
Understanding Evolution of Information Systems
by Applying the General Definition of Information

Rikard Land

Mälardalen University
Department of Computer Science and Engineering

PO Box 883, SE-721 23 Västerås, Sweden
+46 21 10 70 35

rikard.land@mdh.se
http://www.idt.mdh.se/~rld

Abstract. Information Systems are continuously
evolved for a very long time. Problems with
evolving such systems stem from insufficient or
outdated documentation, people no longer being
available, different (often old) hardware and
software technologies being interconnected, and
short-term solutions becoming permanent.
Crucial for successful evolution of Information
Systems is to understand the data and
information of the system.

This paper argues that some of the
fundamental concepts and consequences of the
General Definition of Information (GDI),
presented by the field of Philosophy of
Information, can be a complement to approaches
such as “data mining” and “data reverse
engineering”. By applying GDI it becomes
possible for the maintainers of Information
Systems to ask important questions about the
system that can guide the work in a pragmatic
way. GDI can become a useful tool that improves
the evolution process.

Keywords. General Definition of Information,
Information Systems, Legacy Systems, Philosophy
of Information.

1 Introduction

Information Systems are systems whose
ultimate purpose is to store and manage
information (as opposed to e.g. control systems,
which are designed to control physical processes,
and manages information only as a means to
achieve this). Information systems are long-lived
and have to incorporate changing requirements, and
thus evolve, often over decades. They become
legacy systems, with problems such as:
• Documentation is lacking or out of date.
• Very few people have overview over the whole

system.
• Different technologies from different eras are

mixed.
Still, there is no practical option to start over

from scratch. Although there are problems with the
system, it represents an enormous effort invested in
requirements engineering, designing, implemen-
tation, testing, debugging, tuning etc. Evolution and
maintenance is therefore often carried out through
improving the most urgent parts. To understand
requirements and design the system is reverse
engineered [1]; to get rid of the oldest and most
problematic technologies these parts are ported or
migrated [3].

Philosophy of Information is concerned with
studying information at the most fundamental level
[6]. We will start from the General Definition of
Information (GDI) and pursue some of its
consequences.

Our contribution is a demonstration of how the
GDI can be applied to IS problems to guide some
of the activities involved in their evolution.

2 General Definition of Information
Asking what information “is” is probably futile

– it is what we define it to be. Dictionary
definitions of information typically describe
information in terms of communication, data,
message, facts, knowledge, interpretation, and
understanding1. According to Floridi, “many
analyses have converged on a General Definition of
Information (GDI) as a semantic content in terms
of data + meaning” [6]. Information is, according
to GDI, meaningful, well-formed data – if either the
meaningfulness, the well-formedness, or the data is

1 See e.g. Merriam-Webster Online, URL:
http://www.m-w.com/cgi-bin/dictionary, Web
WordNet, URL: http://www.cogsci.princeton.edu/cgi-
bin/webwn, Principia Cybernetica Web, URL:
http://pespmcl.vub.ac.be, 2004-02-18.

lacking, we cannot talk about a piece of
information.

GDI leaves a number of aspects of data and
information open and does not take a certain
standpoint, i.e. GDI is neutral with respect to these
issues. The openness of these “neutralities” provide
a good basis for the analysis and discussion of this
paper:
• Typological Neutrality. Although information

cannot be dataless, GDI does not specify which
types of data constitute information. Of
particular interest is the question whether lack
of information means negative information. An
example would be whether no answer to the
question “how many database entries” should
be interpreted as “no entries found”, or for
example “still processing the query”, “stuck in
a loop”, etc. GDI does not choose an
interpretation. Choosing the correct interpre-
tation requires additional information about the
data (e.g. meta-data).

• Taxonomic Neutrality. Every piece of data is
a relational entity. This means that nothing can
be regarded as data or information in isolation,
but in relation to something else. As an
example, a black dot is a black dot only in
relation to its background (and the background
is a background only in relation to something
else). But GDI does not by itself identify either
the dot or the background as data, it is neutral
with respect to how data and its relata are
identified.

• Ontological Neutrality. GDI rejects the
possibility of dataless information: no
information without data representation. This
has been interpreted as “no information
without physical or material implementation”
[12], which sounds intuitive when working in
the field of computers. Others have interpreted
this in another way: that the universe itself at
the deepest level is made of information (not
matter or energy), exemplified by the phrase “it
from bit” [19]. GDI is neutral, however, to the
choice of representation.

