
Evaluation of Component Technologies with Respect to Industrial Requirements∗

Anders Möller1,2, Mikael Åkerholm1, Johan Fredriksson1, Mikael Nolin1

1Mälardalen Real-Time Research Centre (MRTC), Västerås
2CC Systems, www.cc-systems.com

Sweden

E-mail: anders.moller@mdh.se

Abstract

We compare existing component technologies for embed-
ded systems with respect to industrial requirements. The
requirements are collected from the vehicular industry, but
our findings are applicable to similar industries developing
resource constrained safety critical embedded distributed
real-time computer systems.

One of our conclusions is that none of the studied tech-
nologies is a perfect match for the industrial requirements.
Furthermore, no single technology stands out as being a
significantly better choice than the others; each technology
has its own pros and cons.

The results of our evaluation can be used to guide modifi-
cations or extensions to existing technologies, making them
better suited for industrial deployment. Companies that
want to make use of component-based software engineer-
ing as available today can use this evaluation to select a
suitable technology.

1 Introduction

Component-Based Software Engineering (CBSE) has
received much attention during the last couple of years.
However, in the embedded-system domain, use of compo-
nent technologies has had a hard time gaining acceptance;
software-developers are still, to a large extent, using mono-
lithic and platform-dependent software technologies.

We try to find out why embedded-software developers
have not embraced CBSE as an attractive tool for software
development. We do this by evaluating a set of compo-
nent technologies with respect to industrial requirements.
The requirements have been collected from industrial ac-
tors within the business segment of heavy vehicles, and
have been presented in our previous work [10]. Examples
of heavy vehicles include wheel loaders, excavators, forest
harvesters, and combat vehicles. The software systems de-

∗This work is supported by the Knowledge Foundation (KKS) and SSF
within the projects HEAVE and SAVE.

veloped within this market segment can be characterised as
resource constrained, safety critical, embedded, distributed,
real-time, control systems. Our findings in this study should
be applicable to other domains with similar characteristics.

Our evaluation, between requirements and existing tech-
nologies, does not only help to answer why component-
based development has not yet been embraced by the
embedded-systems community. It also helps us to identify
what parts of existing technologies could be enhanced, to
make them more appropriate for embedded-system devel-
opers. Specifically, it will allow us to select a component
technology that is a close match to the requirements, and if
needed, guide modifications to that technology.

The reason for studying component-based development
in the first place, is that software developers can achieve
considerable business benefits in terms of reduced costs,
shortened time-to-market and increased software quality by
applying a suitable component technology. The component
technology should rely on powerful design and compile-
time mechanisms and simple and predictable run-time be-
haviour.

There is however significant risks and costs associated
with the adoption of a new development technique (such
as component-based development). These must be care-
fully evaluated before introduced in the development pro-
cess. One of the apparent risks is that the selected com-
ponent technology turns out to be inappropriate for its pur-
pose; hence, the need to evaluate component technologies
with respect to requirements expressed by software devel-
opers.

2 Requirements

The requirements discussed and described in this section
are based on a previously conducted investigation [10]. The
requirements found in that investigation are divided into two
main groups, the technical requirements (section 2.1) and
the development process related requirements (section 2.2).

In Euromicro Conference, Component-Based Software Engineering Track, Rennes, France, August, 2004



In addition, section 2.3 contains derived requirements, i.e.
requirements that we have synthesised from the require-
ments in sections 2.1 and 2.2 but that are not explicitly
stated requirements from the vehicular industry [10].

2.1 Technical Requirements

The technical requirements describe industrial needs and
desires regarding technical aspects and properties of a com-
ponent technology.

2.1.1 Analysable

System analysis, with respect to non-functional properties,
such as timing behaviour and memory consumption is con-
sidered highly attractive. In fact, it is one of the single most
distinguished requirements found in our investigation.

When analysing a system built from well-tested, func-
tionally correct, components, the main issue is associated
with composability. The composition process must ensure
that non-functional properties, such as the communication,
synchronisation, memory, and timing characteristics of the
system, are predictabe [3].

2.1.2 Testable and debugable

It is required that tools exist that support debugging, both at
component level (e.g., a graphical debugging tool), as well
as on source code level.

