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Abstract. Service-oriented systems have recently emerged as context-indepen-
dent component-based systems. Unlike components, services can be created, in-
voked, composed, and destroyed at run-time. Consequently,all services need a
way of advertising their capabilities to the entities that will use them, and service-
oriented modeling should cater for various kinds of servicecomposition. In this
paper, we show how services can be formally described by the resource-aware
timed behavioral language REMES, which we extend with service-specific infor-
mation, such as type, capacity, time-to-serve, etc., as well as boolean constraints
on inputs, and output guarantees. Assuming a Hoare-triple model of service cor-
rectness, we show how to check it by using the strongest postcondition semantics.
To provide means for connecting REMESservices, we propose a hierarchical lan-
guage for service composition, which allows for verifying the latter’s correctness.
The approach is applied on an abstracted version of an intelligent shuttle system.

1 Introduction

Service-oriented systems (SOS) assumeservices as their basic functional units, with
capabilities of being published, invoked, composed and destroyed at runtime. Services
are loosely coupled and enjoy a higher level of independencefrom implementation
specific attributes than components do.

An important problem is to ensure thequality-of-service (QoS) that can be expected
when deciding which service to select out of a number of available services delivering
similar functionality. Some of the existing SOS standards support formal analysis [3,
12, 14, 15] to ensure QoS, but usually it is not straightforward to work out the exact
formal analysis model.

In order to fully understand the ways in which services evolve and impact on QoS
attributes, aservice behavioral description is required [6]. Such behavior is assumed to
be internal to the service, and hidden from the user. It should include the representation
of a service functionality, enabled actions, resource annotations, and possible interac-
tions with other services.

To meet the above demands, in this paper, concretely in Section 3, we extend the ex-
isting resource-aware, timed hierarchical language REMES [19], recalled in Section 2,
to become fit for service behavioral modeling. In REMES, a service is modeled by an
atomic or compositemode, which we enrich with attributes such as service type, capac-
ity, time-to-serve etc., pre- and postconditions, which are exposed at the mode’s inter-
face. Still in Section 3, we introduce a synchronization mechanism for REMES modes,
which enables modeling and verification of synchronized services.



By exploiting the pre-, postcondition annotations, we showhow to describe the
service behavior in Dijkstra’s guarded command language [8], and how to check the
service correctness by employing Dijkstra’s and Scholten’s strongest postcondition se-
mantics [9].

Since services can be composed at run-time, analyzing the correctness of a service
in isolation does not suffice. To exemplify, let us consider aservice that is composed of
several navigation services, out of which some return the route length in miles, whereas
others in kilometers. If the developer has omitted to introduce a service that converts
length from one metric to the other, it is desirable to uncover such an error right away,
by formally checking the correctness of the actual service composition, at run-time.

To address the dynamic aspects of services, in Section 4, we propose a hierarchi-
cal language for dynamic service composition (HDCL) that allows creating new ser-
vices, via binary operators, as well as adding and/or deleting services from lists. In
the same section, we also give the semantics of sequential, parallel, and parallel with
synchronization service composition, respectively. Next, we apply the approach on an
abstracted version of an intelligent shuttle system, for which we show the use of REMES

language to model the system and apply HDCL language to checkthe correctness of
service compositions. In Section 6, we compare to some of therelevant related work,
before concluding the paper in Section 7.

2 Preliminaries

2.1 REMES modeling language

The REsource Model for Embedded Systems REMES [19] is intended as a meaningful
basis for modeling and analysis of resource-constrained behavior of embedded systems.
REMES provides means for modeling of both continuous (i.e., power) and discrete re-
sources (i.e., memory access to external devices). REMES is a state-machine behavioral
language that supports hierarchical modeling, continuoustime, and a notion of explicit
entry and exit points, making it fit for component-based system modeling.

To enable formal analysis, REMES models can be transformed into timed automata
(TA) [1], or priced timed automata (PTA) [2], depending on the analysis type.