• Genetic Neutrality. According to GDI, a piece
of information can have semantics not only in
the mind of an informee, but also independent
of any informee.

• Alethic Neutrality. According to GDI,
information consists of meaningful and well-
formed data, independent of whether it is true
or false (or contains no truth value at all). That
is, GDI does not discuss the truthfulness of
data (alethic value). This poses a problem for
the GDI, and some solutions have been
proposed [6]. For our purposes it is enough
though to just highlight the issue of truth.

3 Problems Encountered in IS Evolution
For the purpose of this paper, some of the most

striking features of an Information System in terms
of information will be listed. We have chosen to
consider the information produced in three
development phases, present in all development
projects [13,15]. The requirements on the system
are information. The design of the system can be
seen as something separate from the
implementation – a model of the implementation.
For example, the system’s architecture, different
types of conceptual diagrams are information. As
Information Systems are typically divided into
(persistent) data and program(s) working on this
data, the discussion will consider the design of the
data storage separately from the design of the
programs. The implementation can also be
considered information, which again is divided into
the implementation of data storage and the
programs manipulating data (the programs can be
said to embody (part of) the semantics of the stored
data).

In line with the taxonomic neutrality of GDI
(see above) the relation between each of the above
will also be considered as information. This paper
will investigate four relations (see Figure 1),
because they seem the most natural starting point.
First, the relation between requirements and data
design. That is, why has the data been designed as
it is? Second, the relation between requirements
and program design. That is, why has the programs
been designed as they are? Third, the relation
between data design and data implementation, and
fourth, the relation between program design and
program implementation.

Requirements

Design of data
storage

Design of
programs

Implementation of
data storage

Implementation of
programs

Figure 1: The information considered.

In addition to these relations, one could
consider all possible relations between require-
ments, design, and implementation (i.e. all possible
arcs between the boxes in the figure). The relation
between requirements and implementation will be
touched on, but this is otherwise left as future
work.

Before continuing, some notes on the
terminology used in the rest of this paper.
“Information artifacts” denotes the information
produced and the relations between them (that is,
the five boxes and the four lines in the drawing).
“Developers” denote the people that developed and
maintained the system previously. It could be
understood as “producers of information artifacts”
and includes not only software engineers but also
people involved in requirements elicitation.
“Maintainers” are the people carrying out the
current maintenance and evolution activities, i.e.
“consumers of information artifacts”.

4 Addressing the Problems
Each of the neutralities will now be applied to

the IS problems, one at a time.

4.1 Typological Neutrality
Applied to Information Systems, the typological

neutrality helps us choosing an interpretation when
no information is found. We have chosen the
following interpretation: when no information is
found, this does not mean that there is no
information, but only that we cannot find it.

The opposite seems unlikely. If no information
is found, it seems impossible that the information
system was built without some notion of
requirements and a design (the implementation is
of course there, otherwise there is no information
system to talk about). There was arguably
originally some information, at least in the heads of
the developers. This instead leads to the conclusion
that the apparent lack of information means that
information has been lost. Either it only existed in
the heads of the developers, or if it was
documented the development organization lacks a
document archive. This could lead to either (or
both) of the following actions:
• The information should be searched for (if

there is the least possibility to find the original
developers or old documents).

• An information artifact can be reverse
engineered to reconstruct the lacking
information. That is, a binary executable can be
decompiled, an implementation can be
analyzed (even automatically) to produce a
higher-level description (i.e. design), and the
design artifacts can be analyzed to understand
the original requirements on the system.

In addition to this, the organization should learn
its lesson and improve its documentation practices,
to avoid the same situation in the future.

4.2 Taxonomic Neutrality

The taxonomic neutrality means that GDI does
not by itself identify a piece of data in relation to

something else. In the context of Information
Systems, the identification of information as a
contrast to something else is very much fixed. For
example, the characters constituting the text of
documents or the symbols constituting diagrams, as
contrasted to the background of paper, has been
defined elsewhere and is only used. The same is
true for the implementation: a language is used
with a fixed syntax, which builds on sequences of
characters – or if we like, as sequences of bits. But
we can widen the question and ask what the
information at hand can be contrasted with, in the
sense “what is not there but could have been?” And
the next question must be “why?”

