
Hierarchical Scheduling of CAN using Server-Based Techniques

Thomas Nolte, Mikael Nolin, and Hans Hansson

Mälardalen Real-Time Research Centre

Deptartment of Computer Science and Engineering

Mälardalen University, Väster̊as, SWEDEN

Email: {thomas.nolte, mikael.nolin, hans.hansson}@mdh.se

Abstract

Server-based scheduling of CAN has been proposed
as a way of fair scheduling of the Controller Area Net-
work (CAN). By separating streams of messages by us-
ing network access servers (N-Servers), scheduling is
performed at three layers where native CAN message
arbitration is the scheduling at the lowest level. On top
of this is the server-based scheduling to separate dif-
ferent streams of messages within the system. Looking
at a single N-Server, several streams might share one
server. Hence, scheduling is performed at the third level
every time the N-Server is being scheduled for message
transmission. Here different queuing policies play a
role in the scheduling performed.

This paper discusses the hierarchical scheduling of
CAN, as a way of fair separation of message streams
while providing a flexible core mechanism, the server-
based scheduling of CAN.

1 Introduction

In optimising the design of a real-time communi-
cations system it is important both to guarantee the
timeliness of periodic messages and to minimize the in-
terference from periodic traffic on the transmission of
aperiodic messages. Therefore, we propose the usage
of server-based scheduling techniques, providing band-
width isolation and efficient handling of streams of pe-
riodic and aperiodic traffic. The need for this kind of
scheduled real-time communication network is high in
applications that have requirements on flexibility, both
during development for assigning communication band-
width to different applications, and during run-time to
facilitate dynamic addition and removal of system com-
ponents, e.g., open systems. Examples of server-based
scheduling techniques for CPU scheduling are the Total
Bandwidth Server (TBS) [15], and the Constant Band-

width Server (CBS) [1]. In this paper we are working
with a distributed CAN network, where a dynamic pri-
ority version of the Polling Server (PS) [7] is used.

The paper is organised as follows: In Section 2 the
Controller Area Network (CAN) is presented together
with different existing scheduling policies. In Section 3
Server-based scheduling of CAN is presented. In Sec-
tion 4 hierarchical scheduling of CAN is presented, and
finally Section 5 concludes the paper.

2 The Controller Area Network (CAN)

The Controller Area Network (CAN) [4] is a broad-
cast bus designed to operate at speeds of up to 1Mbps.
CAN is extensively used in automotive systems, as
well as in other applications. CAN is a collision-
avoidance broadcast bus, which uses deterministic col-
lision resolution to control access to the bus (so called
CSMA/CA). CAN guarantees that the highest priority
active frame will be transmitted. Hence, CAN behaves
like a priority-based queue.

2.1 Scheduling of CAN

Looking at the real-time research community for dif-
ferent scheduling policies, three major types are found
namely priority-driven (e.g., Fixed-Priority Schedul-
ing (FPS) or Earliest Deadline First (EDF)) [8], time-
driven (table-driven) [6, 5], and share-driven [13, 16].

For CAN, the most natural scheduling method is
FPS since it is the policy used by the CAN protocol.
Analysis, like the FPS response-time tests to determine
the schedulability of CAN message frames, have been
presented by Tindell et al. [17].

Several methods for dynamic-priority type of
scheduling have been proposed for CAN. By manip-
ulating the message identifier, and therefore changing
the message priority dynamically, several approaches
for EDF type of scheduling have been presented [9, 10,
19].



Table-driven, or time-driven, scheduling of CAN is
provided by, e.g., TT-CAN [18] and FTT-CAN [3].
Flexible Time-Triggered CAN (FTT-CAN), presented
by Almeida et al., supports priority-driven scheduling
in combination with time-driven scheduling. It has also
been shown how to schedule periodic messages accord-
ing to EDF using FTT-CAN [14].

Share-driven scheduling of CAN has been presented
in our earlier work on server-based scheduling of CAN
[11, 12]. By providing the option of share-driven
scheduling of CAN, designers are given more freedom
in designing a distributed real-time system where the
nodes are interconnected with a CAN-bus.

3 Server-based Scheduling of CAN

In server-based scheduling of CAN, bandwidth is al-
located to users of the network by the usage of servers
called network access servers (N-Servers). Each node
has one or more N-Servers allocated to it. The N-
Servers have exclusive associated bandwidth in terms
of capacity, C, and a period time, T . Moreover, all
N-Servers have an associated deadline in order to be
scheduled for message transmission. Time is divided
into Elementary Cycles (ECs), similar to the FTT-
CAN [3]. The length of an EC is denoted TEC . Hence,
the N-Server period, T , is an integer multiple of TEC .

