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Abstract. Service-oriented systems have recently emerged as cantfien-
dent component-based systems. Unlike components, seisécebe created, in-
voked, composed, and destroyed at run-time. Consequetitservices need a
way of advertising their capabilities to the entities thdt use them, and service-
oriented modeling should cater for various kinds of sergiamposition. In this
paper, we show how services can be formally described byethsurce-aware
timed behavioral languageeRIES, which we extend with service-specific infor-
mation, such as type, capacity, time-to-serve, etc., asagdloolean constraints
on inputs, and output guarantees. Assuming a Hoare-tripiehof service cor-
rectness, we show how to check it by using the strongest@udition semantics.
To provide means for connectingeRES services, we propose a hierarchical lan-
guage for service composition, which allows for verifyihg tatter’s correctness.
The approach is applied on an abstracted version of anigestlshuttle system.

1 Introduction

Service-oriented systems (SOS) asswsa®ices as their basic functional units, with
capabilities of being published, invoked, composed antralgsd at runtime. Services
are loosely coupled and enjoy a higher level of independémee implementation
specific attributes than components do.

An important problem is to ensure theality-of-service (QoS) that can be expected
when deciding which service to select out of a number of atigl services delivering
similar functionality. Some of the existing SOS standanggp®rt formal analysis [3,
12,14,15] to ensure Qo0S, but usually it is not straightfodua work out the exact
formal analysis model.

In order to fully understand the ways in which services ee@nd impact on QoS
attributes, aervice behavioral description is required [6]. Such behavior is assumed to
be internal to the service, and hidden from the user. It shinglude the representation
of a service functionality, enabled actions, resource tatioms, and possible interac-
tions with other services.

To meet the above demands, in this paper, concretely indegtiwe extend the ex-
isting resource-aware, timed hierarchical language&s [19], recalled in Section 2,
to become fit for service behavioral modeling. IENRES, a service is modeled by an
atomic or compositenode, which we enrich with attributes such as service type, capac
ity, time-to-serve etc., pre- and postconditions, whioh exposed at the mode’s inter-
face. Still in Section 3, we introduce a synchronization hagism for RMES modes,
which enables modeling and verification of synchronizetises.



By exploiting the pre-, postcondition annotations, we shmw to describe the
service behavior in Dijkstra’s guarded command languageai®d how to check the
service correctness by employing Dijkstra’s and Schadtetrongest postcondition se-
mantics [9].

Since services can be composed at run-time, analyzing tihhectoess of a service
in isolation does not suffice. To exemplify, let us consideervice that is composed of
several navigation services, out of which some return theertength in miles, whereas
others in kilometers. If the developer has omitted to intic&la service that converts
length from one metric to the other, it is desirable to unceueh an error right away,
by formally checking the correctness of the actual servaraosition, at run-time.

To address the dynamic aspects of services, in Section 4yop®ge a hierarchi-
cal language for dynamic service composition (HDCL) th&dves creating new ser-
vices, via binary operators, as well as adding and/or djetiervices from lists. In
the same section, we also give the semantics of sequerdralllgd, and parallel with
synchronization service composition, respectively. Nex apply the approach on an
abstracted version of an intelligent shuttle system, factvive show the use of RMES
language to model the system and apply HDCL language to dheckorrectness of
service compositions. In Section 6, we compare to some ofaleeant related work,
before concluding the paper in Section 7.

2 Preliminaries

2.1 RemEsmodeling language

The REsource Model for Embedded SystenmsviRs [19] is intended as a meaningful
basis for modeling and analysis of resource-constrainkaer of embedded systems.
REMES provides means for modeling of both continuous (i.e., pdwad discrete re-
sources (i.e., memory access to external devices)ER is a state-machine behavioral
language that supports hierarchical modeling, contintiowes, and a notion of explicit
entry and exit points, making it fit for component-basedeaysmodeling.

To enable formal analysis,ERMES models can be transformed into timed automata
(TA) [1], or priced timed automata (PTA) [2], depending oe #malysis type.

The internal component behavior inERES is given in terms of modes that can
be eitheratomic (do not contain submode(s)), composite (contain submode(s)). The
data transfer between modes is done throughdtta interface, while the control is
passed via theontrol interface (i.e., entry and exit points). RMES assumesocal or
global variables that can be of types boolean, natural, integezy,aor clock (continu-
ous variable evolving at rate 1). Each (sub)mode can be atawbwith the correspond-
ing continuous resource usage, if any, modeled by the firstate of the real-valued
variables that denote resources, and which evolve at pegitieger rates.

