
i (τua). This part corresponds to the task instances be-

longing to Set1. Note that the amount of interference of these instances does not depend
on t.

• A time induced part, denoted T ind
i (τua, t). This corresponds to task instances in Set2. The

time induced part has a cyclic pattern that repeats itself every Ti units of time (see [6]).

We redefine equation 4 using our new notation as:

W ∗
i (τua, t) = J ind

i (τua) + T ind
i (τua, t) (7)

For our example in figure 1 on page 4, this partitioning of W ∗
i (τua, t) is visualised in fig-

ure 6. J ind
i (τua) is the maximum starting value of each of the Wic(τua, t) functions (i.e. max

9

of Wic(τua, 0), see equation 3 on page 6) which is calculated by:

J ind
i (τua) = max

∀c∈hpi(τua)

∑

∀j∈hpi(τua)

ISet1
ijc (8)

1 2 3 4 5 6 7 8 90

2

4

6

10

ind
iT

t

J
ind

i

*
iW

Figure 6: Relation between W ∗
i (τua, t), J ind

i (τua), and T ind
i (τua, t)

The time induced part, T ind
i (τua, t), represents the maximum interference, during t, from tasks

activated after the critical instant. Algebraically T ind
i (τua, t) is defined as:

T ind
i (τua, t) = max

∀c∈hpi(τua)
W+

ic (τua, t) (9)

where
W+

ic (τua, t) =
∑

∀j∈hpi(τua)

(

ISet1
ijc + ISet2

ijc (t)
)

− J ind
i (τua) (10)

We represent T ind
i (τua, t) for the first Ti time units using the concave corners of the function

T ind
i (τua, t) (marked with crosses in figure 6). The representation uses two arrays T c

i and T t
i ,

where T c
i [x] represents the maximum amount of time induced interference Γi will cause a lower

priority task during interval lengths up to T t
i [x] (x ∈ 1 . . . |T c

i |). Since the interference-pattern is
periodic it is enough to represent interference for one period (from time 0 to time Ti).

T ind
i (τua, t) can now use T c

i and T t
i and perform a simple lookup to obtain the time induced

interfere during t. Using this new definition of T ind
i (τua, t) together with equations 7 and 8

instead of equation 4 to compute W ∗
i (τua, t), will reduce the time to compute response times by

an order (or two) of a magnitude [6]. In this paper we do not go into details of how to compute
and use the arrays T c

i and T t
i for the fast analysis, the interested reader is referred to [6].

5 Tight and Fast Analysis

In this section we present our novel tight and fast analysis for tasks with offsets. The method will
calculate the same values as our tight analysis and it will do so using approximately the same

10

computational effort as our fast analysis. In essence, we will apply a similar techniques to the
tight analysis as we did to the original analysis in order to speed up the calculations. However,
as we will show, there are some new considerations when making the tight analysis fast.

We will reuse the framework of the fast analysis is section 4. Since the tight analysis does
not affect the Set1 task instances, equations 7 and 8 on the page before will be the base of
also the tight and fast analysis. Hence, in this section we will show how to make an efficient
implementation of T ind

i (τua, t) and how to calculate and use the arrays T c
i and T t

i to represent the
tight analysis.

5.1 The Periodicity of the Interference

The fundamental pre-requisite to statically represent the interference for a transaction, is that a
repetetive pattern can be found (such that it suffices to store that pattern and use it calculate the
amount of interference for any time interval t). In our previous fast analysis the full interference
of each task within the transaction occurs within the first period (each task is released exactly
once during each period). Hence, we could straight-forwardly represent the interference during
the first period and reuse it for later periods.

However, in the tight analysis, the imposed interference of a task released towards the end of the
period may not be fully included within the period. Even though the task is released within the
period, the slanted interference function makes some of the interference to occur in the subse-
quent period. Figure 7 shows an example critical instant candidate where the interference from
task z spills over between periods.

2 4 6 8 10 12
t

20 2214 16 24

S
et

2
In

te
rfe

re
nc

e

T i=10

3226 28 3018

2

4

Task Cij
�

ijc

x 1 2
y 1 5
z 2 9

Figure 7: Interference spilling into the next period

As seen in figure 7, the interference for the first period ISet2
ijc (t) differs from that of later periods.