The internal component behavior in REMES is given in terms of modes that can
be eitheratomic (do not contain submode(s)), orcomposite (contain submode(s)). The
data transfer between modes is done through thedata interface, while the control is
passed via thecontrol interface (i.e., entry and exit points). REMES assumeslocal or
global variables that can be of types boolean, natural, integer, array, or clock (continu-
ous variable evolving at rate 1). Each (sub)mode can be annotated with the correspond-
ing continuous resource usage, if any, modeled by the first derivative of the real-valued
variables that denote resources, and which evolve at positive integer rates.

The control flow is given by the set of directed lines (i.e.,edges) that connect the
control points of (sub)modes. Modes may also be annotated with invariants, which
bound from above the current mode’s delay/execution time. For a more thorough de-
scription of the REMES model, we refer the reader to [19].



The REMES language benefits from a set of tools1 for modeling, simulation and
transformation into PTA, which could assist the designer during system development.

2.2 Guarded command language

The Guarded Command Language (GCL) was introduced and defined by Dijkstra for
predicate transformers semantics [8]. The basic element ofthe language is the guarded
command, a statement list prefixed by a boolean expression, which can be executed
only when the boolean expression is initially true.

The syntax of the GCL is given in Backus-Naur Form (BNF) extended with braces
“{..}”, where the braces mean: ”followed by zero or more instancesof the enclosed”.

< guarded command > ::= < guard > − > < guarded list >

< guard > ::= < boolean expression >

< guarded list > ::= < statement > {; < statement >}
< guarded command set > ::= < guarded command > { [] < guarded command >}
< alternative construct > ::= if < guarded command set > fi

< statement > ::= < alternative construct > | “other statements′′

< repetitive construct > ::= do < guarded command set > od

The semicolons in the guarded list denote that whenever the guarded list is selected
for execution, its statements will be executed successively in the order from the left
to the right. A guarded command is not a statement but a component of a guarded
command set from which statements can be constructed. The separator “[] ” is used for
mutual separation of guarded commands in guarded command set.

The alternative construct is written using special bracketpair: “if ... fi”. The program
aborts if none of the guards is true, otherwise an arbitrary guarded list with a true guard
will be executed. Similarly, the repetitive construct ”do ... od” means that the program
runs as long as one of the guards is true, and terminates if none of the guards is true.

Semantics and Correctness of Guarded Commands.Let us assume the Hoare triple,
{p} S {q}, wherep, q are predicates, denoting the partial correctness of guarded com-
mandS with respect to preconditionp and postconditionq. Introduced by Dijkstra and
Sholten [9], thestrongest postcondition predicate transformer (a function that maps
predicates to predicates), denoted bysp.S.p, holds in those final states for which there
exists a computation controlled byS, which belongs to class “initially p”. Proving the
Hoare triple, that is, the correctness of a guarded command,reduces to showing that
(sp.S.p ⇒ q) holds. The strongest postcondition rules for the assignment statement, for
sequential composition, and for the non-deterministic conditional are as follows:

sp.(x := e).p(x) ≡ x = e ∧ (∃x · p(x)) (1)

sp.(S1; S2).p ≡ sp.S2.(sp.S1.p), ∀p (2)

sp.(if g1 → S1 [] . . . [] gn → Sn fi).p ≡ sp.S1.(g1 ∧ p) ∨ . . . ∨ sp.Sn.(gn ∧ p), ∀p (3)

1 The REMES tool-chain is available at http://www.fer.hr/dices/remes-ide.



3 Behavioral Modeling of Services inREMES

In REMES, a service is represented by a mode (be it atomic or composite). The service
may have a specialInit entry point, visited when the service first executes, and where all
variables are initialized. In order for a service to be published and later discovered, a list
of attributes should be exposed at the interface of a REMES mode/service (see Fig.1).