Testing and debugging is one of the most commonly used
techniques to verify software systems functionality. Testing
is a very important complement to analysis, and testability
should not be compromised when introducing a component
technology. Ideally, the ability to test embedded-system
software should be improved when using CBSE, since it
adds the ability to test components in isolation.

2.1.3 Portable

The components, and the infrastructure surrounding them,
should be platform independent to the highest degree pos-
sible. Here, platform independency means (1) hardware in-
dependent, (2) real-time operating system (RTOS) indepen-
dent and (3) communications protocol independent. The
components are kept portable by minimising the number
of dependencies to the software platform. Eventually such
dependencies are off course necessary to construct an exe-
cutable system, however the dependencies should be kept to
a minimum, and whenever possible dependencies should be
generated automatically by configuration tools.

2.1.4 Resource Constrained

The components should be small and light-weighted and the
components infrastructure and framework should be min-
imised. Ideally there should be no run-time overhead com-
pared to not using a CBSE approach. Hardware used in em-
bedded real-time systems is usually resource constrained, to
lower production cost and thereby increase profit.

One possibility, that significantly can reduce resource
consumption of components and the component framework,
is to limit run-time dynamics. This means that it is desirable
only to allow static, off-line, configured systems. Many ex-
isting component technologies have been design to support
high run-time dynamics, where components are added, re-
moved and reconfigured during run-time.

2.1.5 Component Modelling

The component modelling should be based on a standard
modelling language like UML [15] or UML 2.0 [13]. The
main reason to choose a standard like UML is that it is well
known and thoroughly tested, with tools and formats sup-
ported by many third-party developers. The reason for the
vehicular industry to have specific demands in this detail,
is that this business segment does not have the knowledge,
resources or desire to develop their own standards and prac-
tices.

2.1.6 Computational Model

Components should preferably be passive, i.e. they should
not contain their own threads of execution. A view where
components are allocated to threads during component as-
sembly is preferred, since this is conceptually simple, and
also believed to enhance reusability.

The computational model should be focused on a pipes-
and-filters model [17]. This is partly due to the well known
ability to schedule and analyse this model off-line. Also,
the pipes-and-filters model is a good conceptual model for
control applications.

2.2 Development Requirements

When discussing component-based development with
idustry, development process requirements are at least as
important as the technical requirements. To obtain indus-
trial reliance, the development requirements need to be ad-
dressed by the component technology and its associated
tools.

2.2.1 Introducible

Appropriate support to gradually migrate to a new technol-
ogy should be provided by the component technology. It is



important to make the change in development process and
techniques as safe and inexpensive as possible. Revolution-
ary changes in development techniques are associated with
high risks and costs. Therefore a new technology should
be possible to divide into smaller parts, which can be in-
troduced incrementally. Another aspect, to make a tech-
nology introducible, is to allow legacy code within systems
designed with the new technology.

2.2.2 Reusable

Components should be reusable, e.g., for use in new appli-
cations or environments than those for which they where
originally designed [4]. Reusability can more easily be
achieved if a loosely coupled component technology is
used, i.e. the components are focusing on functionality and
do not contain any direct operating system or hardware de-
pendencies. Reusability is further enhanced by the possibil-
ity to use configuration parameters to components.

A clear, explicit, and well-defined component interface
is crucial to enhance the software reusability. Also, specifi-
cation of non-functional properties and requirements (such
as execution time, memory usage, deadlines, etc.) simplify
reuse of components since it makes (otherwise) implicit as-
sumptions explicit. Behavioural descriptions (such as state
diagrams or interaction diagrams) of components can be
used to further enhance reusability.

2.2.3 Maintainable

The components should be easy to change and maintain,
developers that are about to change a component need to
understand the full impact of the proposed change. Thus,
not only knowledge about component interfaces and their
expected behaviour is needed. Also, information about cur-
rent deployment contexts may be needed in order not to
break existing systems. The components can be stored in a
repository where different versions and variants need to be
managed in a sufficient way. The maintainability require-
ment also includes sufficient tools supporting the service of
deployed and delivered products. These tools need to be
component aware and handle error diagnostics from com-
ponents and support for updating software components.

2.2.4 Understandable

The component technology and the systems constructed us-
ing it should be easy to understand. This should also include
making the technology easy and intuitive to use in a devel-
opment project.