All N-Servers have a local message queue, in which
all its user messages are stored. A user is a stream
of messages, e.g., the sending of messages by an ap-
plication, and can be of either periodic, sporadic, or
aperiodic nature.

The scheduling is performed at a specialised mas-
ter node, called the M-Server. The M-Server keeps
all information regarding the N-Servers in the system.
Hence the M-Server has all the N-Server’s parameters.
The M-Server is updating the N-Server deadlines ac-
cording to the scheduling policy in use.

As soon as an N-Server is being scheduled for mes-
sage transmission, the N-Server selects a message from
its local message queue. Since each N-Server has ex-
clusive right to a share of the total system bandwidth,
all users sharing an N-Server will share this portion of
bandwidth. Hence, depending on the type of queue
used at the N-Server, e.g., FIFO or priority-based, dif-
ferent guarantees of timeliness can be offered. Suppose
a priority-based queue is used, then the users will ex-
perience a service, in terms of timeliness, similar to
the one of an exclusive network, essentially with the
only difference in the lower bandwidth offered. Hence,
the timely behaviour will be, compared to an exclu-
sive CAN network, divided by C/T , i.e., the server’s
share. A variant of the response-time analysis for fixed

priority systems could be used to calculate the timing
properties. This is explained in detail in Section 4.

The M-Server and all N-Servers are sending their
messages to their corresponding CAN controller, where
all messages are scheduled according to the native CAN
message arbitration mechanism.

3.1 Scheduling Mechanism

The server-scheduling mechanism is depicted in Fig-
ure 1.

??

TM
N-Server Parameters

STOP

2 6 8

1 ?

TM

N-Server

Message Queue
3

5

4
M-Server

7

STOP

CAN

Node

Figure 1. Server-scheduling mechanism for
CAN.

The scheduling is performed at the M-Server accord-
ing to the Earliest Deadline First (EDF) policy (Fig-
ure 1:1, i.e., (1) in Figure 1). A schedule is created con-
taining the N-Servers with the earliest deadlines, filling
up one EC. As this is done, the schedule is put into a
trigger message (TM) (depicted in Figure 2) and mul-
ticasted to all the N-Servers in the system (Figure 1:2).

Trigger Message (TM)

TM-Schedule:
N-Server 1
N-Server 4
N-Server 5
N-Server 13

Figure 2. Example of a Trigger Message (TM)
and its contents.

When the N-Servers receive the TM (Figure 1:3),
they will read it to see whether or not they are al-
lowed to send a message (Figure 1:4). If they are, their
message is immediately queued for transmission (if ex-
isting) at the CAN controller (Figure 1:5). Otherwise,
if not scheduled, the node has to wait for the next TM
to see if it was scheduled that time.

In order to terminate the EC, the M-Server is also
sending a STOP message to itself (Figure 1:6). This is
done right after the TM is sent. The STOP message
is of lowest priority possible, acting as an indicator for
when all the nodes that were allowed to send a message
within the active EC actually have sent their messages.
If the M-Server receives the STOP message, all nodes



that were allowed to send messages within the EC have
already sent their messages. This since the STOP mes-
sage, with its low priority, is the last message to be sent
within the EC. An example EC is depicted in Figure 3.

TM 1 4 5 13 STOP

Elementary Cycle (EC) 

Figure 3. Elementary Cycle (EC) containing
messages from 4 N-Servers.

The M-Server is always reading all the messages that
are sent on the CAN bus (Figure 1:7), i.e., the M-Server
is polling the bus. This in order to update its server
variables based on the actual traffic sent on the bus.
Since servers are scheduled for message transmission
even though they might not always have any messages
to send, this has to be taken care of by updating the
server parameters accordingly. There are different ways
of updating the server-parameters in the case when the
server did not send a message. Depending on how the
server-parameters are updated the server will have dif-
ferent real-time characteristics [11].

When the M-Server reads the STOP message (Fig-
ure 1:8), the EC is terminated, and the next EC is
initiated based on the updated server-variables.