Fig. 1. A service modeled in REMES

The attributes depicted in Fig.1 have the following meaning:

– service type - specifies whether the given service is a web service (i.e., weather
report), a database service (i.e., ATM services), a networkservice, etc.;

– service capacity - specifies the service’s maximum ability to handle a given number
of messages per time unit (i.e., the maximum service frequency)(∈ N);

– time-to-serve - specifies the worst-case time needed for a service to respond and
serve a given request (∈ N);

– service status - describes the current service status (that is, passive (not invoked),
idle, active);

– service precondition - is a predicate (Pre :
∑

→ Bool, Pre ≡ (PreInit∨PreEntry))
that conditions the start of service execution, and must be true at the time a REMES

service is invoked. In this expression
∑

is the polymorphic type of the state that
includes both local and global variables, and predicatesPreInit, PreEntry are the
initial, and the entry precondition of the service, respectively;

– service postcondition - is a predicate (Post) that must hold at the end of a REMES

service execution.

The attributes are used to discoverService; they are specified by an interested party
and, based on the specification, the service is either retrieved or not.

The formal specification of a service, modeled as the composite mode of Fig. 1, is
the Hoare triple{p }Service{q}, whereService is described in terms of the guarded
command language, and the mode’s preconditionp, and postcondition (requirement)q



are as follows:
p

≡
y ≤ c ∧ c > b ∧ (d = 0 ∨ v ≤ d ≤ e) ∧ r1 = r2 = r3 = 0 ∧ (h = 0 ∨ h = 1)

q

≡
y ≤ c ∧ d ≤ e ∧ (∀i, 1 ≤ i ≤ 3 · ri ≤ vali)

wherevali are the given upper bounds on each resource usage, respectively.
Below, we give the GCL description of the REMES composite modeService:

Service ::=
IF

¬u1 ∧ h = 0 ∧ y ≤ b Init → Atomic mode 1
→ r3 := r3 + q;

sm := Atomic mode 1; u1 := true;
Update(now)

[] ¬u2 ∧ h = 1 ∧ (x ≤ a ∧ d = v) ∧ y ≤ b Entry → Atomic mode 1
→ sm := Atomic mode 2; u2 := true;

Update(now)
[] (¬u3 ∧ (h = 1 ∧ d ≥ v) ∨ d = u) ∧ y ≤ c (Entry or Atomic mode 1) → Atomic mode 2
→ sm := Atomic mode 2; u3 := true;

Update(now)
[] ¬u4 ∧ sm = Atomic mode 1∧ y ≤ b Delay in Atomic mode 1
→ r1(t) := r1(now) + n ∗ (t − now);

r2(t) := r2(now) + m ∗ (t − now);
{y ≤ b}; u4 := true;
Update(now)

[] ¬u5 ∧ sm = Atomic mode 1∧ y = b

→ d := u; u5 := true;
Update(now)

[] ¬u6 ∧ sm = Atomic mode 2∧ y ≤ c Delay in Atomic mode 2
→ r2(t) := r2(now) + p ∗ (t − now);

{y ≤ c}; u6 := true;
Update(now)

[] ¬u7 ∧ sm = Atomic mode 2∧ y = c Atomic mode 2→ Exit

→ d := e;
h := 1; u7 := true;
Update(now); u1, . . . , u7 := false

FI
(4)

In the GCL description (4), the variablesx, y are clocks,h is the history variable
that is used to decide where to enter the composite mode,sm is the variable ranging
over submodes, andr1 : Real+ → T1, r2 : Real+ → T2 are the continuous resources
of the model, defined as functions over the non-negative reals that are used as the time
domain. In addition,ui are local variables used for preventing executing the same action
more than once, at the same time point. These variables are reset each time the mode
Service exits. Similar to the approach taken for action system models [18], the variable



now shows the current time, and it is explicitly updated by statementUpdate(now).
The assertions{y ≤ b}, {y ≤ c} model the invariants (Inv) of Atomic mode 1, and
Atomic mode 2, respectively.