Of course, one cannot document everything. As
a basis, someone writing documentation assumes
that the readers will know the language used (e.g.
English or UML). But somewhere there is a
borderline between what can be assumed, and
where it is possible that the reader will
misunderstand the intention of the writer. Some
terms may be specific to a particular technical
domain, or are used in a specific sense in a
particular system. Some requirements may have
been considered so fundamental that they are never
documented as requirements.

Another reason some information is lacking, in
the eyes of the maintainer, may be that the
documentation practices at the time (or in the
company culture) documentation was prepared was
different from today’s. For example, good
documentation practices for architectural
descriptions [5,9] (and the very notion of software
architecture) is recent, and older systems’
architectures may have only been documented very
rudimentary [11].

The discussion so far concerns documentation,
that is: requirements and design of data storage and
programs. For implementation of data storage and
programs, matters are different. The information
produced could hardly be different (without being
erroneous). Perhaps this is because the information
in this case is so-called “instructional information”
[7], i.e. directions to make something happen, for
example a recipe or a sequence of instructions to be
executed by a CPU.

4.3 Ontological Neutrality
The ontological neutrality states that the

information can never be decoupled from its
representation. This means that the information was
once specified using some data representation. A
consequence of this seemingly trivial observation is
that the representation chosen possibly affects the
actual content of the information. With this in
mind, there are numerous questions that should be
asked during evolution activities:

Requirements. How were requirements
originally represented [10]? Only very informally
in the heads of the developers? In a more formal
document using natural language? Using some
structured notation with natural language (such as a
numbered list or a tree structure)? Using some
formal language? The answer is itself a piece of
information that should be utilized in subsequent
evolution activities. Maybe the requirements
documentation can be improved by translating it
into some more formal form? How did the
representation chosen affect the actual
requirements – were the requirements focused on
functionality or on extra-functional requirements
(such as performance, data consistency or robust-
ness)? Focused on data or on behavior?

Programs design. Which languages (textual
and graphical) have been used? Flowcharts? Are
there architectural descriptions [5]? Is the
vocabulary of architectural patterns [4] or design
patterns [8] used? The level at which design is
made (high abstraction level, such as architecture,
or lower level, such as the one modeled with
flowcharts) is reflected and affected by the choice
of language. This information can be used as a
starting point to infer information about the design
itself. In case of natural language, do some terms
have a specific meaning? Can the choice of
language(s) give some clues about the design
choices made? The choice of language is partially
colored by its popularity at the time the design was
made (which may be decades ago) and would not
necessarily be the best choice today.

Data design. The same reasoning as for design
of programs can be applied to data design, although
the languages used would be different: there are
e.g. UML [18], so-called “crowfoot” notation, and
others.

Programs implementation. How is the
implementation represented, i.e. what programming
language or languages are used? The choice of
language may reflect some conscious decisions
based on the information itself, i.e. the program.
Especially in newer systems, there are a variety of
programming languages to choose from: assembler
languages (may indicate a focus on performance),
interface definition languages (indicate a
component-based approach) [17], logic languages
(indicate a rule-based approach) [16], web-based
languages (indicates a client-server approach) [14],
or procedural languages (may just indicate that a
mainstream language was chosen).

Data implementation. The choice of language
for implementing data is probably fixed once a
database has been determined. Still, the same
vendor may offer a variety of languages and
technologies for data implementation, and the

choice between these reveal some conscious
decisions. Standard SQL [2] may have been chosen
to achieve portability, or proprietary extensions
may have been used, indicate that some vendor
specific features were considered more important
than portability. For example, non-standard SQL
constructs (such as procedures stored in the
database server) may have been chosen for
performance, security, or data consistency reasons.

Please note that the implementation discussions
concern not the implementation on its own but the
relation between requirements and implementation
– how requirements may have been reflected in the
choice of implementation language. Reasoning
based on the ontological neutrality is thus one clue
(among many) to reverse engineering aiming at
understanding the original requirements, in this
case mainly the extra-functional requirements. It
may even be the case that the decision to use a
specific language lays not so much in its technical
characteristics as in its political consequences. One
example would be choosing a language based on
popularity, assuming it will be easy to attract
skilled personnel in the future.