Using the server-based concept, servers and users
can potentially join and leave the system arbitrary as
long as the total utilisation, or bandwidth demand, in
the system by all the servers is less or equal to the
theoretical maximum given by (1) below. Note that
the joining and leaving of users does not affect other
users (in terms of bandwidth) than those sharing the
same server, due to the bandwidth isolation between
different N-Servers.

3.2 Bandwidth

Note that this scheduling mechanism limits the
available bandwidth on the network. The theoretical
maximum network utilisation is expressed by

∑

∀s

(

M

S × Ts

)

≤ 1 −

(

TM + STOP + S × Tsched

S × TEC

)

(1)
where s is an N-Server in the system, M is the length
of a message in bits (typically worst-case which is 135
bits), S is the network speed in bits/second, Ts is the
period of the N-Server. TM and STOP are the sizes of
the TM and STOP messages in bits, typically 135 and

55 bits, Tsched represents the computational overhead
in time (seconds) of updating the N-Server deadlines
and encoding the next TM after receiving the STOP
message, and TEC is the length of the EC in time (sec-
onds).

4 Hierarchical Scheduling of CAN

At the N-Server, user messages are queued in a local
message queue. This message queue can, for instance,
be of either FIFO or priority based nature. In the
case of a priority based message queue the behaviour
of the network, from a user point of view, is as an
exclusive CAN bus that has a bandwidth of essentially
C/T of the whole bandwidth capacity. Hence, different
scheduling policies are performed at different levels as
depicted in Figure 4.

N-Server

Message Queue

CAN

Node

User

Native CAN
scheduling

Server-based
scheduling

FPS-type of
scheduling

Figure 4. Hierarchical Scheduling of CAN.

4.1 Timely Behaviour

Depending on the server-parameter updating, differ-
ent timing behaviour is achieved. Using the PS2-CAN
of [11] with C = 1 (i.e., the N-Server capacity is one
message in each N-Server period Ts), for a given mes-
sage stream i, the worst-case message response-time is
as follows

Ri = qi + TEC (2)

where TEC is the length (in time) of an elementary
cycle (to cover for the time granularity due to EC-
scheduling), and qi represents the effective queuing
time given by

qn
i =



2 +
∑

j∈hp(i)

⌈

qn−1
i

Tj

⌉



 × Ts (3)

where “2” is the worst case response-time (in multi-
ples of N-Server periods) for a single message using
PS2-CAN according to [11], and the summation repre-
sents interfering higher priority user message streams



sharing the same N-Server, where hp(i) is the set of
these streams with priority higher than stream i, and
Tj is their corresponding period-time. Finally, Ts is the
period-time of the N-Server. Note that Tj ≥ Ts. The
first approximation is q0

i = 0. A solution is reached
either when qn+1

i = qn
i , or when qn

i exceeds its message
deadline or period.

5 Summary

In this paper we have presented hierarchical schedul-
ing of CAN using server-based techniques. We have
presented the scheduling mechanisms performed at dif-
ferent levels, and we have shown that this hierarchical
scheduling of CAN provides several advantages, e.g.,
bandwidth isolation and flexibility. Moreover, we have
presented a timing analysis from a user point of view.

The presented mechanism is suitable for open sys-
tems, where users can join and leave the system at any
time. However, an admission control needs to be im-
plemented. This can easily be done by implementing
the admission control in the M-Server together with
the usage of dedicated N-Servers with a small amount
of bandwidth on each node for the admission control
mechanism. This would be an interesting future work.

Another interesting future work would be to see how
the work presented in [2] relates to the work in this
paper, and the possibility of a joint effort in this topic.

Acknowledgements

The work presented in this paper was supported by
the Swedish Foundation for Strategic Research (SSF)
via the research programmes ARTES and SAVE, the
Swedish Foundation for Knowledge and Competence
Development (KK-stiftelsen), and Mälardalen Univer-
sity.

References

[1] L. Abeni. Server Mechanisms for Multimedia Applica-
tions. Technical Report RETIS TR98-01, Scuola Superiore
S. Anna, Pisa, Italy, 1998.

[2] L. Almeida. Response-time Analysis and Server Design for
Hierarchical Scheduling. In WIP Proceedings of 24th IEEE
Real-Time Systems Symposium (RTSS’03), pages 121–124,
Cancun, Mexico, December 2003.

[3] L. Almeida, P. Pedreiras, and J. A. Fonseca. The FTT-
CAN Protocol: Why and How. IEEE Transaction on In-
dustrial Electronics, 49(6), December 2002.