We defineUpdate(now) as follows:

Update(now) , now := next.now

The submodes can be urgent (no delays are allowed), or non-urgent (where delays can
happen, until an invariantInv is violated); also, guarded actions can annotate edges
connecting the entry points of the composite mode with submodes, via some condi-
tional connector (denoted by encircled C in Figure 1). Giventhese, and assuming that
gg is the disjunction of the action guards of the edges leaving amode (or a conditional
connector), and thatInv is the invariant of the respective mode,next is defined by:

next.t ,

{

min{t′ ≥ t | ¬Inv ∨ gg}, if existst′ ≥ t such that¬Inv ∨ gg

+∞, otherwise.

If a mode is urgent, or the guards correspond to a conditionalconnector, thenI ≡
false, so the next moment of time is identical to the current one, nodelay being possible.

The modeService, modeled by (4), can be iterated for as long as needed, so the com-
plete specification is:statusService := active; (DO g → Service [] ¬g → statusService :=
idleOD). According to rule (3), the strongest postcondition of the conditional statement
is:

sp.Service.p

≡
sp.(r3 := r3 + q; sm := Atomic mode 1;Update(now)).(h = 0 ∧ y ≤ b ∧ p)
∨
. . .

∨
sp.(d := e;h := 1; Update(now)).(sm = Atomic mode 2∧ y = c ∧ p)

Assuming thatsp.{y ≤ c}.p ≡ y ≤ c ∧ (∃x · p(x)), the abovesp can be mechani-
cally computed by successively applying rules (1) - (2). Thecorrectness proofs reduce
to checking whether each of the strongest postconditions ofthe above disjunction im-
plies the requirementq, given earlier.

In service-oriented systems, there is often the case that services need to synchronize
their behaviors. In order to model synchronized behavior, we introduce a special kind
of REMES mode, given in Figure 2, which can act either as anAND mode, or as anOR
mode, depending on whether the services need to be entered simultaneously, or not.

The composite mode of Figure 2 contains as sub-modes the services that need to
be synchronized. ForAND modes, bothService a, andService b are entered at the
same time (through their entry point). This means that the edges marked with (*) do
not have guards. In case ofOR modes, one or all constituent services are entered, so
the edges marked with (*) are annotated with guards. If some of the edges need to be
taken at the same time in both services, the communication betweenService a andb is
realized via synchronization variables,chan (in x), (out x), which are used similarly to



Service a

Service b

*

*

A1

B1

in x

out x

...

...

A2

B2

Fig. 2. AND/OR REMESmode.

the PTA channelsx?, x!, respectively. Depending on the required synchronizationtype
and starting time of the constituent services’ execution,AND modes, but alsoOR can
be employed when either “and” synchronization (both services should finish execution
at the same time), or “max” synchronization (the composite mode finishes when the
slowest service finishes) is required.

In Figure 2,Service a, Service b need to synchronize actionsA2, B2. This can be
done by decorating the respective edges with channel variablesout x for A2, andin x

for B2, meaning that the respective edges are taken simultaneously in both services,
A2 writing variables thatB2 is reading. The same applies if the services need to “and”-
synchronize at the end of their execution. The exit edge of each service, respectively,
needs to be annotated withchan variables.

The GCL representation of such synchronization requires strengthening the guards
of the respective synchronized commands of the conditionalstatement, as follows:
(in x) ∧ gA2 → SA2, (out x) ∧ gB2 → SB2, whereSA2, SB2 are the action bod-
ies ofA2, B2, respectively. The actions can then be executed in a sequence, with the
one writing variables, first. The “max” synchronization can be represented in GCL
by using a virtual selector (variablesel) [18], which selects for execution the modes
SM1, . . . , SMn, according to the control flow, marks them as executed after they fin-
ish their execution, and keeps the time values ofnow in a copy variablenowc, which is
updated only after the slowest service finishes executing; the latter translates in exiting
the compositeAND, or OR mode.