Obviously, there can be no spill during the first period, since tasks arriving before the critical in-
stant (i.e. when t < 0) are accounted for in ISet1

ijc . For subsequent periods, however, the effect of a

11

task spilling over period boundaries will be identical. This means that for t > Ti the interference
is repetetive (with period = Ti) and allows for a static representation. The consequence of this is
that we have to represent the interference for the first and subsequent periods separately.

5.2 Preliminaries

To prepare for subsequent calculations, we define three operations (merge, split, and order) that
will be performed for each critical instant candidate before we proceed with calculation of a
transactions interference pattern. These transformations will not change the load or the timing-
behaviour of the interference, they only help us structure the information within a transaction.
The operations will be performed in the order given.

Operation: Merge Each task j ′ that is released before a previous task j has a chance to finish
execution, i.e. (Φijc + Cijc) mod Ti ≥ Φij′c, are merged into one task with execution time Cijc +
Cij′c and offset of Φijc. This operation is performed until all possible tasks has been merged (and
since the load of a transaction is less than 100% the process is guaranteed to converge).

Operation: Split We define the spill of a task j, belonging to transaction i for the critical
instant candidate task c (c ∈ Γi), denoted Sijc, as the amount of execution time that “spills over”
into the next period. Since task j is released at time Φijc, the amount of spill is:

Sijc =

{

0 if Φijc + Cij ≤ Ti

Φijc + Cij − Ti otherwise

To make the spill explicit, we split each task j with a positive spill into 2 new tasks, denoted j ′

and j ′′. j ′ represents the amount of interference of task j that occurs within and at the end of the
current period. j ′′ is called a spill task and represents the amount of interference that occurs at
the beginning of the subsequent period. The definitions are:

Cij′ = Cij − Sijc Cij′′ = Sijc

Φij′c = Φijc Φij′′c = 0

Operation: Order Tasks are enumerated according to their first activation after the critical
instant, i.e., according to increasing Φijc values.

5.3 Precomputing T c
i and T t

i

We will start out by calculating the interference for the first period (for t ≤ Ti) and store that
information in T c

i and T t
i , where T c

i [x] represents the maximum amount of time induced interfer-
ence Γi will cause a lower priority task during interval lengths up to T t

i [x] (x ∈ 1 . . . |T c
i |). This

method is essentially the same as for the fast analsys [6], but adapted for “imposed” interference.

12

To compute T c
i and T t

i we will first calculate the interference pattern for each critical instant
candidate. That is we calculate the pattern generated by W +

ic (τua, t) (equation 10 on page 10)
while using the ISet2

ijc (t) of the tight analysis (equation 6 on page 8).

2

4

10

+
ibW

t
5

+
iaW

Figure 8: Visual representation of pic sets

For each critical instant candidate, τic, tasks are merged, splitted, spill tasks removed (remeber
that spill tasks does not affect the first period), and ordered according to section 5.2. We define
a set of points pic, where each point pic[k] has an x and a y coordinate, describing how the time
induced interference grows over time when τic is the critical instant candidate. The points in
pic corresponds to the convex corners of W +

ic (τua, t) of equation 10 with ISet2
ijc (t) definition of

equation 6. The following equation define the array pic:

pic[1].x = 0

pic[1].y =
∑

∀j∈hpi(τua)

ISet1
ijc − J ind

i (τua) k ∈ 2 . . . |Γi|

{

pic[k].x = Φikc + Cik

pic[k].y = pic[k − 1].y + Cik

(11)

The initial relation (i.e. vertical distance at time 0) between different critical instant candidates
is given by the difference in jitter-induced interference (the sum of all ISet1

ijc instances). Further-
more, we want the time-induced interference to start with 0 (at time 0), see figure 6 in section 4.
This is achived by subtracting the maximum of all jitter-induced interference (stored in J ind

i (τua))
when initialising pic[1].y in equation 11.

The slanted stair variant of W +
ia and W +

ib , for our example transaction in figure 1 on page 4, are
depicted in figure 8 and the corresponding pia and pib sets are illustrated by black and white
circles respectively. For this example transaction we get the following two pic-s:

pia = [〈0,−1〉, 〈4, 1〉, 〈6, 2〉] black circles
pib = [〈0, 0〉, 〈8, 2〉, 〈10, 3〉] white circles

