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Abstract—Safety-critical software systems have traditionally
been found in few domains, e.g., aerospace, nuclear and medical.
As technology advances and software capability increases, such
systems can be found in more and more applications, e.g., self-
driving cars, autonomous trains. This development will dramat-
ically increase the operational exposure of such systems. All
safety-critical applications need to meet exceptionally stringent
criteria in terms of dependability. Proving compliance is a
challenge for the industry and there is a lack of accepted methods
to determine the status of safety-critical software. The regulatory
bodies often require a certain amount of testing to be performed
but do not, for software systems, require evidence of a given
failure rate.

This paper addresses quantification of test results. It examines
both theoretical and practical aspects.

The contribution of this paper is an equation that estimates the
remaining undetected faults in the software system after testing.
The equation considers partial test coverage. The theoretical
results are validated with results from a large industry study
(commercial military software). Additionally, the industry results
are used to analyze the concept of entropy also known as Shannon
information, which is shown to describe the knowledge gained
from a test effort.

Index Terms—safety-critical, failure rate, prediction, software,
entropy, test

I. INTRODUCTION

The technological advances allow for an increasing num-

ber of safety-critical applications. More and more complex

descisions are handed over to software based systems. In the

past such safety-critical systems have been found in a few

domains such as aerospace and nuclear. These domains have

over the years acquired a certain level of maturity when it

comes to development of safety-critical systems. Standards,

e.g., DO-178C [1] or IEC 61513 [2], have evolved that

gives guidance on best practice. However, there has been the

lingering problem of actually proving the target failure rates

prior to deploying the systems. McDermid [3] talks about

a ”prediction gap”, between what is claimed and what is

proven. The size and complexity of today’s systems rules out

exhaustive testing and leaves a doubt whenever a new system

is deployed. The consensus in the safety-critical community

is that a fault density of 1 per kLoC (1000 lines of code) is

considered to be world class [3], i.e., a safety-critical program

with 100 kLoC can be expected to have approximately 100

faults.

Despite that a lot of theoretical work have been done,

for safety-critical software there is a lack of methods and

strategies to deal with the issue of predicting the failure

rate or, with confidence, determine the fault density of the

software. In [4], Littlewood and Strigini describes the slow

progress in this area since the early nineties. The drive towards

autonomous vehicles, advanced IoT, artificial intelligence etc,

means that this problem is further aggravated. More and more

safety-critical systems will be in use in the future. Uncertain

predictions of their failure rate, risk coming with a high

pricetag, as such systems become more exposed [5].

The contribution of this paper is to present a method

for determining the status of safety-critical software that

is applicable to industrial sized real software. This method

consists of taking a sufficiently large sample and use the

results to statistically draw conclusions about what remains

undetected. The equation from Sundell et al. [6], that estimates

the undetected faults when the full input space is sampled, is

generalised to consider partial test coverage. The input to this

equation are parameters known in an industry setting, after a

test effort. The results are validated with a real industry case

study.

This paper is organized as follows, section II covers related

work, that is in section III followed by a theoretical presen-

tation of extrapolation of partial sampling. The case study is

presented in section IV, which is followed by a section on

entropy. Section VI summarizes the results. The paper ends

with two sections on further analysis of the results and drawn

conclusions.

II. RELATED WORK

The problem of predicting the failure rate for safety-critical

software has been an issue for decades. The problem has

been described by many, e.g., McDermid and Parnas [3], [7].

The strict requirements mean that conventional methods and

metrics, e.g., reliability growth model, cannot be applied [8]–

[10]. The problem has been viewed from different angles.

The concept of testability [11], was introduced by Voas,

and is defined as the probability of faulty software failing.