[4] CAN. Road Vehicles - Interchange of Digital Information -
Controller Area Network (CAN) for High-Speed Communi-
cation. International Standards Organisation (ISO), ISO
Standard-11898, Nov 1993.

[5] C. W. Hsueh and K. J. Lin. An Optimal Pinwheel Sched-
uler Using the Single-Number Reduction Technique. In

Proceedings of the 17th IEEE Real-Time Systems Sympo-
sium (RTSS’96), pages 196–205, Los Alamitos, CA, USA,
December 1996. IEEE Computer Society.

[6] H. Kopetz. The Time-Triggered Model of Computation. In
Proceedings of the 19th IEEE Real-Time Systems Sympo-
sium (RTSS’98), pages 168–177, Madrid, Spain, December
1998. IEEE Computer Society.

[7] J. Lehoczky, L. Sha, and J. Strosnider. Enhanced Aperi-
odic Responsiveness in Hard Real-Time Environments. In
Proceedings of 8th IEEE Real-Time Systems Symposium
(RTSS’87), pages 261–270, San Jose, California, USA, De-
cember 1997. IEEE Computer Society.

[8] C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard Real-Time Environment.
Journal of the ACM, 20(1):40–61, 1973.

[9] M. Livani and J. Kaiser. EDF Consensus on CAN Bus
Access for Dynamic Real-Time Applications. In Proceed-
ings of the 6th International Workshop on Parallel and
Distributed Real-Time Systems (WPDRTS’98), Orlando,
Florida, USA, March 1998.

[10] M. D. Natale. Scheduling the CAN Bus with Earliest Dead-
line Techniques. In Proceedings of the 21st IEEE Real-
Time Systems Symposium (RTSS’00), pages 259–268, Or-
lando, Florida, USA, November 2000. IEEE Computer So-
ciety.

[11] T. Nolte, M. Nolin, and H. Hansson. Server-Based Real-
Time Scheduling of the CAN Bus. In Proceedings of 11th

IFAC Symposium on Information Control Problems in
Manufacturing (INCOM’04), Salvador, Brasil, April 2004.

[12] T. Nolte, M. Sjödin, and H. Hansson. Server-Based
Scheduling of the CAN Bus. In Proceedings of the 9th

IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA’03), pages 169–
176, Calouste Gulbenkian Foundation, Lisbon, Portugal,
September 2003.

[13] A. K. Parekh and R. G. Gallager. A Generalized Processor
Sharing Approach to Flow Control in Integrated Services
Networks: The Single-Node Case. IEEE/ACM Transac-
tions on Networking, 1(3):344–357, June 1993.

[14] P. Pedreiras and L. Almeida. A Practical Approach to EDF
Scheduling on Controller Area Network. In Proceedings
of the IEEE/IEE Real-Time Embedded Systems Workshop
(RTES’01) at the 22nd IEEE Real-Time Systems Sympo-
sium (RTSS’01), London, England, December 2001.

[15] M. Spuri, G. C. Buttazzo, and F. Sensini. Robust Aperi-
odic Scheduling under Dynamic Priority Systems. In Pro-
ceedings of the 16th IEEE Real-Time Systems Symposium
(RTSS’95), pages 210–219, Pisa, Italy, December 1995.
IEEE Computer Society.

[16] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke,
and G. Plaxton. A Proportional Share Resource Alloca-
tion Algoritm for Real-Time, Time-Shared Systems. In
Proceedings of 17th IEEE Real-Time Systems Symposium
(RTSS’96), pages 288–299, Los Alamitos, CA, USA, De-
cember 1996. IEEE Computer Society.

[17] K. W. Tindell, A. Burns, and A. J. Wellings. Calculating
Controller Area Network (CAN) Message Response Times.
Control Engineering Practice, 3(8):1163–1169, 1995.

[18] TT-CAN. Road Vehicles - Controller Area Network (CAN)
- Part 4: Time-Triggered Communication. International
Standards Organisation (ISO), ISO Standard-11898-4, De-
cember 2000.

[19] K. M. Zuberi and K. G. Shin. Non-Preemptive Schedul-
ing of Messages on Controller Area Network for Real-Time
Control Applications. In Proceedings of the 1st IEEE Real-
Time Technology and Applications Symposium (RTAS’95),
pages 240–249, Chicago, IL, USA, May 1995. IEEE Com-
puter Society.