Now, the information generated by all W +
ic (τua, t)-functions is stored in the pic-sets. To obtain

the convex corners of T ind
i (τua, t), we need to extract the points that represents the maximum of

all W+
ic (τua, t)-s. To this end, we calculate the set of points, pi, as the union of all pic-s:

pi =
⋃

τic∈Γi

pic

13

In order to determine the points in pi that corresponds to the convex corners of T ind
i (τua, t), we

define the subsumes relation: A point pi[a] subsumes a point pi[b] (denoted pi[a] � pi[b]) if
the presence of pi[a] implies that pi[b] is not a convex corner. Figure 9 illustrates the subsumes
relation graphically, and the formal definition is:

pi[a] � pi[b] iff pi[a].y ≥ pi[b].y ∧ (pi[a].x − pi[a].y ≤ pi[b].x − pi[b].y)

x

y pi[a]

Subsumed
Not subsumed

Figure 9: The subsumes relation

Given the subsumes relation, the convex corners are found by removing all subsumed points:

From pi remove pi[b] if ∃a 6= b : pi[a] � pi[b]

For our example transaction of figure 1 we have:

pi = [〈0, 0〉, 〈4, 1〉, 〈6, 2〉, 〈10, 3〉]

All we have to do now is to find the concave corners (illustrated by crosses in figure 8 on the
page before) and store them in the arrays T c

i and T t
i . This is done by the following algorithm:

for k := 1 to |pi| do
T c

i [k] := pi[k].y // The interference is the y-value
if k < |pi| then

T t
i [k] := pi[k + 1].x − (pi[k + 1].y − pi[k].y) // Adjust the time for the slanted shape

else
T t

i [k] := Ti

done

For our figure 1 example transaction, T c
i and T t

i (correspons to crosses in figure 8) are as follows:

T c
i = [0, 1, 2, 3]

T t
i = [3, 5, 9, 10]

In the special case that some task τij has Φijc = 0, the first element of T c
i will not be zero.

However, since T ind
i (0) = 0, we need to have at least one element in T c

i that is zero. In such
cases we prepend both the arrays T c

i and T t
i with a zero (stating that there will be 0 time induced

interference for any time interval of length up to 0).

14

5.4 Precomputing P c
i and P t

i

T c
i and T t

i represents the interference for the first period (t ≤ Ti). This a special case and does
not represent the repetetive pattern. Interference in the following period (Ti < t ≤ 2Ti) does,
and we store this information in P c

i and P t
i .

Computing P c
i and P t

i is analogous to computing T c
i and T t

i , with the following differencies:

• Spill tasks from the split operation are not ignored, instead they are included in the calculations.
• In equation 11 on page 13 pic[1].y defines the initial relation between different critical instant

candidates. In P c
i and P t

i , however the relation should reflect this relation at the end of the first
period. Using p′ic to denote the points used when calculating P c

i and P t
i , we get the following

modification to equation 11:

p′ic[1].y = pic[|Γi|].y − max
x∈Γi

pix[|Γi|].y (12)

Analogous to section 5.3 we get that the relation at time Ti for each critical instant candidate is
stored in pic[|Γi|]. And in order to normalise the points to start at 0, we subtract the maximum of
all pic[|Γi|].y.

5.5 Calculating the Interference

Once we have calculated the interference patterns and stored them in the arrays T c
i and T t

i (for
interference when t ≤ Ti), and P c

i and P t
i (for interference when t > Ti), we can modify the

fast implementation of T ind
i (τua, t) (equation 9 on page 10) to use these arrays to lookup the

interference for an arbitrary t:

T ind
i (τua, t) =

{

T c
i [n′] if k < 1

T c
i [|T c

i |] + (k − 1) ∗ P c
i [|P c

i |] + P c
i [n′′] if k ≥ 1

k =t div Ti

t∗ =t rem Ti

n′ = min{m : t∗ ≤ T t
i [m]}

n′′ = min{m : t∗ ≤ P t
i [m]}

(13)

where k represents the number of whole periods (Ti) in t, and t∗ is the part of t that extends into
the last period. It could be noted that T c

i [|T c
i |] contains the sum of all interference during the first

period, and P c
i [|P c

i |] contains the sum of all interference during subsequent periods.

It should be noted that we in equation 13 calculate a stepped stair interference function. The
arrays T c

i , T t
i , P c

i , and P t
i represents the discrete steps when interference increases and to which

level it increases. The actual slant is not represented. It is of course possible to design equation 13
to with the slants. However, following the reasoning in our previous work [12] we can conclude
that fix-point converge cannot occur during such slants. Hence, adding slants is needles, it would
not change the calculated response-times, just increase the number of fix-point iterations needed.