This concept has been further elaborated by Bertolini and

Strigini [12]–[14]. A lot of research has been focused on

which conclusions can be drawn from long test suites with no

encountered failures. Voas et al. describe in [15] how expected
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failure rate can be calculated based on the number of test

cases and how they were sampled (user profiles), as long

as no failures are encountered. In [5] Bertolino and Strigini

analyze the two extreme positions of assessment of safety-

critical software, i.e., the statistical position, requiring data

from realistic testing/operation, versus the probability of the

software being fault free (perfect). Other noteworthy related

work includes Arcuri’s et.al. analysis of how many test cases

that are required to cover a given number of targets [16].

Bishop and Bloomfield have presented papers about worst case

bound and worst case reliability function [17], [18].

The work presented in this paper is related to above work

but is focusing more on practical industry implementation.

Much of the work in this paper is based on attempting to

implement and adapt the results reported by Sundell et al. [6],

which presents an equation for prediction of undetected faults.

This equation anticipates that the software is indeed faulty and

that all the faults are not detected during testing.

A related approach, which aims at describing the state of

the system, is to look at the entropy or Shannon information.

Clark states in [19] about entropy, ”It is a negative quantity

that measures ignorance – uncertainty about the outcome of the

experiment of sampling the random variable”. In this paper, the

outcome is interpreted as being, the risk of triggering a fault

when the software is executed. This defines the ignorance of

the outcome when the software is executed.

III. THEORY - EXTRAPOLATION OF PARTIAL SAMPLING

The equation presented in [6] predicts the remaining faults

when the full input space is sampled. The equation is based on

the predictibility you get from uniform sampling. This section

analyzes the cases when only a limited part of the input space

can be reached. As discussed in subsection IV-B, achieving

a high test coverage can require a lot of effort. However, a

test suite that targets only a subspace of the input space can

still be used to draw conclusions of the remaining faults in the

software. This assumes that the untested parts of the software

is of the same quality as the tested parts, in terms of fault

density.

A. Assumptions

The theoretical part of this work is based on the same

assumptions stated in [6], with one exception. The area of

interest here is the situation where the full input space, for

whatever reason, can not be reached and thus assumption 1

is removed, see below. Instead we add an assumption 7, that

the (reachable) sample is assumed to be representative of the

system in terms of present faults.

Assumptions:

1) The input and state space of the system is reachable.

2) All parameters are defined at runtime.

3) The system has a deterministic behavior.

4) Uniform sampling of the input space is used.

5) More than 1,000 test cases are generated.

6) More than 50 faults are present in the system prior to

testing.

Additional assumption:

7) The tested part is representative in terms of fault density.

B. Rationale

The assumptions refer to the context of medium to large

safety-critical software systems and their rationale are ex-

plained in more detail by Sundell et al. [6]. The rationale can

be summarized in the following way.

The development standards for safety-critical software, e.g.,

DO-178C [1], IEC 61513 [2], constrain the resulting software

to have unique characteristics, different from software in

general. There are a number of guidelines and recommended

practices that aim to make the software deterministic and

reliable. There are restrictions on which program languages

that can be used, dynamic memory allocation, initialization

of parameters etc. Moreover, the standards typically require

removal of dead- and unreachable code. If you can not test a

part of the code it needs to be removed. Thus, the final code

is reachable.

Despite all the precautions, a fault density of 1 (safety-

critical) fault/1kLoC is considered to be world class [3].

The other assumptions describe how the random testing is

performed.

Figure 1, shows how a test suite in accordance with the

assumptions can be modeled in 3D.

The model corresponds with what Littlewood and Strigini

proposes, in [9] they state; A plausible conceptual model of
the software failure process is as follows. A program starts
life with a finite number of faults, and these are encountered
in a purely unpredictable fashion. Different faults contribute
differently to the overall unreliability of the program: some are
’larger’ than others, i.e., they would show themselves (if not
removed) at a larger rate. Thus different faults have different
rates of occurrence. The fault size concept is used in this paper.

A large fault means that a relatively large partition of the input

space can trigger a specific fault. This can also be expressed

as, and is equivalent to, occuring at a large rate during random

sampling.