The control flow is given by the set of directed lines (iezlges) that connect the
control points of (sub)modes. Modes may also be annotatédimiariants, which
bound from above the current mode’s delay/execution tinoe.aFmore thorough de-
scription of the RMES model, we refer the reader to [19].



The REMES language benefits from a set of tobfer modeling, simulation and
transformation into PTA, which could assist the designemiusystem development.

2.2 Guarded command language

The Guarded Command Language (GCL) was introduced and ddjinBijkstra for
predicate transformers semantics [8]. The basic elemethedanguage is the guarded
command, a statement list prefixed by a boolean expressioichvean be executed
only when the boolean expression is initially true.

The syntax of the GCL is given in Backus-Naur Form (BNF) egshwith braces
“{..}", where the braces mean: "followed by zero or more instanfése enclosed”.

< guarded command > 1= < guard > — > < guarded list >

< guard > ::= < boolean expression >

< guarded list > = < statement > {; < statement >}

< guarded command set > ::= < guarded command > { | < guarded command >}
< alternative construct > ::= if < guarded command set > fi

< statement > ::= < alternative construct > | “other statements”

< repetitive construct > ::= do < guarded command set > od

The semicolons in the guarded list denote that wheneventhedgd list is selected
for execution, its statements will be executed succegsivethe order from the left
to the right. A guarded command is not a statement but a coemtarf a guarded
command set from which statements can be constructed. Paeater “[” is used for
mutual separation of guarded commands in guarded command se

The alternative constructis written using special brapkat “if ... fi”. The program
aborts if none of the guards is true, otherwise an arbitragrded list with a true guard
will be executed. Similarly, the repetitive construdb’... od” means that the program
runs as long as one of the guards is true, and terminatesé oftthe guards is true.

Semantics and Correctness of Guarded Commandd.et us assume the Hoare triple,
{p} S {q}, wherep, q are predicates, denoting the partial correctness of gdaroim-
mands with respect to preconditiomand postcondition. Introduced by Dijkstra and
Sholten [9], thestrongest postcondition predicate transformer (a function that maps
predicates to predicates), denotedspys.p, holds in those final states for which there
exists a computation controlled I8y which belongs to class “initially p”. Proving the
Hoare triple, that is, the correctness of a guarded commauddices to showing that
(sp.S.p = q) holds. The strongest postcondition rules for the assigmstatement, for
sequential composition, and for the non-deterministicitional are as follows:

sp.(x :=e).p(x) =x =eA (Ix- p(x)) 1
sp-(S1;52).p = sp.52 (SP-51~P)7VP @)
sp.(ifgt —S1] ... [ g8 — Safi).p =sp.S1.(gt Ap) V... VspSn.(gn Ap),Vp (3)

! The REMEStool-chain is available at http://www.fer.hr/dices/res¥ide.



3 Behavioral Modeling of Services inREMES

In REMES, a service is represented by a mode (be it atomic or compoghe service
may have a speciatit entry point, visited when the service first executes, anda/ak
variables are initialized. In order for a service to be pshid and later discovered, a list
of attributes should be exposed at the interface oE& R mode/service (see Fig.1).

Service

Service Attributes: Type, Capacity, TimetoServe, Status,
Pre, Post

Atomic mode 1

[Prelnit] r3+=q
Init

[PreEntry]
Entry

{Post}
-
Exit

Fig. 1. A service modeled in RMES

The attributes depicted in Fig.1 have the following meaning

— service type - specifies whether the given service is a web service (i.eather
report), a database service (i.e., ATM services), a netserkice, etc.;

— service capacity - specifies the service’s maximum ability to handle a givember
of messages per time unit (i.e., the maximum service freqy)én N);

— time-to-serve - specifies the worst-case time needed for a service to respioch
serve a given request (N);

— service status - describes the current service status (that is, passivtdrivaked),
idle, active);

— service precondition - is a predicateRre : >~ — Bool, Pre = (Prelnit\/ PreEntry))
that conditions the start of service execution, and mustueedt the time a RBMES
service is invoked. In this expressign is the polymorphic type of the state that
includes both local and global variables, and predicRtemit, PreEntry are the
initial, and the entry precondition of the service, respety;

— service postcondition - is a predicateRost) that must hold at the end of aERIES
service execution.