15

Using equations 7, 8, and 13 (instead of the equation 4 on page 6), we obtain the tight and fast
analysis. The analysis calculates the same values as the tight analysis (since the tight version
of ISet2

ijc (t), equation 6 on page 8 is used). The computational effort is similar to that of the fast
analysis. In the next section we demonstrate these properties of the tight and fast analysis.

6 Evaluation

In order to evaluate and quantify our proposed improvements, we have implemented the ap-
proximate response-time equations in appendix A, using: the original definition of ISet2

ijc (t) from
section 2 (Orig), our tight analysis from section 3 (Tight), our fast analysis from section 4 (Fast),
and our novel fast and tight analsysis from section 5 (Tight+Fast). Furthermore, we have also, as
a comparison, implemented the exact analysis (Exact).

Using these implementations and a synthetic task-generator we have performed simulations of
all the methods by calculating the response time for a single low priority task, e.g., corresponding
to an admission control situation.

6.1 Description of Task Generator

In our simulator we generate task sets that are used as input to the different implementations.
The task-set generator takes the following parameters as input:

• Total system load (in % of total CPU utilisation),
• The number of transactions to generate, and
• The number of tasks per transaction to generate.
• Jitter fraction (in % of the transaction periods).

Using these parameters a task set with the following properties is generated:

• The total system load is proportionally distributed over all transactions in the system.
• Transaction periods (Ti) are randomly distributed in the range 1.000 to 1.000.000 time units

(uniform distribution).
• Each offset (Oij) is randomly distributed within the transaction period (uniform distribution).
• The execution times (Cij) are chosen as a fraction of the time between two consecutive offsets

in the transaction. The fraction is the same throughout one transaction. The fraction is selected
so that the the transaction load (as defined by the first property) is obtained.

• The jitter is set to the jitter fraction of the period (Jij = f ∗ Ti)
• Blocking (Bij) is set to zero.
• The priorities are assigned in rate monotonic order [4].

The task submitted for admission control has execution time 10.000 and deadline 500.000.

16

6.2 Description of Simulation Setup

We have implemented the complete response-time equations of appendix A which will show the
effects of our improvements in a realistic scenario. The setup of the simulation is as follows:
a task set is generated according to input parameters (system load, number of tasks, number of
transactions, jitter). And to simulate an admission control situation we calculate the response
time for a low priority task subjected to admission control.

The results in section 6.3 have been obtained by taking the mean value from 500 generated task-
sets for each point in each graph. The admission probabilities and execution times are plotted
with 95% confidence interval for the mean values.

We have measured three metrics from the simulations:

• “Admission probability (%)” — This metric measures the fraction of times (out of the 500
generated task sets) that the admission control task passes the admisson test, i.e., its response
time is lower than its deadline.

• “Fraction of tasks with improvement (%)” — This metric measures the fraction of admission
control tasks that results in a lower response time, compared to the original analysis (and the
equivalent fast analysis). (Orig) and (Fast) are used as a baseline, hence no curves are plotted
for those methods. Note that this metric says nothing about the size of improvements. In our
previous work we have studied this and similar metrics for the tight analysis more thoroughly
[7].

• “Execution time (s)” — The average execution time for performing the analysis. Note, that
since this is an admission control scenario the time to pre-calculate the arrays T c

i and T t
i (which

presumably has been made for all tasks already admitted to the system) is not included in the
execution time. In our previous work we have shown that this time is insignificant for the fast
analysis [6]. Our experiments show that this is also the case for the tight and fast analysis,
where the execution time is approximately the double of the fast analysis (which is expected,
since we calculate two sets of arrays).

6.3 Simulation Results

Figure 10 on the following page shows a typical subset of the simulation results. Note, that the
exact analysis can only be run on small task sets, hence it is not present for larger tasks sets. Also,
since the execution-time of the exact analysis is not relevant, we have not set the scale of y-axis
to show all of its execution times, instead we have zoomed in on the approximate methods.

Figure 10 shows a base configuration where the number of tasks per transaction is 6, the number
of transactions is 3, system load is 90% and the jitter is 0. From this base configuration we vary
either (1) the number of tasks/transaction (the left column), (2) the number of transactions (the
centre column), or (3) the jitter (the right column).

In the two first rows of figure 10 the effects of tightening the response times are shown. We notice
that the two fast analysis techniques coincide with their respective slower analysis (as expected).