C. Proposed equation

Equation 1, described by Sundell et al. [6], requires a

random sampling of the full input space. The failure density

is defined as the risk of a random input vector triggering a

fault. If random input is the user profile, the failure density is

equal to failure rate.

Number of tests = τ
Number of failures detected = ε
Number of identified unique faults = υ
Failure density = ρ
(sum of remaining undetected faults)

λ = υ2/(ε× τ)
ρ = λ× e−λ

(1)

When a subspace is sampled the above equation is valid only

for the sampled/tested part. The untested part can be predicted

by ε/τ . The Central Limit Theorem ensures that the ε/τ -term
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Fig. 1. Test suite sampling a subspace. The full volume represents a 3D
projection of the entire input space. The boxes represent input that trigger
faults, their volumes are proportional to their respective risk of being triggered.
Points are samples drawn in the test suite. The axes span a projection of the
normalized input space.

converges to a prediction of the initial failure density of the

tested part [20]. By summing the prediction for the tested- and

untested parts the following Equation 2 is derived:

Percentage of input space sampled = sp
λ = υ2/(ε× τ)
ρ = sp× λ× e−λ + (1− sp)× (ε/τ)

(2)

The theoretical results, presented in section VI, show that

partial sampling can be used to provide an acceptable estimate

of the undetected faults. Sampling as little as 25% - 30% of the

input space will give the same correlation as a full sampling

strategy, and an acceptable low mean error, see Table I and

Figure 5.

IV. CASE STUDY - TEST COVERAGE FROM RANDOM INPUT

The industrial case study required implementation of ran-

dom testing. The focus was to study which test coverage ran-

dom testing could achieve with complex commercial software,

i.e., investigate how well the model, presented by Sundell et

al. [6], holds up in an industry setting. This model makes the

idealisation, that a certain input generates a certain output, this

is often an inadequate model of real world systems. Complex

systems can, at runtime, be in many different states, which

can yield different results.

In this study, the SUT (System Under Test) processes the

history of parameters, i.e., the output depends on previous

input, then a random generation of input has to take this in

to consideration (grey box approach). As shown in this paper,

such a tailoring of the input generation, allow for a greatly

increased test coverage. It is also shown that the test coverage

is very important for maximizing the knowledge of the system,

during testing. The case study was performed in collaboration

with the industry, and in parallel with the existing development

process of the industry project. All findings were reported to

the industry project management. The SUT is a subsystem that

is used by several military platforms, including fighter jets. The

software is classified as being of low/medium criticality.
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Fig. 2. A randomly generated signal (top) vs a sine curve (bottom). The
chance of randomly generating a specific type of curve, e.g., sine, is low.

A. System Under Test - Description

The company’s commercial presentation of the system:

”Self-defence for airborne platforms means knowing
whether anyone is observing me or making me a target. That
requires keeping track of every type of signal out there. This
EW (Electronic Warfare) system is designed to provide self-
defence in sophisticated, diverse and dense threat environ-
ments.”

Context, as defined by Jedlitschka et al. [21]:

* application type (EW - Electronic Warfare),

* application domain, (Aerospace),

* type of company (Medium sized),

* experience of the participants (Professionals),

* time constraints (Commercial),

* process (Standardized),

* tools (Commercial),

* size of project ( > 1k person months)

B. Black box vs grey box

The initial test suites were performed without considering

the structure of the system software, a.k.a. black box testing.

Each stream of input was randomly generated and executed.

The function test coverage, that was reached for module A (a

main software module containing the signal shape logic), was

42%.

An analysis of the system software revealed that it is

branched based on the shape of the incoming sequences of

a few parameters. The software is identifying signals as being

sine-, triangular-, random shaped, etc. The reason for the rather

low coverage is that the uniform random generation of a signal

is unlikely to generate a certain shape in finite time, see Figure

2.