4 Hierarchical Language for Dynamic Service Composition:
Syntax and Semantics

Service compositions may lead to complex systems of concurrently executing services.
An important aspect of such systems is the correctness of their temporal and resource-
wise behavior. In the following, we propose an extension to the REMES language,
which provides means to define and support creation, deletion, and composition of
fine-grained or coarser-grained services, applicable to different domains. We also in-



vestigate a formal way of ensuring the correctness of the composition, based on the
strongest postcondition semantics of services.

Let us assume that a service, whose behavior is described by aREMES mode, is
denoted byservice namei, i ∈ [1..n]; then, a service list, denoted bys list, is defined
as follows:

s list ::= [service name1, ..., service namen]

In order to support run-time service manipulation, we definea set of REMES inter-
face operations, by a pre- postcondition specification. We denote byΣ the set of service
states, respectively, that is, the current collection of variable values.

– Create service: create service name
[pre] : service name = NULL

create : Type × N × N × ′′passive′′ × (Σ → bool) × (Σ → bool) →
service name

{post} : service name 6= NULL

– Delete service: del service name
[pre] : service name 6= NULL

del : service name → NULL

{post} : service name = NULL

– Create service list: create s list
[pre] : s list = NULL

create list : s list → s list, s list = List()
{post} : s list 6= NULL

– Delete service list: del s list
[pre] : s list 6= NULL

del list : s list → NULL

{post} : s list = NULL

– Add service to a list: add service name, s list
[pre] : service name 6∈ s list

add : s list → s list

{post} : service name ∈ s list

– Remove service from the list: del service name, s list
[pre] : service name ∈ s list

del : s list → s list

{post} : service name 6∈ s list

– Replace service in the list: replace service name1, service name2

[pre] : s list(p) = service name1

replace : s list → s list

{post} : s list(p) = service name2



– Insert service at a specific position: insert service namei, s list

[pre] : s list(p) 6= service namei

add : s list → s list

{post} : s list(p) = service namei

Note that a new service list can be created by using the constructor List(), which
holds list values of any type. Such a constructor enables thecreation of both empty list
and also list with some initial value (s list = List : String([“Shuttle1′′, “Shuttle2′′])).
Also, adding a service to a list means, in this context, appending that service, that is,
adding it at the end of the list. Replacing a service with another one, and inserting
a service at a specific position requires the use of parameterp, which specifies the
position at which the service is replaced or inserted.

Most often, services can be perceived as independent and distributed functional
units, which can be composed to form new services. The systems that result out of
service composition have to be designed to fulfill requirements that often evolve con-
tinuously and therefore require adaptation of the existingsolutions.

Alongside the above operations, we also define a hierarchical language that supports
dynamic REMESservice composition (HDCL), that is, facilitates modelingof nested se-
quential, parallel or synchronized services:

DCL ::= (s list, PROTOCOL,REQ)

HDCL ::= (((DCL+, PROTOCOL, REQ)+, PROTOCOL, REQ)+, . . . )

The formula above allows a theoretically infinite degree of nesting. The positive
closure operator is used to express that one or more DCLs (Dynamic Composition Lan-
guages) are needed to form an HDCL. ThePROTOCOL defines the way services are
composed, that is, the type of binding between services, as follows:

PROTOCOL ::= unary operator service name | servicem binary operator servicen

The requirementREQ is a predicate (Σ → Bool) that can include both functional
and extra-functional properties/constraints of the composition. It identifies the required
attribute constraints, capability, characteristics, or quality of a system, such that it ex-
hibits the value and utility requested by the user. The aboveunary and binary operators
are defined as follows:

Unary operator ::= exec − first

Binary operator ::= ; | ‖ | ‖SY NC−and | ‖SY NC−or

Let us assume that two servicess1, s2 are invoked at some point in time, and their in-
stances are placed in the service lists list. Also, we assume thatsi.P rei is the strongest
postcondition ofsi, i ∈ 1, 2, w.r.t. preconditionPrei. Then, the semantics of the unary
and binary protocol operators, as well as the correctness conditions for such composi-
tions are given as follows.