17

 0

 10

 20

 30

 40

 50

 60

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

Admission propability (%)

N
o. of tasks/transaction

#T
rans. = 3, L

oad = 90%
, Jitter = 0

E
xact

T
ight
Fast

T
ight+Fast

O
rig

 0

 10

 20

 30

 40

 50

 60

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

Admission propability (%)

N
o. of transactions

#T
asks/T

rans. = 6, L
oad = 90%

, Jitter = 0

E
xact

T
ight
Fast

T
ight+Fast

O
rig

 0

 10

 20

 30

 40

 50

 60

 0
 0.05

 0.1
 0.15

 0.2

Admission propability (%)

Jitter/period ratio

#T
rans. = 3, #T

asks/T
rans. = 6, L

oad = 90%

E
xact

T
ight
Fast

T
ight+Fast

O
rig

(a)
(b)

(c)

 0

 20

 40

 60

 80

 100

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

Fraction of tasks with improvement (%)

N
o. of tasks/transaction

#T
rans. = 3, L

oad = 90%
, Jitter = 0

E
xact

T
ight

T
ight+Fast

 0

 20

 40

 60

 80

 100

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20
Fraction of tasks with improvement (%)

N
o. of transactions

#T
asks/T

rans. = 6, L
oad = 90%

, Jitter = 0

E
xact

T
ight

T
ight+Fast

 0

 20

 40

 60

 80

 100

 0
 0.05

 0.1
 0.15

 0.2

Fraction of tasks with improvement (%)

Jitter/period ratio

#T
rans. = 3, #T

asks/T
rans. = 6, L

oad = 90%

E
xact

T
ight

T
ight+Fast

(d)
(e)

(f)

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

Execution time (s)

N
o. of tasks/transaction

#T
rans. = 3, L

oad = 90%
, Jitter = 0

E
xact

T
ight
Fast

T
ight+Fast

O
rig

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

Execution time (s)

N
o. of transactions

#T
asks/T

rans. = 6, L
oad = 90%

, Jitter = 0

E
xact

T
ight
Fast

T
ight+Fast

O
rig

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0
 0.05

 0.1
 0.15

 0.2

Execution time (s)

Jitter/period ratio

#T
rans. = 3, #T

asks/T
rans. = 6, L

oad = 90%

T
ight
Fast

T
ight+Fast

O
rig

(g)
(h)

(i)

 0
 0.0005
 0.001

 0.0015
 0.002

 0.0025
 0.003

 0.0035
 0.004

 0.0045
 0.005

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

Execution time (s)

N
o. of tasks/transaction

#T
rans. = 3, L

oad = 90%
, Jitter = 0

Fast
T

ight+Fast

 0

 0.005

 0.01

 0.015

 0.02

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

Execution time (s)

N
o. of transactions

#T
asks/T

rans. = 6, L
oad = 90%

, Jitter = 0

Fast
T

ight+Fast

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0
 0.05

 0.1
 0.15

 0.2

Execution time (s)

Jitter/period ratio

#T
rans. = 3, #T

asks/T
rans. = 6, L

oad = 90%

Fast
T

ight+Fast

(j)
(k)

(l)
Figure

10:Sim
ulation

R
esults

W
e

also
see

that
the

tight
analysis

gives
a

significant
im

provem
entover

the
original

analysis.
W

hen
the

num
beroftransactionsorthe

jitterincreasesallm
ethodsdropsin

perform
ance

buttheir
relative

perform
ance

rem
ainsroughly

the
sam

e
(the

second
row

show
sthe

relative
perform

ance).
W

e
notice

(e.g.in
(f))

thatthe
tightanalysis

m
ethods

m
akes

alm
ostas

m
any

im
provem

ents
as

does
the

exactanalysis.

T
he

tw
o

lastrow
s

offigure
10

show
s

the
execution

tim
es.In

row
three

w
e

see
that(Tight)has

a
serious

penalty
com

pared
to

(O
rig)and

thatits
execution

tim
e

has
very

high
variance

(hence
the

large
confidence

intervals).
T

he
reason

for
this

penalty
is

notincreased
com

plexity
in

each
fix-

pointiteration.R
ather;by

notoverestim
ating

the
interference,(Tight)progresses

slow
ertow

ards
the

fix-point(the
progress

m
ade

in
each

iteration
is

inversely
proportionalto

the
overestim

ation
in

each
point).