The attributes are used to disco@ervice; they are specified by an interested party
and, based on the specification, the service is eithervettier not.

The formal specification of a service, modeled as the conpaside of Fig. 1, is
the Hoare triple{p }Service {¢}, whereService is described in terms of the guarded
command language, and the mode’s preconditicand postcondition (requirement)



are as follows:
p
y<cAc>bAN(d=0Vv<d<e)Arl=r2=r3=0A(h=0Vh=1)
q

y<cAhd<eA (Vi1 <i<3- ri<wval;)

whereval; are the given upper bounds on each resource usage, respectiv
Below, we give the GCL description of theeRIEES composite mod&ervice:

Service ::=
IF
—ul Ah=0Ay <b Init — Atomic mode 1
—1r3:=r3+q;
sm := Atomic mode lul := true;
Update(now)

| u2Ah=1A(x<aNd=v)Ay<b |
— sm := Atomic mode 2u2 := true;
Update(now)
| (~u3 A (h=1Ad>v)Vd=u)Ay <c|(Entry or Atomic mode 1 — Atomic mode 2
— sm := Atomic mode 2u3 := true;
Update(now)
| —ud A sm = Atomic mode 1INy < b |
— r1(t) == rl(now) + n * (t — now);
r2(t) := r2(now) + m * (t — now);
{y < b};ud := true;
Update(now)
| ~u5 A sm = Atomic mode 1Ay = b
— d = u;ub := true;
Update(now)
| =u6 A sm = Atomic mode 2A y < ¢ |
— 1r2(t) := r2(now) + p * (t — now);
{y < c}; ub := true;

Entry — Atomic mode 1

Delay in Atomic mode 1L

Delay in Atomic mode 2

Update(now)
| —u7 A s = Atomic mode 2\ y = ¢ | Atomic mode 2— Exit
—d =g

h = 1;u7 := true;
Update(now); ul, ..., u7 := false

Fl
4
In the GCL description (4), the variablesy are clocks is the history variable
that is used to decide where to enter the composite modds the variable ranging
over submodes, and : Real, — Tj, 72 : Real, — T, are the continuous resources
of the model, defined as functions over the non-negativs teat are used as the time
domain. In additiony; are local variables used for preventing executing the sai@a

more than once, at the same time point. These variables seeeach time the mode
Service exits. Similar to the approach taken for action system ndl], the variable



now shows the current time, and it is explicitly updated by stetet Update(now).
The assertiongy < b}, {y < ¢} model the invariantsif.v) of Atomic mode 1, and
Atomic mode 2, respectively.

We defineUpdate(now) as follows:

Update(now) = now := next.now

The submodes can be urgent (no delays are allowed), or ganfwhere delays can
happen, until an invariantnv is violated); also, guarded actions can annotate edges
connecting the entry points of the composite mode with sudespvia some condi-
tional connector (denoted by encircled C in Figure 1). Gitregse, and assuming that
gg is the disjunction of the action guards of the edges leavingde (or a conditional
connector), and thdtnv is the invariant of the respective modext is defined by:

f o min{t’' >t | ~InvV gg}, ifexistst’ >t suchthat-InvV gg
next.t =
400, otherwise.

If a mode is urgent, or the guards correspond to a conditicorahector, thed =
false, so the next moment of time is identical to the current onalelay being possible.

The modeService, modeled by (4), can be iterated for as long as needed, sotie ¢
plete specification istatussenice := active; (DO g — Service | =g — statusserice :=
idleOD). According to rule (3), the strongest postcondition of theditional statement
is:

sp.Service.p

sp.(r3 := r3 4 ¢; sm := Atomic mode 1Update(now)).(h =0Ay < bAp)
V

%
sp.(d := e; h := 1; Update(now)).(sm = Atomic mode 2\ y = ¢ A p)

Assuming thasp.{y < c}.p = y < ¢ A (Ix- p(x)), the abovep can be mechani-
cally computed by successively applying rules (1) - (2). €bgectness proofs reduce
to checking whether each of the strongest postconditiotiseofbove disjunction im-
plies the requiremeny, given earlier.

In service-oriented systems, there is often the case thatee need to synchronize
their behaviors. In order to model synchronized behavierjntroduce a special kind
of REMEs mode, given in Figure 2, which can act either assaib mode, or as a®R
mode, depending on whether the services need to be enterelfasieously, or not.