– Exec-first (specifies which service should be initially executed in a composition) -
below we formalize the fact thats1 should execute first, and only when it finishes



and establishes its postcondition, services2 can become active:

statuss1
= active ∧ statuss2

= idle ∧ Posts1
⇒ (statuss2

= active)

If we assumen servicess1, . . . , sn of a list, executings1 first is defined as:

Exec − first s1 , s1 [] ¬gs1
→ (s2 Binary operator . . .Binary operator sn)

This means that, even if any other service (or service composition) could be exe-
cuted, it will be executed only afters1 has finished execution.

– Sequential composition- two services are executed in a sequence, uninterrupted,
e.g.,s1; s2. The correctness condition ofs1; s2 is:

(sp.s2.(sp.s1.P res1
) ⇒ Posts2

) ∧ (Posts2
⇒ REQ)

– Parallel composition’s(s1 ‖ s2) correctness condition is:

(sp.s1.P res1
∨ sp.s2.P res2

) ⇒ REQ

– Parallel composition with synchronization- we denote byS-AND the set of ser-
vices belonging to anAND mode, which need to synchronize their executions in the
end. Then, the “and” synchronization of such services is defined as:

(s1 ‖SY NC−and s2) , (s1, s2 ∈ S−AND⇒ ((∀now · statuss1
= statuss2

= active)
∧(starts1

+ T imetoServes1
= starts2

+ T imetoServes2
)))

The correctness condition of the “and-AND” synchronization is given below:

(sp.(s1 ‖SY NC−and s2).P reAND ⇒ (Posts1
∧ Posts2

)) ∧ (Posts1
∧ Posts2

⇒ REQ)

A service user, but also a developer of services, might need to replace a service with
one with possibly better QoS. It follows that one needs to be able to check whether
the new service still delivers the original functions, while having better time-to-serve
or resource-usage qualities. Verifying such a property reduces to proving refinement of
services. Either weakening the service precondition or strengthening its postcondition
qualifies as service refinement.

5 Example: An Autonomous Shuttle System

In this section, we consider an example, previously modeledand analyzed in the PTA
framework, in our recent work [5].

We consider a simplified version of a three train system that provides transportation
service to three different locations. The system has been developed at University of
Paderborn within the Railcab project [11]. While in our previous work [5], we have
focused on resource effective design, in the current example, we extract parts of the
behavior described by Giese and Klein [11], to show how services are created, invoked,
composed, and idled, by using the REMES extended interface and behavioral language.

Each of the trains has a well-defined path to follow, as shown in Fig. 3. During the
transport, the shuttles might meet at pointB, in which they are forced to create a convoy.



In order to enter the convoy, they have to respect given speedand acceleration limits,
measured in pointsA1, A2, andA3, respectively, otherwise they may stop to let others
that fulfil the given requirements join the convoy. After a convoy is formed and has left,
those that were stopped are allowed to continue their journey to previously assigned
destination, if the sensor at pointC, in Fig. 3, has sent the “safe to continue” signal.

A3

A2

A1

B C D

train1

train2

train3

controller

E

F

G

Fig. 3. An example overview.

After the destination point is being reached, a shuttle is free to turn to the idle
state, and wait for new orders. The system described above isequipped with one central
controller, as shown in Fig. 3, which decides when and which shuttle to invoke, based
on the service descriptions for each shuttle, respectively.

5.1 Modeling the Shuttle System inREMES

We model the behavior of the Autonomous shuttle system services as modes in the
extended REMES. The composite mode ofShuttle1 is depicted in Fig. 4, yet, due to
lack of space, we do not show here the constituent submodes, but we briefly explain
them instead (for more details we refer reader to [5]).

Fig. 4. The model of Shuttle1 given as a REMESservice.

The mode consists of theatomic modes (i.e.,Acceleration1, STOP, andDestination).
They communicate data between each other using the global variables:speedi, statusi,



ti, andStatusConvoy. The control interfaces are used to expose mode attributes relevant
for mode discovery.Shuttle1 andShuttle3 have the same behavior, whileShuttle2 is an
older shuttle than the other two, and therefore it requires more time to start, accelerate,
slow down.