H
ence,the

penalty
is

due
to

the
m

ore
faithfulm

odelling
ofinterference,notdue

18

to
com

plexity
ofcalculating

the
interference.

In
the

bottom
m

ost
row

w
e

have
zoom

ed
in

on
the

tw
o

fast
analysis

m
ethods

to
expose

their
relative

behaviour.
H

ere
w

e
see

that(Tight+Fast)
has

no
penalty

tow
ards

(Fast)
and

thateither
one

ofthe
m

ethods
could

be
the

faster.W
e

obtain
this

com
parative

im
provem

entof(Tight+Fast)
m

ainly
since

w
e

revert
to

representing
the

interference
w

ith
stepped

stairs
once

w
e

have
cal-

culated
the

(Tight)
interference

function.
H

ence,w
e

gain
this

com
putationalbenefitby

adding
overestim

ation
atplaces

w
here

w
e

are
guaranteed

notto
have

fix-pointsolutions.
Itis

stillthe
case

the
(Tight+Fast)

m
odels

the
interference

m
ore

faithfully
than

(Fast),hence
the

occasional
cases

w
here

(Fast)
is

faster
than

(Tight+Fast).
T

he
fact

the
(Tight+Fast)

can
calculate

low
er

response
tim

es
m

ay
furtherhelp

to
im

prove
its

relative
perform

ance
tow

ards
(Fast).T

he
conclu-

sion
w

e
draw

from
oursim

ulationsisthatthe
disadvantage

offaithfulm
odelling

ofinterference
is

com
pensated

by
the

tightersolutions;hence
the

tw
o

m
ethods

show
com

parable
execution

tim
es.

7
C

onclusions

In
this

paperw
e

have
presented

a
novelm

ethod
thatallow

s
forefficientand

tightcalculations
of

approxim
ate

w
orst-case

response-tim
es

fortasks
w

ith
offsets.W

e
have

successfully
m

erged
our

tw
o

previousim
provem

ents[6,7]to
the

originalresponse-tim
e

analysis(RTA
)presented

by
Tin-

dell[14]and
Palencia

G
utierrez

etal.[8].O
urim

provem
entsare

orthogonaland
com

plem
entary

to
otherproposed

extensions
to

the
originaloffsetanalysis

[9,11]

T
he

m
ain

effortin
perform

ing
RTA

for
tasks

w
ith

offsets
is

to
calculate

how
higher

(or
equal)

priority
tasks

interfere
w

ith
a

task
underanalysis.T

he
essence

ofourfastm
ethod

is
to

calculate
and

store
this

inform
ation

statically
and

during
response

tim
e

calculations
(fix-pointiteration),

use
a

sim
ple

table
lookup.

O
ur

tight
analysis

exploits
the

fact
that

the
interference

im
posed

by
higher

priority
tasks

are
overestim

ated
in

traditionalRTA
.B

y
rem

oving
this

overestim
ation,

significantly
tighterresponse-tim

escan
be

calculated.T
he

tightand
fastanalysispresented

in
this

paper
successfully

com
bines

our
tw

o
m

ethods
to

im
prove

the
RTA

by
identifying

the
periodic

and
non-periodic

parts
ofthe

interference,and
representing

them
separately.

FasterRTA
have

severalpositive
practicalim

plications:(1)E
ngineering

tools
(such

as
those

for
task

allocation
and

priority
assignm

ent)
can

feasibly
rely

on
RTA

and
use

the
task

m
odelw

ith
offsets,and

(2)on-line
scheduling

algorithm
s,e.g.those

perform
ing

adm
ission

control,can
use

accurate
on-line

schedulability
tests

based
on

RTA
.Tighter

RTA
has

the
practicalim

plications
to

allow
m

ore
efficienthardw

are
utilisation.

E
ither

m
ore

functions
can

be
fitted

into
the

sam
e

am
ountofhardw

are,orless
pow

erful(cheaper)hardw
are

can
be

used
forthe

existing
functions.

H
ence,ourtightand

fastanalysisisa
very

attractive
choice

to
include

in
engineering

toolsand/or
adm

ission
controlsoftw

are.

In
a

com
prehensive

sim
ulation

study
w

e
see

thatournovelanalysis
have

very
sim

ilarcom
puta-

tionalrequirem
ents

to
thatof

the
fastanalysis

(som
etim

es
slightly

slow
er

due
to

sm
aller

steps
in

the
fix-pointiteration,and

som
etim

es
faster

due
to

earlier
fix-pointconvergence).