The composite mode of Figure 2 contains as sub-modes theagthat need to
be synchronized. FOoAND modes, botlService a, and Service b are entered at the
same time (through their entry point). This means that ttgesdnarked with (*) do
not have guards. In case OR modes, one or all constituent services are entered, so
the edges marked with (*) are annotated with guards. If sohtkeoedges need to be
taken at the same time in both services, the communicatiovele@Service a andb is
realized via synchronization variablesan (in x), (out x), which are used similarly to



Composite AND / OR mode

Service a

ﬁ{ SM1 }ﬁ-{ sM2 }_~<€ SMn
out x

Service b

)B-l»<% SM1 }E—{ sm2 H SMn
mnx

Fig. 2. AND/OR REMES mode.

the PTA channels?, !, respectively. Depending on the required synchronizdtipa
and starting time of the constituent services’ executiof) modes, but als©R can

be employed when eitheahd” synchronization (both services should finish execution
at the same time), omiax” synchronization (the composite mode finishes when the
slowest service finishes) is required.

In Figure 2,Service a, Service b need to synchronize actiont, B2. This can be
done by decorating the respective edges with channel Vesialot = for A2, andin x
for B2, meaning that the respective edges are taken simultaryeioulsbth services,
A2 writing variables tha32 is reading. The same applies if the services needrd™
synchronize at the end of their execution. The exit edge ol sarvice, respectively,
needs to be annotated withan variables.

The GCL representation of such synchronization requiresgthening the guards
of the respective synchronized commands of the conditist@ement, as follows:
(in ) A gas — Sae, (out ) A gga — Sp2, WhereS,q, Spo are the action bod-
ies of A2, B2, respectively. The actions can then be executed in a segueitb the
one writing variables, first. Theniax” synchronization can be represented in GCL
by using a virtual selector (variabke!l) [18], which selects for execution the modes
SM1,...,SMn, according to the control flow, marks them as executed aftyr fin-
ish their execution, and keeps the time values@b in a copy variableiow.., which is
updated only after the slowest service finishes executiglgtter translates in exiting
the composité&ND, or OR mode.

4 Hierarchical Language for Dynamic Service Composition:
Syntax and Semantics

Service compositions may lead to complex systems of coantlyrexecuting services.
An important aspect of such systems is the correctness inftémeporal and resource-
wise behavior. In the following, we propose an extensionh® REMES language,

which provides means to define and support creation, daletinod composition of
fine-grained or coarser-grained services, applicablefferdht domains. We also in-



vestigate a formal way of ensuring the correctness of thepoaition, based on the
strongest postcondition semantics of services.

Let us assume that a service, whose behavior is describedR|mas mode, is
denoted byservice_name;, i € [1..n]; then, a service list, denoted bylist, is defined
as follows:

s_list ::= [service_namey, ..., service_name,,|

In order to support run-time service manipulation, we deéirset of REMES inter-
face operations, by a pre- postcondition specification. @tk byY' the set of service
states, respectively, that is, the current collection ofalde values.

— Create service create service_name
[pre] : service_name = NULL
create : Type x N x N x "passive’” x (¥ — bool) x (¥ — bool) —
service_name
{post} : service_name # NULL

— Delete servicede! service_name
[pre] : service_name # NULL
del : service_name — NULL
{post} : service_.name = NULL

— Create service list create s list
[pre] : slist = NULL
create_list : s_list — s_list, s_list = List()
{post} : s_list # NULL

— Delete service listdel s_list
[pre] : s list £ NULL
del_list : s_list — NULL
{post} : s_list = NULL

— Add service to a list add service_name, s_list
[pre] : service_name & s_list
add : s_list — s_list
{post} : service_name € s_list

— Remove service from the listdel service_name, s_list
[pre] : service_name € s_list
del : s_list — s_list
{post} : service_name & s_list

— Replace service in the listreplace service_names, service_names
[pre] : s-list(p) = service_name;
replace : s_list — s_list
{post} : s_list(p) = service_names



— Insert service at a specific positioninsert service_name;, s_list
[pre] : s list(p) # service_name;
add : s_list — s_list
{post} : s_list(p) = service_name;

Note that a new service list can be created by using the eatstiList(), which
holds list values of any type. Such a constructor enablesrestion of both empty list
and also list with some initial values (ist = List : String([“Shuttlel”, “Shuttle2”])).
Also, adding a service to a list means, in this context, agipgnthat service, that is,
adding it at the end of the list. Replacing a service with haobne, and inserting
a service at a specific position requires the use of parametehich specifies the
position at which the service is replaced or inserted.