5.2 Applying the Hierarchical Language

Below, we illustrate the use of our proposed hierarchical language for modeling service
composition, as depicted in Table 1, on the example described in Section 5.

Table 1.An illustration of the REMES language

00 declareShuttle1 ::=< network service, 18 createShuttle1

01 5, 19 createShuttle2

02 290, 20 createShuttle3

03 passive, 21 create list Convoy

04 (t1 = 0 ∧ speed = 0), 22 add Shuttle1 list Convoy

05 (t1 ≤ 290) > 23 add Shuttle2 list Convoy

06 declareShuttle2 ::=< network service, 24 DCL Convoy ::= (list Convoy, ; , t ≤ 300)
07 7, 25 HDCL Convoy ::= ((DCL Convoy, Shuttle3), || , t ≤ 300)
08 300, 26 check(sp.(Shuttle1; Shuttle2).(t1 = 0 ∧ speed = 0) ∧ (t = t1 ∨ t = t2)) ⇒ (t ≤ 300)
09 passive, 27 check(sp.Shuttle3.(t3 = 0 ∧ speed = 0) ∧ (t = t3)) ⇒(t ≤ 300)
10 (t2 = 0 ∧ speed = 0), 28 del HDCL Convoy

11 (t2 ≤ 300) >

12 declareShuttle3 ::=< network service,

13 5,

14 290,

15 passive,

16 (t3 = 0 ∧ speed = 0),
17 (t3 ≤ 290) >

The needed services are introduced through the declarativepart (lines 00-17 in Ta-
ble 1). A service declaration contains the service name, type, status, TimeToServe, pre-
condition and postcondition. The corresponding requirement is matched against such
attribute information, when choosing a service. After the selection, the instances of the
selected services are created (lines 18-20 in Table 1), and added to the service list using
the add command (lines 22-23 in Table 1). Finally, the chosen services are composed
by DCL. The list of services, employed protocol (type of service binding), and DCL
requirements are given as parameters. Moreover, the language provides means to com-
pose the existing DCLs with other services, through HDCL, asshown in line 25 of
Table 1. If not anymore needed, the composition can be deleted.

The advantage of this language is that, after each composition, one can check whether
the given requirement is satisfied, by forward analysis, e.g., by calculating the strongest
postcondition of a given composition w.r.t. a given precondition. Due to space limita-
tion, we show only the final computed result. Below,p1 ≡ (t1 = 0 ∧ speed = 0).

By applying thesp rules (1) - (3), we get the following:

sp.(Shuttle1;Shuttle2).p1 ≡ sp.Shuttle2.(sp.Shuttle1.p1)
sp.Shuttle1.p1 ≡ (t1 = 0 ∧ 245 ≤ t ≤ 266 ∧ speed1 = 0 ∧

∧ mode = Destination ∧ r1 = 0 ∧
∧ status1 = end1 = idle)



sp.Shuttle2.(sp.Shuttle1.p1) ≡ (t1 = t2 = 0 ∧ 264 ≤ t ≤ 285 ∧
∧ speed1 = speed2 = 0 ∧ r1 = r2 = 0 ∧
∧ status1 = end1 = idle ∧ status2 = end2 = idle)

One can notice that the requirementREQ ≡ (t ≤ 300) is implied by the calculated
strongest postcondition to which the condition(t = t1 ∨ t = t2) is added. This is actu-
ally what the commandcheck should return as a main proof obligation, provided that
the method is implemented in the REMES tool-chain.