E
specially

w
e

notice
that

the
com

putational
disadvantage

of
the

tight
analysis

(com
pared

to
the

original

19

analysis)is
com

pletely
rem

oved
w

hen
com

paring
the

tightand
fastw

ith
the

fastanalysis.E
xam

-
ple

benchm
arks

include
thatthe

tightand
fastanalysis

allow
s

forover20%
m

ore
tasks

adm
itted

to
the

system
(in

an
adm

ission
control

situation),
and

that
80%

of
the

tasks
receives

a
low

er
response-tim

e
estim

ate,w
hile

the
execution

tim
e

is
decreased

by
overtw

o
orders

ofa
m

agnitude
(com

pared
to

the
originalanalysis).

R
eferences

[1]
N

.C
.A

udsley,A
.B

urns,R
.I.D

avis,K
.Tindell,and

A
.J.W

ellings.

Fixed
Priority

Pre-E
m

ptive
Scheduling:

A
n

H
istoricalPerspective.

R
eal-Tim

e
System

s,8(2/3):129–154,1995.

[2]
I-L

ogix.

R
hapsody.

http://w
w

w
.ilogix.com

/products/rhapsody.

[3]
M

.Joseph
and

P.Pandya.

Finding
R

esponse
Tim

es
in

a
R

eal-Tim
e

System
.

The
C

om
puter

Journal,29(5):390–395,1986.

[4]
C

.L
iu

and
J.L

ayland.

Scheduling
A

lgorithm
s

forM
ultiprogram

m
ing

in
a

H
ard-R

eal-Tim
e

E
nvironm

ent.

Journalofthe
AC

M
,20(1):46–61,1973.

[5]
J.M

äki-Turja
and

M
.Sjödin.

Im
proved

A
nalysis

forR
eal-Tim

e
Tasks

W
ith

O
ffsets

–
A

dvanced

M
odel.

TechnicalR
eportM

R
T

C
no.101,M

älardalen
R

eal-Tim
e

R
esearch

C
entre

(M
R

T
C

),M
ay

2003.

[6]
Jukka

M
äki-Turja

and
M

ikaelN
olin.

FasterR
esponse

Tim
e

A
nalysis

ofTasks
W

ith
O

ffsets.

In
P

roc.10
th

IE
E

E
R

eal-Tim
e

Technology
and

A
pplications

Sym
posium

(R
TA

S),M
ay

2004.

To
appear.

[7]
Jukka

M
äki-Turja

and
M

ikaelN
olin.

TighterR
esponse-Tim

es
forTasks

w
ith

O
ffsets.

Subm
itted

forpublication,A
pril2004.

20

[8]
J.C

.Palencia
G

utierrez
and

M
.G

onzalez
H

arbour.

Schedulability
A

nalysis
forTasks

w
ith

Static
and

D
ynam

ic
O

ffsets.

In
P

roc.19
th

IE
E

E
R

eal-Tim
e

System
s

Sym
posium

(R
TSS),

D
ecem

ber1998.

[9]
J.C

.Palencia
G

utierrez
and

M
.G

onzalez
H

arbour.

E
xploiting

Precedence
R

elations
in

the
Schedulability

A
nalysis

of

D
istributed

R
eal-Tim

e
System

s.

In
P

roc.20
th

IE
E

E
R

eal-Tim
e

System
s

Sym
posium

(R
TSS),

pages
328–339,D

ecem
ber1999.

[10]
R

ational.

R
ationalR

ose
R

ealTim
e.

http://w
w

w
.rational.com

/products/rosert.

[11]
O

.R
edell.

A
ccounting

forPrecedence
C

onstraints
in

the
A

nalysis
ofTree-Shaped

Transactions
in

D
istributed

R
eal-Tim

e
System

s.

TechnicalR
eportT

R
ITA

-M
M

K
2003:4,D

ept.ofM
achine

D
esign,K

T
H

,

2003.

[12]
M

.Sjödin
and

H
.H

ansson.

Im
proved

R
esponse-Tim

e
C

alculations.

In
P

roc.19
th

IE
E

E
R

eal-Tim
e

System
s

Sym
posium

(R
TSS),

D
ecem

ber1998.

U
R

L
:http://w

w
w

.docs.uu.se/~m
ic/papers.htm

l.

[13]
TeleL

ogic.