Most often, services can be perceived as independent atribdlisd functional
units, which can be composed to form new services. The systhat result out of
service composition have to be designed to fulfill requireta¢hat often evolve con-
tinuously and therefore require adaptation of the exissimigtions.

Alongside the above operations, we also define a hieraildaitguage that supports
dynamic REmESsservice composition (HDCL), that is, facilitates modelofgnested se-
quential, parallel or synchronized services:

DCL == (s.list,PROTOCOL, REQ)

HDCL ::= (((DCL*,PROTOCOL,REQ)*, PROTOCOL,REQ)*, ...)

The formula above allows a theoretically infinite degree e$ting. The positive
closure operator is used to express that one or more DCLsaf@iynComposition Lan-
guages) are needed to form an HDCL. THROTOCOL defines the way services are
composed, that is, the type of binding between services|ms\k:

PROTOCOL ::= unary_operator service_name | service., binary_operator servicen,

The requiremenREQ is a predicate Y — Bool) that can include both functional
and extra-functional properties/constraints of the cositm. It identifies the required
attribute constraints, capability, characteristics, waldy of a system, such that it ex-
hibits the value and utility requested by the user. The albioaey and binary operators
are defined as follows:

Unary_operator ::= exec — first
Binary_operator ::= S | | sy nNc—and | lsyNc—or

Let us assume that two servicgs s, are invoked at some pointin time, and their in-
stances are placed in the servicedigist. Also, we assume that. Pre; is the strongest
postcondition of;, i € 1,2, w.r.t. preconditionPre;. Then, the semantics of the unary
and binary protocol operators, as well as the correctnesditions for such composi-
tions are given as follows.

— Exec-first(specifies which service should be initially executed in mposition) -
below we formalize the fact that should execute first, and only when it finishes



and establishes its postcondition, servigean become active:

statuss, = active A statuss, = idle N Posts, = (statuss, = active)

If we assumen servicessy, .. ., s, of a list, executing; first is defined as:
Exec — firsts; £'s; | =gs, — (s2 Binary_operator . .. Binary_operators,)

This means that, even if any other service (or service coitiposcould be exe-
cuted, it will be executed only aftes has finished execution.

— Sequential composition two services are executed in a sequence, uninterrupted,
e.0.,51; s2. The correctness condition ef; s, is:

(sp.s2.(sp.s1.Pres;) = Posts,) N (Posts, = REQ)
— Parallel composition’s(s; || s2) correctness condition is:
(sp.s1.Pres, V sp.s2.Pres,) = REQ

— Parallel composition with synchronization- we denote bys-AND the set of ser-
vices belonging to aAND mode, which need to synchronize their executions in the
end. Then, thednd” synchronization of such services is defined as:

(51 |lsy NC—and S2) £ (51,82 € S—AND = ((Vnow - statuss, = statuss, = active)
N(starts, + TimetoServes, = starts, + TimetoServes,)))

The correctness condition of tharfd-AND” synchronization is given below:

(sp.(s1 ||syNc—anda s2).Preanp = (Posts, N\ Posts,)) A (Posts, A\ Posts, = REQ)

A service user, but also a developer of services, might reszgplace a service with
one with possibly better QoS. It follows that one needs to lide o check whether
the new service still delivers the original functions, vehiilaving better time-to-serve
or resource-usage qualities. Verifying such a propertyced to proving refinement of
services. Either weakening the service precondition engfthening its postcondition
qualifies as service refinement.

5 Example: An Autonomous Shuttle System

In this section, we consider an example, previously modetetianalyzed in the PTA
framework, in our recent work [5].

We consider a simplified version of a three train system thatiges transportation
service to three different locations. The system has begelaged at University of
Paderborn within the Railcab project [11]. While in our poas work [5], we have
focused on resource effective design, in the current exaypt extract parts of the
behavior described by Giese and Klein [11], to show how sesvare created, invoked,
composed, and idled, by using the Res extended interface and behavioral language.

Each of the trains has a well-defined path to follow, as showkig. 3. During the
transport, the shuttles might meet at p@nin which they are forced to create a convoy.



In order to enter the convoy, they have to respect given speddacceleration limits,
measured in pointal, A2, andA3, respectively, otherwise they may stop to let others
that fulfil the given requirements join the convoy. After angoy is formed and has left,
those that were stopped are allowed to continue their jqutmereviously assigned
destination, if the sensor at poi@t in Fig. 3, has sent the “safe to continue” signal.