The reason for this requirement is to simplify evaluation
and verification both on the system level and on the com-
ponent level. Focusing on an understandable model makes
the development process faster and it is likely that there will

be fewer bugs. This requirement is also related to the intro-
ducible requirement (section 2.2.1) since an understandable
technique is more introducible.

It is desirable to hide as much complexity as possible
from system developers. Ideally, complex tasks (such as
mapping signals to memory areas or bus messages, or pro-
ducing schedules or timing analysis) should be performed
by tools.

2.3 Derived Requirements

Here, we present requirements that we have synthesised
from the requirements in sections 2.1 and 2.2, but that are
not explicit requirements from industry.

2.3.1 Source Code Components

A component should be source code, i.e., no binaries. Com-
panies are used to have access to the source code, to find
functional errors, and enable support for white box testing
(section 2.1.2). Since source code debugging is demanded,
even if a component technology is used, black box com-
ponents is undesirable. However, the desire to look into the
components does not necessary imply a desire to be allowed
to modify them.1

Using black-box components would lead to a fear of
loosing control over the system behaviour (section 2.2.4).
Provided that all components in the systems are well tested,
and that the source code are checked, verified, and qualified
for use in the specific surrounding, the companies might al-
leviate their source code availability.

Also with respect to the resource constrained require-
ment (section 2.1.4), source code components allow for un-
used parts of the component to be removed at compile time.

2.3.2 Static Configurations

Better support for the technical requirements of analysabil-
ity (section 2.1.1), testability (section 2.1.2), and resource
consumption (section 2.1.4), are achieved by using pre-
runtime configuration. Here, configuration means both con-
figuration of component behaviour and interconnections be-
tween components. Component technologies for use in the
Office/Internet domain usually focus on dynamic configu-
rations [9, 19]. This is of course appropriate in these spe-
cific domains, where one usually has access to ample re-
sources. Embedded systems, however, face another reality;
with resource constrained nodes running complex, depend-
able, control applications.

However, most vehicles can operate in different modes,
hence the technology must support switches between a set

1This can be view as a "glass box" component model, where it possible
to acquire a "use-only" license from a third party. This license model is
today quite common in the embedded systems market.



of statically configured modes. Static configuration also im-
proves the development process related requirement of un-
derstandability (section 2.2.4), since each possible configu-
ration is known before run-time.

3 Component Technologies

In this section, existing component technologies for em-
bedded systems are described and evaluated. The technolo-
gies originate both from academia and industry. The selec-
tion criterion for a component technology has firstly been
that there is enough information available, secondly that the
authors claim that the technology is suitable for embedded
systems, and finally we have tried to achieve a combination
of both academic and industrial technologies.

The technologies described and evaluated are PECT,
Koala, Rubus Component Model, PBO, PECOS and
CORBA-CCM. We have chosen CORBA-CCM to represent
the set of technologies existing in the PC/Internet domain
(other examples are COM, .NET [9] and Java Enterprise
Beans [19]) since it is the only technology that explicitly
address embedded and real-time issues. Also, the Windows
CE version of .NET [9] is omitted, since it is targeted to-
wards embedded display-devices, which only constitute a
small subset of the devices in vehicular systems. The eval-
uation is based on existing, publically available, documen-
tation.

3.1 PECT

A Prediction-Enabled Component Technology (PECT)
[21] is a development infrastructure that incorporates devel-
opment tools and analysis techniques. PECT is an ongoing
research project at the Software Engineering Institute (SEI)
at the Carnegie Mellon University.2 The project focuses on
analysis; however, the framework does not include any con-
crete theories - rather definitions of how analysis should be
applied. To be able to analyse systems using PECT, proper
analysis theories must be found and implemented and a suit-
able underlying component technology must be chosen.

A PECT include an abstract model of a component tech-
nology, consisting of a construction framework and a rea-
soning framework. To concretise a PECT, it is necessary
to choose an underlying component technology, define re-
strictions on that technology (to allow predictions), and find
and implement proper analysis theories. The PECT concept
is highly portable, since it does not include any parts that
are bound to a specific platform, but in practise the under-
lying technology may hinder portability. For modelling or
describing a component-based system, the Construction and
Composition Language (CCL) [21] is used. The CCL is not

2Software Engineering Institute, CMU; http://www.sei.cmu.edu

compliant to any standards. PECT is highly introducible, in
principle it should be possible to analyse a part of an exist-
ing system using PECT. It should be possible to gradually
model larger parts of a system using PECT. A system con-
structed using PECT can be difficult to understand; mainly
because of the mapping from the abstract component model
to the concrete component technology. It is likely that sys-
tems looking identical at the PECT-level behave differently
when realised on different component technologies.