Telelogic
tau.

http://w
w

w
.telelogic.com

/products/tau.

[14]
K

.Tindell.

U
sing

O
ffsetInform

ation
to

A
nalyse

Static
Priority

Pre-em
ptively

Scheduled
Task

Sets.

TechnicalR
eportY

C
S-182,D

ept.ofC
om

puterScience,U
niversity

of

Y
ork,E

ngland,1992.

21

A
C

om
plete

R
TA

form
ulas

In
this

appendix
w

e
provide

the
com

plete
setof

form
ulas

to
calculate

the
w

orstcase
response

tim
e,

R
u
a ,

fora
task

under
analysis,

τ
u
a ,as

presented
in

Palencia
G

utierrez
etal.[8].

T
he

interference
transaction

Γ
i poses

on
a

low
erpriority

task,
τ
u
a ,if

τ
ic

coincides
w

ith
the

criticalinstant,
is

defined
by

(see
equation

3
in

this
paper):

W
ic (τ

u
a
,t)

=
∑

∀
j∈

h
p

i (τ
u

a
)

(

⌊

J
ij

+
Φ

ij
c

T
i

⌋

+

⌈

t
−

Φ
ij

c

T
i

⌉

)

∗
C

ij
(26

in
[8])

w
here

the
phase

betw
een

task
τ
ij

and
the

candidate
criticalinstanttask

τ
ic

is
defined

as
(see

equation
1

in
this

paper):
Φ

ij
c
=

T
i
−

(O
ic

+
J

ic
−

O
ij)

m
od

T
i

(17
in

[8])

T
he

approxim
ation

function
for

transaction
Γ

i w
hich

considers
allcandidate

τ
ic -s

sim
ultaneously,

is
de-

fined
by

(see
equation

4
in

this
paper):

W
∗i
(τ

u
a
,w

)
=

m
ax

∀
c∈

h
p

i (τ
u

a
)
W

ic (τ
u
a
,w

)
(27

in
[8])

T
he

length
ofa

busy
period,for

τ
u
a ,assum

ing
τ
u
c

is
the

candidate
criticalinstant,is

defined
as

(N
ote

that
the

approxim
ation

function
is

notused
for

Γ
u):

L
u
a
c

=
B

u
a

+
(p

−
p
0
,u

a
c
+

1)C
u
a +

W
u
c (τ

u
a
,L

u
a
c)

+
∑

∀
i6=

u

W
∗i
(τ

u
a
,L

u
a
c)

(30
in

[8])

w
here

p
0
,u

a
c

denotes
the

first,and
p

L
,u

a
c

the
last,task

instance,of
τ
u
a ,activated

w
ithin

the
busy

period.
T

hey
are

defined
as:

p
0
,u

a
c
=

−

⌊

J
u
a

+
Φ

u
a
c

T
u

⌋

+
1

(29
in

[8])

and

p
L

,u
a
c
=

⌈

L
u
a
c
−

Φ
u
a
c

T
u

⌉

(31
in

[8])

In
orderto

getthe
w

orstcase
response

tim
e

for
τ
u
a ,w

e
need

to
check

the
response

tim
e

forevery
instance,

p
∈

p
0
,u

a
c
...

p
L

,u
a
c ,in

the
busy

period.C
om

pletion
tim

e
ofthe

p’th
instance

is
given

by:

w
u
a
c (p

)
=

B
u
a

+
(p

−
p
0
,u

a
c
+

1)C
u
a

+
W

u
c (τ

u
a
,w

u
a
c (p

)
+

∑

∀
i6=

u

W
∗i
(τ

u
a
,w

u
a
c (p

))
(28

in
[8])

T
he

corresponding
response

tim
e

(forinstance
p)is

then:

R
u
a
c (p

)
=

w
u
a
c (p

)
−

Φ
u
a
c
−

(p
−

1)T
u

+
O

u
a

(32
in

[8])

To
obtain

the
w

orstcase
response

tim
e,

R
u
a ,for

τ
u
a ,w

e
need

to
consider

every
candidate

criticalinstant
,τ

u
c

(including
τ
u
a

itself),and
foreach

such
candidate

every
possible

instance,
p,of

τ
u
a :

R
u
a

=
m

ax
∀
c∈

h
p

u
(τ

u
a
)∪

a [
m

ax
p
=

p
0
,u

a
c
,...,p

L
,u

a
c (R

u
a
c (p

))]
(33

in
[8])

22