When the generation of input was modified to include signal

streams in the shapes that the software scans for, the test

coverage was significantly improved. This consideration of

the structure of the software is called grey box testing. For

module A, a 96% function- and a 72% condition/decision

coverage was reached. Analysis of the missing 4% of the
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Fig. 3. Uncovered condition/decisions vs number of tests. The values are
taken from independent test suites using the same generation of input. The
curve converges to a quasi stable level.

functions, in module A, shows an interlinked set of functions

that were never called. Despite that more than 3 million

random simulations were performed. The top function in the

missing 4% - call hierarchy were found to have an if-statement

that never evaluates to TRUE. The if-statement had a comment

stating ”This should not happen”. Such hard to reach functions

can be considered to be candidates for removal, but can be

tested by having a tool or script directly call them. However,

if they cannot be triggered on a system level - their system

effect cannot be tested and evaluated.

An observation was made that, both the function- and

condition/decision coverage stays, more or less, asymptotically

stable due to the statistical hurdles described above, see Figure

3.

C. Partial code coverage vs partial input space

During the study we found that, when the input generation

was modified it resulted in a corresponding test coverage,

independently of the length of the test suite. The data shows

that, there is no correlation (0.013) between condition/decision

coverage and the length of the test suite.

This means that a given way of generating test input

corresponds, and rapidly converges, to a given test coverage,

see Figure 3. At this stage, an hypothesis was formulated that

a code coverage corresponds to a subpart of the input space,

and could be used as an approximation of the sp-parameter

(percentage of the input space) in Equation 2.

In order to investigate this hypothesis, a number of test

suites were performed, where both the code coverage and the

length of the test suites were varied. All of these test suites

were performed using the same development build or version

of the software. The code coverage was determined using the

tool BullseyeCoverage [22]. This tool can determine if a func-

tion, in the code, has been called (function coverage) and if a

conditional statement has been evaluated (condition/decision

coverage). Ideally, the results from the proposed Equation

2 should be compared with a complete list of faults with

their respective probability of occurence. However, this would

require exhaustive testing of the software and such an effort

is infeasible for software of this size.

Instead, the validation was done against one parameter that

remains constant, i.e., the initial failure density (sum of faults).

The real value of this parameter is constant for all test suites,

as the same version of the software was used throughout.

The initial sum of faults, the initial failure density, can be

calculated by adding the detected and undetected faults.

Statistical theory tells us, that the predictions of this sum

can be expected to be an approximately normally distributed

parameter.

The test coverage, which turned out to be the hardest aspect

to control, was varied by commenting out test code that

generates certain parts of the test input generation.

The estimated initial failure densities as well as the esti-

mated sum of detected- and undetected faults, are presented

in section VI, below. The calculated values show consistency

and appear to be a good appoximation to the actual values.

The calculated undetected failure density can be used as a

quantification of the current status of the software. Addition-

aly, the result can be used for calculation of entropy, which is

an alternative quantification metric.

V. INFORMATION THEORY AND ENTROPY

It has been suggested that Shannon information or entropy

could be used for analysis of such areas as software testing

[19], [23]. The entropy can be interpreted as a measure of

ignorance of the outcome of sampling a random variable.

Here a lower entropy means less- and a higher means more

ignorance.

In this context, the execution of a (safety-critical) system is

seen as either having a correct or an incorrect outcome. During

the process of testing a system more knowledge is gained,

hence the ignorance and entropy is reduced. By calculating

the initial- and final entropy states the reduction can be seen

as an effect of testing.

The definition of Shannon information is:

H = −
∑

x∈X
p(x)log2(p(x))

Here p represents the risk of drawing a random set of input

that triggers faults. The test effect can be calculated from:

ΔH = HInitial −HFinal

The input to Equation 2 allows for calculation of p, for both

the inital state (prior to testing) and the final state. The initial

p is given by ε/τ , see [20], and the final p is the calculated ρ
(remaining undetected faults), from Equation 2.