PECT is an abstract technology that requires an underly-
ing component technology. For instance, how testable and
debugable a system is depends on the technical solutions
in the underlying run-time system. Resource consumption,
computational model, reusability, maintainability, black- or
white-box components, static- or dynamic-configuration are
also not possible to determine without knowledge of the un-
derlying component technology.

3.2 Koala

The Koala component technology [20] is designed and
used by Philips3 for development of software in consumer
electronics. Typically, consumer electronics are resource
constrained since they use cheap hardware to keep develop-
ment costs low. Koala is a light weight component tech-
nology, tailored for Product Line Architectures [1]. The
Koala components can interact with the environment, or
other components, through explicit interfaces. The com-
ponents source code is fully visible for the developers, i.e.
there are no binaries or other intermediate formats. There
are two types of interfaces in the Koala model, the provides-
and the requires- interfaces, with the same meaning as in
UML 2.0 [13]. The provides interface specify methods to
access the component from the outside, while the required
interface defines what is required by the component from
its environment. The interfaces are statically connected at
design time.

One of the primary advantages with Koala is that it is
resource constrained. In fact, low resource consumption
was one of the requirements considered when Koala was
created. Koala use passive components allocated to active
threads during compile-time; they interact through a pipes-
and-filters model. Koala uses a construction called thread
pumps to decrease the number of processes in the system.
Components are stored in libraries, with support for version
numbers and compatibility descriptions. Furthermore com-
ponents can be parameterised to fit different environments.

Koala does not support analysis of run-time properties.
Research has presented how properties like memory usage
and timing can be predicted in general component-based
systems, but the thread pumps used in Koala might cause
some problems to apply existing timing analysis theories.

3Phillips International, Inc; Home Page http://www.phillips.com



Koala has no explicit support for testing and debugging,
but they use source code components, and a simple interac-
tion model. Furthermore, Koala is implemented for a spe-
cific operating system. A specific compiler is used, which
routes all inter-component and component to operating sys-
tem interaction through Koala connectors. The modelling
language is defined and developed in-house, and it is dif-
ficult to see an easy way to gradually introduce the Koala
concept.

3.3 Rubus Component Model

The Rubus Component Model (Rubus CM) [8] is de-
veloped by Arcticus systems.4 The component technology
incorporates tools, e.g., a scheduler and a graphical tool
for application design, and it is tailored for resource con-
strained systems with real-time requirements. The Rubus
Operating System (Rubus OS) [7] has one time-triggered
part (used for time-critical hard real-time activities) and one
event-triggered part (used for less time-critical soft real-
time activities). However, the Rubus CM is only supported
by the time-triggered part.

The Rubus CM runs on top of the Rubus OS, and the
component model requires the Rubus configuration com-
piler. There is support for different hardware platforms, but
regarding to the requirement of portability (section 2.1.3),
this is not enough since the Rubus CM is too tightly cou-
pled to the Rubus OS. The Rubus OS is very small, and all
component and port configuration is resolved off-line by the
Rubus configuration compiler.

Non-functional properties can be analysed during
desing-time since the component technology is statically
configured, but timing analysis on component and node
level (i.e. schedulability analysis) is the only analysable
property implemented in the Rubus tools. Testability is fa-
cilitated by static scheduling (which gives predictable exe-
cution patterns). Testing the functional behaviour is simpli-
fied by the Rubus Windows simulator, enabling execution
on a regular PC.

Applications are described in the Rubus Design Lan-
guage, which is a non-standard modelling language. The
fundamental building blocks are passive. The interaction
model is the desired pipes-and-filters (section 2.1.6). The
graphical representation of a system is quite intuitive, and
the Rubus CM itself is also easy to understand. Complex-
ities such as schedule generation and synchronisation are
hidden in tools.

The components are source code and open for inspec-
tion. However, there is no support for debugging the appli-
cation on the component level. The components are very
simple, and they can be parameterised to improve the possi-
bility to change the component behaviour without changing

4Arcticus Systems; Home Page http://www.arcticus.se

the component source code. This enhances the possibilities
to reuse the components.