Requirements/Data design; Requirements/
Programs design. The relation between
requirements and design may have been made
explicit in some way. For example, design artifacts
such as documents and diagrams may contain
references to requirements (in the form of the
requirements representation, e.g. the format used to
number requirements). Although it is not sure the
original developers put effort into making
requirements traceable in the design, any clue
found is valuable – and it is easier to find these
references if they are searched for.

Data design/Data implementation; Programs
design/Programs implementation. Source code
can easily be searched to find strings used in the
design, such as names of higher-level abstractions.
Of course, the design description may also
explicitly include names of items (such as database
tables, column names, interfaces, or classes). Such
strings originating from the design could be found
in program code (variables, function names etc.) or
possibly in comments.

4.4 Genetic Neutrality
According to the genetic neutrality of GDI, a

piece of information can have semantics
independent of any informee. Applied to our
discussion, this means that although a maintainer
may not understand the information (e.g. the
requirements, the design etc.) this does not mean
that the information does not have a specific
meaning. This may sound as a repetition of the
typological neutrality, but there is a difference. The

typological neutrality forced us to ask questions
about what lack of data mean; the genetic neutrality
force us to ask to what extent we understand the
data as intended. If the current maintainers do not
understand e.g. original design diagrams, these may
still have been written in a specific language that
were understood at the time of writing.

The genetic neutrality does not, however, state
that seemingly unclear texts or diagrams must have
a meaning that can be discovered if we know the
language used. Even if the language used is well
known (e.g. English or UML), the information
under scrutiny may not conform fully to the
language. And it is not uncommon that diagrams
are created using an ad-hoc notation with boxes and
arrows, without providing a key. A seemingly
vague requirement may indeed be vague, even if
we know the full semantics of the language used.

Perhaps the genetic neutrality is most useful if
interpreted as a procedure: as a maintainer, one
should first embrace the attitude that there is
information to be retrieved even if it is not
understood at once. The language used can provide
a key, and to understand the information, one may
have to learn the language. This language may be a
particular use of natural language (which can be at
least partially learned by scrutinizing other
documents) or a particular graphical notation
(standardized or more ad hoc). The original author,
if available, is of course a key person to explain the
language used.

4.5 Alethic Neutrality
The alethic neutrality highlights the issue of

truth: is a certain piece of information true? It
seems unlikely that any of the information artifacts
would be untruthful on purpose. But there are
situations when documents are not trustworthy,
which need to be taken into account when using the
information contained therein as a basis for
evolution activities. Mapped to our information
artifacts, it seems unnatural to call requirements,
design, implementation, or data untrustworthy by
themselves – only when related to each other can
they become untrustworthy. This may mean:

Requirements/Programs design; Require-
ments/Data design. The design might have been
insufficient to fulfill the requirements, and
therefore the design may be said to be
untrustworthy with respect to the requirements.
This is particularly common for extra-functional
requirements, which are often not analyzed before
the system is built (and after it is built it is too late
to change the design to fulfill these requirements).

Programs design/Programs implementation;
Data design/Data implementation. The
implementation may have evolved while the

documentation has not. Or the opposite, the
implementation never implemented the design fully
(due to e.g. time restrictions, which also would
explain why the design document was not revised).

As a general principle for software maintainers,
the alethic neutrality therefore gives by hand that
the information at hand should be met with a sound
amount of suspicion. The information should be
checked against other information.

5 Discussion and Conclusion
The neutralities of the General Definition of

Information have been applied to ten listed
information artifacts present in Information
Systems, with the aim of discovering important
issues to consider while evolving these systems.
Most of what have been found is not new; it might
rather be seen as old discussions with a new
terminology. But there are some things to learn:
• The content and the form of the information

are not completely decoupled. So a clue to
understand the information is to consider the
representation chosen to embed the
information: natural language, ad-hoc graphical
notations, formal languages, etc. The
information reflects the chosen language’s
strengths and weaknesses.

• Studying the representation used, i.e. what
programming languages and design languages
were used, may reveal what considerations
were important at the time when the
information was produced. In particular, this
may give clues to the original extra-functional
requirements (such as performance or
robustness), even if they were not explicit.

• There was once information, even if it is not
understood now. Documents and diagrams
were written in a language that was under-
standable for the developer even if they are not
clear for the maintainer. Some terms may be
left undefined because they were considered
trivial by the developer. As a consequence, this
attitude leads maintainers to actively search for
lost information.