N
N, L
()\

Fig. 3. An example overview.

After the destination point is being reached, a shuttle é& fto turn to the idle
state, and wait for new orders. The system described abeegiipped with one central
controller, as shown in Fig. 3, which decides when and whirltke to invoke, based
on the service descriptions for each shuttle, respectively

5.1 Modeling the Shuttle System irREMES

We model the behavior of the Autonomous shuttle system sesvais modes in the
extended RMES. The composite mode &huttlel is depicted in Fig. 4, yet, due to
lack of space, we do not show here the constituent submodesyebbriefly explain
them instead (for more details we refer reader to [5]).

Shuttle1
Shuttle1 Attributes: Network Service, 5, 290, Idle,
(t1 =0 A Speed1 = 0), (td1 <= 290)

[t1=0n
Speed1 = 0] {td1 <= 290}
— >
Init/Entry Exit

Fig. 4. The model of Shuttlel given as &RESservice.

The mode consists of tteomic modes (i.e.Acceleration1, STOP, andDestination).
They communicate data between each other using the globables:speed;, status;,



t;, andStatusConvoy. The control interfaces are used to expose mode attribel@snt
for mode discovenshuttlel andShuttle3 have the same behavior, whisauttle2 is an
older shuttle than the other two, and therefore it requiresetime to start, accelerate,
slow down.

5.2 Applying the Hierarchical Language

Below, we illustrate the use of our proposed hierarchigajleage for modeling service
composition, as depicted in Table 1, on the example degtib8ection 5.

Table 1. An illustration of the REMESlanguage

00 declareShuttlel ::=< network service, |18 create Shuttlel

01 5, 19 create Shuttle2

02 290, 20 createShuttle3

03 passive, 21 createlist_Convoy

04 (t1 = 0 A speed = 0),|22 add Shuttlel list-Convoy

05 (t1 <290) > 23 add Shuttle2 list_Convoy

06 declare Shuttle2 ::=< network service, |24 DCL _Convoy ::= (list_Convoy, ; ,t < 300)

07 7, 25 HDCL _Convoy ::= ((DCL_Convoy, Shuttle3), || ,t < 300)

08 300, 26 check(sp.(Shuttlel; Shuttle2).(t1 = 0 Aspeed = 0) A (t =t1 Vt =t2)) = (t < 300)
09 passive, 27 check(sp.Shuttle3.(t3 = 0 A speed = 0) A (t = t3)) = (¢ < 300)
10 (t2 = 0 A speed = 0),|28 del HDCL_Convoy

11 (t2 < 300) >

12 declareShuttle3 ::=< network service,

13 5,

14 290,

15 passive,

16 (t3 =0 Aspeed = 0),

17 (t3 < 290) >

The needed services are introduced through the declapsivélines 00-17 in Ta-
ble 1). A service declaration contains the service name, ty{atus, TimeToServe, pre-
condition and postcondition. The corresponding requirgmematched against such
attribute information, when choosing a service. After takestion, the instances of the
selected services are created (lines 18-20 in Table 1),@aetao the service list using
theadd command (lines 22-23 in Table 1). Finally, the chosen ses/are composed
by DCL. The list of services, employed protocol (type of segvbinding), and DCL
requirements are given as parameters. Moreover, the lgequravides means to com-
pose the existing DCLs with other services, through HDCLslagwn in line 25 of
Table 1. If not anymore needed, the composition can be dklete

The advantage of this language is that, after each compogithe can check whether
the given requirement is satisfied, by forward analysis, bygcalculating the strongest
postcondition of a given composition w.r.t. a given predtod. Due to space limita-
tion, we show only the final computed result. Bel@d,= (t1 = 0 A speed = 0).

By applying thesp rules (1) - (3), we get the following:

sp.(Shuttlel; Shuttle2).pl
sp.Shuttlel.pl

sp.Shuttle2.(sp.Shuttlel.pl)

(t1 =0A245 <t <266 Aspeedl =0 A
A mode = Destination Arl =0 A

A statusl = endl = idle)



sp.Shuttle2.(sp.Shuttlel.pl) = (t1 =t2=0A264 <t <285 A
A speedl =speed2 =0Arl=r2=0A
A statusl = endl = idle A status2 = end2 = idle)

One can notice that the requirem&EQ = (t < 300) is implied by the calculated
strongest postcondition to which the conditign= t1 v t = t2) is added. This is actu-
ally what the commandheck should return as a main proof obligation, provided that
the method is implemented in theeRES tool-chain.