The results from the simulation study allows for a theoret-

ical analysis of how the test effect (entropy drop) is affected

by the length of the test suite and the test coverage. The mean

values are summarized in Figure 4.

Furthermore, the analysis can be extended to the data

obtained from the industry project. This data was used to

calculate the entropy reduction in the same way, as a function

of test coverage and length of the test suite. The industry
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Fig. 4. Test effect. Observed entropy drop (normalized) vs the simulation
data. The industry data is superimposed and shown in white. (Simulated- and
Industry data)

results have been superimposed on to the simulated data, and

is shown in white. The industry data (N = 85) covers a subset

of the theoretical data (N = 10023).

VI. RESULTS

The study of commercial military software is complicated

by the fact that results can be considered commercially sen-

sitive and in some cases classified. In order to mitigate such

concerns all the results presented, in this paper, have been

”normalized” to the level of 0.01. This is the mean value of

the initial sum of faults in the theoretical simulation study.

This number shall not be considered to represent the values

obtained for the software in the case study.

The values themselves have no relevance in the context that

they are presented. Here it is only the relationship between

the parameters that are of interest, e.g., the consistency and

correlation of the sums of initial faults.

A. Simulation study

The simulation study was performed in the same way, using

the same model, as Sundell et al. [6]. The only difference

is that here only a part of the projected 3D input space is

sampled, see Figure 1. The overall correlation is comparable

to previously reported results. However, both correlation and

accuracy of the prediction depends on how much of the input

space is sampled, see Figure 5 and Table I.

It has been suggested that a lognormal distribution is a

better representation of fault sizes [24], [25]. A smaller study

(N=595) shows results comparable to the ones presented,

correlation 0.99 and mean difference −3.8× 10−4. Equations

1 and 2 are not derived from or depend on, fault sizes being

normally distributed.

An alternative presentation of the error in the prediction

calculation is a histogram, see Figure 7. The peak is on

the negative side, e.g., the prediction is, on average, an

underestimation.
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Fig. 5. Mean absolute error vs sampled percentage of the input space. The
mean value for each percent is shown. The dotted line depicts the mean error
for a full 100% sampling, taken from [6] (Simulated data)
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B. Case study

The SUT used in the case study is the EW-system described

above, in section IV-A. 85 test suites, using random simula-

tions, were performed. The number of tests in the different

test suites varied between 2k and 122k. For each test suite

the generation of input was modified, in order to vary the

code coverage. The resulting condition/decision coverage was

between 9 and 61%.

Figures 8, 9 and 10 show different ways to summarize

the prediction of detected and undetected faults. The results

comprise all the test suites, including the ones that have been

TABLE I
COMPARISON BETWEEN PREDICTIONS AND RESULTS (SIMULATIONS). ALL

TEST SUITES HAVE A LENGTH BETWEEN 1000 AND 100.000 SAMPLES.

Nr of Test
suites

Corr Coeff Mean error Std Dev Percentage
sampled

10023 0.97 −3.3×10−4 1.1× 10−3 0→ 100%
2481 0.95 −5.0×10−4 1.7× 10−3 0→ 25%
7542 0.99 −2.8×10−4 7.9× 10−4 25→ 100%
10024 0.99 −2.8×10−4 2.5× 10−5 100%
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(Industry data)

shown to have a lower correlation, i.e., test suites with < 25%
test coverage.

The main point here is how much the calculated initial sum

of faults (detected + undetected) varies from the level 0.01.

This level, which is the (normalized) mean, represents the

presumed true value. The true value is the same for all test

suites as the version of the SUT is the same.

The standard deviation of this data set is 0.003, i.e., ±30%
from the normalized level 0.01.