We believe that applying Philosophy of
Information to research fields such as that of
information system may give birth to new insights.
This paper is a first attempt to do this, and there is
much left to be done. Future work may include the
following:
• We chose three artifacts, from three different

development phases (requirements, design,
implementation). There are other phases as
well to include, e.g. testing. The design phase
could be divided into high-level (architectural)
and low-level design.

• The actual data stored within the system is also
clearly information (hence the term
“Information System”). How can the GDI help
in understanding and managing this data?

• The other relations between the information
listed could be investigated. We are
particularly curious about investigating the
traceability from implementation and stored
data back to requirements.

• Another possible division would be based not
on development phases but on architecture,
which would typically in an Information
System be user interface, business logic, and
database.

6 References
 [1] Aiken P. H., Data Reverse Engineering :

Slaying the Legacy Dragon, ISBN 0-07-
000748-9, McGraw Hill, 1996.

 [2] Bowman J. S., Emerson S. L., and Darnovsky
M., The Practical SQL Handbook: Using SQL
Variants (4th edition), ISBN 0201703092,
Pearson Educational, 2001.

 [3] Brodie M. L. and Stonebraker M., Migrating
Legacy Systems: Gateways, Interfaces & the
Incremental Approach, Morgan Kaufmann
Series in Data Management Systems, ISBN
1558603301, Morgan Kaufmann, 1995.

 [4] Bushmann F., Meunier R., Rohnert H.,
Sommerlad P., and Stal M., Pattern-Oriented
Software Architecture - A System of Patterns,
ISBN 0-471-95869-7, John Wiley & Sons,
1996.

 [5] Clements P., Bachmann F., Bass L., Garlan D.,
Ivers J., Little R., Nord R., and Stafford J.,
Documenting Software Architectures: Views
and Beyond, ISBN 0-201-70372-6, Addison-
Wesley, 2002.

 [6] Floridi L., “Information”, in Floridi L. (editor):
The Blackwell Guide to the Philosophy of
Computing and Information, ISBN 0-631-
22919-1, Blackwell Publishing Ltd, 2004.

 [7] Floridi L., “Information”, in Mitcham C.
(editor): Encyclopedia of Science, Technology
and Ethics, Macmillan (forthcoming, see URL:
http://www.wolfson.ox.ac.uk/~floridi/pdf/este.pdf),
2004.

 [8] Gamma E., Helm R., Johnson R., and
Vlissidies J., Design Patterns - Elements of
Reusable Object-Oriented Software, ISBN 0-
201-63361-2, Addison-Wesley, 1995.

 [9] IEEE, IEEE Recommended Practice for
Architectural Description of Software-Intensive
Systems, ISBN 0-7381-2518-0, Institute of
Electrical and Electronics Engineers, 2000.

 [10] Kotonya G. and Sommerville I., Requirements
Engineering: Processes and Techniques, ISBN
0471972088, John Wiley & Sons, 1998.

 [11] Land R., “Applying the IEEE 1471-2000
Recommended Practice to a Software
Integration Project”, In Proceedings of
International Conference on Software
Engineering Research and Practice (SERP'03),
CSREA Press, 2003.

 [12] Landauer R., “Information is Physical”, In
Physics Today, volume 44, pp. 23-29, 1991.

 [13] Pfleeger S. L., Software Engineering, Theory
and Practice (International Edition edition),
ISBN 0-13-081272-2, Prentice-Hall, Inc.,
1998.

 [14] Powell T. A., Web Design Complete Reference
(2nd edition), ISBN 0072224428, McGraw-
Hill Osborne Media, 2002.

 [15] Sommerville I., Software Engineering, ISBN 0-
201-39815-X, Addison-Wesley, 2001.

 [16] Sterling L. and Shapiro E., The Art of Prolog
(2nd edition), ISBN 0262193388, MIT Press,
1994.

 [17] Szyperski C., Component Software - Beyond
Object-Oriented Programming (2nd edition),
ISBN 0-201-74572-0, Addison-Wesley, 2002.

 [18] UML, UML Home Page, URL:
http://www.uml.org/, 2003.

 [19] Wheeler J.A., “Information, physics, quantum:
the search for links.”, in Zureck W. (editor):
Complexity, Entropy, and the Physics of
Information., Addison Wesley, 1990.