For the second check, we haveShuttle3 composed in parallel with the sequential
composition of the other two shuttles, withp3 ≡ (t3 = 0 ∧ speed = 0). Then, accord-
ing to the composition semantics of section 4, proving the correctness of the(Shuttle3

||(Shuttle1; Shuttle2)) composition reduces to showing that:

(sp.Shuttle3.p3 ∨ sp.Shuttle2.(sp.Shuttle1.p1)) ⇒ REQ

As already shown, the sequential composition of the first twoshuttles implies the
requirement. What is left to be proven is that the strongest postcondition ofShuttle3,
w.r.t p3, also implies the requirement. The calculated strongest postcondition of the lat-
ter is as follows:

sp.Shuttle3.p3 ≡ (t3 = 0 ∧ 245 ≤ t ≤ 266 ∧ speed3 = 0∧
∧ mode = Destination ∧ r3 = 0 ∧ status3 = end3 = idle)

It is easy to check that the requirementREQ is actually implied bysp.Shuttle3.p ∧
t = t3. This concludes our service composition correctness verification.

6 Discussion and Related Work

Based on the level of details that are provided through the behavioral description, all
approaches related to services and SOS can be in principle divided into three groups.

Code-level behavioral description approaches are mostly based on XML language
(e.g., BPEL, WS-CDL). BPEL [3] is an orchestration languagewhose behavioral de-
scription includes a sequence of project activities, correlation of messages and process
instances, and recovery behavior in case of failures and exceptional conditions. Ap-
proaches like BPEL are useful when services are intended to serve a particular model
or when the access to the service implementation exists. Thedrawback of such ap-
proaches is the lack of formal analysis support, which forces the designer/developer to
master not only the specification and modeling processes, but also the techniques for
translating models into a suitable analysis environment.

When compared to the above group, BPMN [14] can be seen as a higher-level lan-
guage. It relies on a process-oriented approach, and supports a graphical representation
to be used by both designers and analysts. The lack of a formalbehavioral description
does not provide means for detailed analysis, as the one supported by REMES.

The third group includes approaches with formal background. Rychlý describes
the service behavior as a component-based system for dynamic architectures [16]. The
specification of services, their behavior, and hierarchical composition are formalized
within the π-calculus. Similar to our approach, this work emphasizes the behavior



in terms of interfaces, (sub)service communication, and bindings, while we can also
cater for service descriptions including timing and resource annotations [5]. Foster et
al. present an approach for modeling and analysis of web service compositions [10].
The approach takes BPEL4WS service specification and translates it into Finite State
Processes (FSP), and Labeled Transition Systems (LTS), foranalysis purposes.

A comprehensive survey on several approaches that are accommodating service
composition, and are checking the correctness of compositions [3, 12, 14, 15] is given
by Beek et al. [20]. Regarding service modeling, all these approaches are solid; how-
ever, w.r.t. service compositions and their correctness checking [7, 13, 17] (usually by
employing formal methods), such approaches show limited capabilities to automati-
cally support these processes. In comparison, as shown in this paper, compositions of
REMESmodels can be mechanically reasoned about (although, as fornow, we still miss
the interface correctness tool support), or can be automatically translated to timed- [1]
or priced timed automata [2], and analyzed with UPPAAL , or UPPAAL CORA tools 1,
for functional but also extra-functional behaviors (timing and resource-wise behaviors).

7 Conclusions

In this paper, we have presented an approach for formal service description by extending
the resource-aware timed behavioral language REMES. Attributes such as type, time-to-
serve, capacity, etc., together with precondition and postcondition are added to REMES

to enable service discovery, as well as service interaction. Even if the original seman-
tics of REMES [19] is given in terms of Priced Timed Automata (PTA), here, we have
chosen to use Hoare triples and the strongest postconditionsemantics to prove service
correctness, motivated by the lack of decidability resultsfor computing simulations re-
lations on PTA. We have also proposed a hierarchical language for service composition,
which allows for the verification of, e.g., service composition correctness. The approach
is demonstrated on a simplified version of an intelligent shuttle system.

As future work, we plan to look into the algorithmic computation of strongest post-
conditions of priced timed automata, by building on preliminary results of Badban et
al. [4]. We also intend to extend the REMES tool-chain with a postcondition calculator.
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