VII. DISCUSSION

This section discusses the findings from the work. This

paper looks at interpretation of test results for safety-critical

software. This is of additional importance for software which

is required to have extremly low failure rates. This paper shows

that a modified Equation 1, from [6], can be applied to a

limited test coverage. The modified Equation 2, estimates the

sum of the remaining undetected faults, based on the partial

test coverage.

It is also shown that a random sampling of input can be

insufficient to reach an acceptable level of test coverage. In

such cases, a grey-box approach might be required. This means
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Fig. 9. Detected and undetected faults vs number of test cases (samples
drawn). The undetected faults are shown as the taller blue part of the bars.
The red bars show the size of the detected faults. The percentage of the input
space that is sampled is varied. (Industry data)
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Fig. 10. Detected and undetected faults vs condition/decision coverage (in
%). The undetected faults are shown as the taller blue part of the bars. The red
bars are the size of the detected faults. The number of test cases are varied.
(Industry data)

that the structure of the software is considered, and the input

generation modified, in order to better cover the code.

Results indicate that code coverage data can be used as an

approximation to limitations of input space sampling, in this

context. Data from the industry show good correlation for both

calculation of failure density and entropy.

Futher studies are planned, using safety-critical software in

other domains, to validate the results presented here.

A. Strategies for generating random input to maximize test
coverage

Today many safety-critical systems are used to monitor,

analyze and respond to a large number of input parameters,

often in real time. Such systems have to correctly interpret

the data and often the history of the data, in order to make

predictions and calculate a response.

For example, a sense and avoid system that is used by UAVs

(Unmanned Aerial Vehicles) to maintain separation to other

flying objects, need to know if an object is approaching or
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not. Proximity is not by itself sufficient to trigger a response,

as the object might be moving away. More parameters need

to be looked at, this means that random generation of the test

cases need to reflect this complexity.

Ideally, a random generation of input should cover all code,

including the code handling erroneous input. Random testing

will then continuously explore more and more of the state

space of the system. This ideal setup, allows for an efficient

scaling of the test effort, i.e., a network of test resources can

then be utilized to significantly improve the overall testing

performed prior to deployment. The progress of the testing

can be calculated using Equation 2.

B. Prediction equation for a limited test coverage

The theoretical results indicate that partial sampling can be

used to provide an acceptable estimate of the undetected faults.

Provided that the samples are representative (assumption 7),

sampling of as little as 25% will give the same correlation

and an acceptable low mean error as the original full sampling

strategy, see Table I and Figures 5 and 6.

The practical part of this work supports these results.

Equation 1 calculates an estimate of the sum of undetected

faults in the software, based on the test results. If only a subset

of the software is sampled, defined as either part of the input

space or the (pseudo stable) test coverage data, Equation 2

applies.

The structure of Equation 2, is to use Equation 1 on

the tested subpart and to add the epsilon/tau-term for the

untested part. This is then used as an approximation of the

untested part. The proportions between the tested/untested

parts are of importance. The bigger the tested part is the better,

i.e., predicting the last 10% from the result of 90% is more

accurate than vice versa.

The additional assumption 7, that the sampled part shall be

representative of the system is needed for the extrapolation part

of the equation. If one argues that the software has an even

”quality” in terms of fault density, i.e., the faults are occuring

throughout the software, then the undected fault density can

be calculated by a modified Equation 2. Here the number of

test cases are concentrated to a part of the input space, and

Equation 1 is only valid for this part. In the remaining part

of the input space all the faults are undetected but can be

quantified by epsilon/tau, i.e., detected failures/number of

tests.

There are evidence suggesting that faults are distributed

according to the Pareto principle [26], [27], i.e., 80% of the

faults are found in 20% of the software. Such an uneven

distribution of faults, increases the risk of testing an area that

is not representative for the system as a whole. Especially if

the sampled part is very small.

However, these studies were not performed on safety-

critical software. It is assumed that safety-critical software

is more even in terms of quality and fault distribution. The

development standards forces, especially for the higher levels

(DAL A etc), a substantial analysis effort before code can be

commited.