For the second check, we haSeuttle3 composed in parallel with the sequential
composition of the other two shuttles, wip = (t3 = 0 A speed = 0). Then, accord-
ing to the composition semantics of section 4, proving threeminess of th¢Shuttle3
[|(Shuttlel; Shuttle2)) composition reduces to showing that:

(sp.Shuttle3.p3 V sp.Shuttle2.(sp.Shuttlel.pl)) = REQ

As already shown, the sequential composition of the first stmattles implies the
requirement. What is left to be proven is that the strongestgondition ofShuttle3,
w.r.t p3, also implies the requirement. The calculated strongesttpadition of the lat-
ter is as follows:

sp.Shuttle3.p3 = (t3 =0 A 245 <t < 266 A speed3 = OA
A mode = Destination A r3 = 0 A status3 = end3 = idle)

Itis easy to check that the requirem®&&Q is actually implied bysp.Shuttle3.p A
t = t3. This concludes our service composition correctness gatidin.

6 Discussion and Related Work

Based on the level of details that are provided through theaieral description, all
approaches related to services and SOS can be in princyidkediinto three groups.

Code-level behavioral description approaches are moaigdhon XML language
(e.g., BPEL, WS-CDL). BPEL [3] is an orchestration languag®se behavioral de-
scription includes a sequence of project activities, dati@n of messages and process
instances, and recovery behavior in case of failures andptixmal conditions. Ap-
proaches like BPEL are useful when services are intendeert@ & particular model
or when the access to the service implementation exists.dféeback of such ap-
proaches is the lack of formal analysis support, which fetbe designer/developer to
master not only the specification and modeling processeslbo the techniques for
translating models into a suitable analysis environment.

When compared to the above group, BPMN [14] can be seen aharHeyel lan-
guage. It relies on a process-oriented approach, and sisgpgraphical representation
to be used by both designers and analysts. The lack of a fdremavioral description
does not provide means for detailed analysis, as the on@sgepdy REMES.

The third group includes approaches with formal backgrourythly describes
the service behavior as a component-based system for dgraaahitectures [16]. The
specification of services, their behavior, and hierardhioaposition are formalized
within the w-calculus. Similar to our approach, this work emphasizes libhavior



in terms of interfaces, (sub)service communication, amdlibgs, while we can also
cater for service descriptions including timing and reseuannotations [5]. Foster et
al. present an approach for modeling and analysis of wehcgecompositions [10].

The approach takes BPEL4WS service specification and &t@ssit into Finite State

Processes (FSP), and Labeled Transition Systems (LT S3nfdysis purposes.

A comprehensive survey on several approaches that are awvodating service
composition, and are checking the correctness of compasifi3, 12, 14, 15] is given
by Beek et al. [20]. Regarding service modeling, all thesgragaches are solid; how-
ever, w.r.t. service compositions and their correctnessking [7, 13, 17] (usually by
employing formal methods), such approaches show limitgralo#ities to automati-
cally support these processes. In comparison, as showisipdper, compositions of
REMES models can be mechanically reasoned about (although, asfigrve still miss
the interface correctness tool support), or can be autcaitiranslated to timed- [1]
or priced timed automata [2], and analyzed witRRAAL , or UPPAAL CORA tools?,
for functional but also extra-functional behaviors (timiand resource-wise behaviors).

7 Conclusions

In this paper, we have presented an approach for formaksedescription by extending
the resource-aware timed behavioral language &s. Attributes such as type, time-to-
serve, capacity, etc., together with precondition andquostition are added toEVMES
to enable service discovery, as well as service interackgan if the original seman-
tics of REMES[19] is given in terms of Priced Timed Automata (PTA), here, nave
chosen to use Hoare triples and the strongest postcondimantics to prove service
correctness, motivated by the lack of decidability resigitscomputing simulations re-
lations on PTA. We have also proposed a hierarchical langif@agervice composition,
which allows for the verification of, e.g., service compisitcorrectness. The approach
is demonstrated on a simplified version of an intelligentt&gystem.

As future work, we plan to look into the algorithmic compiunatof strongest post-
conditions of priced timed automata, by building on pretiary results of Badban et
al. [4]. We also intend to extend theeRES tool-chain with a postcondition calculator.
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