The purpose of, and motivation for the standards are to

achieve a low failure rate of the system, by reducing the

amount of faults in the software. There are different levels of

procedural strictness depending on what level of confidence

that needs to be achieved. These levels have different names

in the different standards, e.g., SIL (Software Integrity Level

in IEC-61508), ASIL (Automotive Safety Integrity Level in

ISO 26262) or DAL (Design Assurance Level in DO-178).

What they all have in common is the increased rigor and

formality that is required during the software development.

More and more requirements are added for each criticality

level in terms of required test coverage, reviews, organization

etc. For higher levels of criticality it is required to review

and verify with independence. Which in DO-178C [1] is

defined as Separation of responsibilities which ensures the
accomplishment of objective evaluation, i.e., the developer

or the development team can not review themselves. The

end result, proven by low failure rates in the safety-critical

domains, is an even software quality where the vast majority

of faults have been detected and eliminated.

C. Prediction equation applied to industry test results

Equation 2 works in theory but can it be applied and

validated against industry data?

Without the possibility of performing exhaustive testing, and

thereby completely map out the input- and state space of the

system, an alternative strategy was required.

In this case, it was choosen to compare what remains

constant, for all test suites. As all tests were performed using

the same version of the SUT, the initial failure density (sum of

detected and undetected faults) could be compared. Random

test suites with different coverage and of different lengths

were executed and the results were compared. The expected

outcome (from this random process) is a normally distributed

estimation of the initial fault density, with the mean close to

the true value. Moreover, the proportion of the detected faults

are expected to be a function of test coverage and length of

the test suites.

However, in terms of coverage, the samples are not as evenly

spread as desired. The coverage turned out to be hard to control

with high precision.

The gathering of samples (test suites) takes a long of time

(months), more than 3 million tests were performed. This has

limited the number of test suites to 85. Ideally, more versions

of the software should have been tested. Further studies of

other types of software and of different criticality would be

of great interest. The aspect of criticality of the software, is

believed to be of importance to the eveness of the fault density

throughout the system. The SUT in this case is classified as

being of low/medium criticality. Which means that there is

less formality and rigor in the development process.

The variance in the estimates is expected to be less for

software of higher criticality, e.g., DAL A and ASIL D. This

will be investigated in further studies. A conclusion that can

be drawn is that the results from Equation 2 are coherent and
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has a consistent distribution. When these results are used to

calculate the entropy the results fit well to the theoretical data.

VIII. CONCLUSION

This paper analyzes quantification and interpretation of test

results for safety-critical software.

A uniform sampling of the input space, i.e., all values of

each parameter is given the same probability of occurrence,

allows for prediction of the faults that remain undetected in

the system after a (long) test suite. This paper shows that

predictions can also be made if only parts of the parameter

ranges are sampled, i.e., a defined subspace is sampled.

The modified Equation 2, provides a good prediction of

undetected faults for test suites with a limited test coverage.

Results indicate that, for this purpose, code coverage data

can be used as an approximation to limitations of input

space sampling. Data from the industry case study show good

correlation for both calculation of failure density and entropy.

For more complex input spaces, e.g., systems that consider

signal history, it can be difficult to determine how much of the

input space that is sampled during the generation of input. The

industry data shows that code coverage data can be used as an

approximation of the input space coverage, for the purpose of

calculating failure density and entropy.

Today, safety-critical software is developed according to

certified processes and by following strict guidelines. It is

not required to mathematically assess the failure rate of the

software. However, the concept described here, of structured

testing where the results are treated as a statistical sample,

allows for a quantification of the status of safety-critical

software. Both the entropy- and the failure density concept

are correlated to failure rate of the software and can be

implemented and used by the industry, for pre-deployment

risk assessment. The concept can summarize the compiled test

results from the implemented test process or alternatively be

used together with (additional) random testing.
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