Smaller pieces of legacy code can, after minor modifi-
cations, be encapsulated in Rubus components. Larger sys-
tems of legacy code can be executed as background service
(without using the component concept or timing guaran-
tees).

3.4 PBO

Port Based Objects (PBO) [18] combines object ori-
ented design, with port automaton theory. PBO was devel-
oped as a part of the Chimera Operating System (Chimera
OS) project [6], at the Advanced Manipulators Laboratory
at Carnegie Mellon University.5 Together with Chimera,
PBO forms a framework aimed for development of sensor-
based control systems, with specialisation in reconfigurable
robotics applications. One important goal of the work was
to hide real-time programming and analysis details. An-
other explicit design goal for a system based on PBO was
to minimise communication and synchronisation, thus fa-
cilitating reuse.

PBO implements analysis for timeliness and facilitates
behavioural models to ensure predictable communication
and behaviour. However, there are few additional analysis
properties in the model. The communication and computa-
tion model is based on the pipes-and-filters model, to sup-
port distribution in multiprocessor systems the connections
are implemented as global variables. Easy testing and de-
bugging is not explicitly addressed. However, the technol-
ogy relies on source code components and therefore testing
on a source code level is achievable. The PBOs are modular
and loosely coupled to each other, which admits easy unit
testing. A single PBO-component is tightly coupled to the
Chimera OS, and is an independent concurrent process.

Since the components are coupled to the Chimera OS,
it can not be easily introduced in any legacy system. The
Chimera OS is a large and dynamically configurable oper-
ating system supporting dynamic binding, it is not resource
constrained.

PBO is a simple and intuitive model that is highly un-
derstandable, both at system level and within the compo-
nents themselves. The low coupling between the compo-
nents makes it easy to modify or replace a single object.
PBO is built with active and independent objects that are
connected with the pipes-and-filters model. Due to the low
coupling between components through simple communica-
tion and synchronisation the objects can be considered to
be highly reusable. The maintainability is also affected in
a good way due to the loose coupling between the compo-
nents; it is easy to modify or replace a single component.

5Carnegie Mellon University; Home Page http://www.cmu.edu



3.5 PECOS

PECOS6 (PErvasive COmponent Systems) [22, 5] is
a collaborative project between ABB Corporate Research
Centre7 and academia. The goal for the PECOS project
was to enable component-based technology with appropri-
ate tools to specify, compose, validate and compile software
for embedded systems. The component technology is de-
signed especially for field devices, i.e. reactive embedded
systems that gathers and analyse data via sensors and react
by controlling actuators, valves, motors etc. Furthermore,
PECOS is analysable, since much focus has been put on
non-functional properties such as memory consumption and
timeliness.

Non-functional properties like memory consumption and
worst-case execution-times are associated with the compo-
nents. These are used by different PECOS tools, such as
the composition rule checker and the schedule generating
and verification tool. The schedule is generated using the
information from the components and information from the
composition. The schedule can be constructed off-line, i.e.
a static pre-calculated schedule, or dynamically during run-
time.

PECOS has an execution model that describes the be-
haviour of a field device. The execution model deals with
synchronisation and timing related issues, and it uses Petri-
Nets [16] to model concurrent activities like component
compositions, scheduling of components, and synchroni-
sation of shared ports [11]. Debugging can be performed
using COTS debugging and monitoring tools. However, the
component technology does not support debugging on com-
ponent level as described in section 2.1.2.

The PECOS component technology uses a layered soft-
ware architecture, which enhance portability (section 2.1.3).
There is a Run-Time Environment (RTE) that takes care of
the communication between the application specific parts
and the real-time operating system. The PECOS component
technology uses a modelling language that is easy to under-
stand, however no standard language is used. The compo-
nents communicate using a data-flow-oriented interaction,
it is a pipes-and-filters concept, but the component technol-
ogy uses a shared memory, contained in a blackboard-like
structure.

Since the software infrastructure does not depend on
any specific hardware or operating system, the require-
ment of introducability (section 2.2.1) is to some extent ful-
filled. There are two types of components, leaf components
(black-box components) and composite components. These
components can be passive, active, and event triggered. The
requirement of openness is not considered fulfilled, due to

6PECOS Project, Home Page: http://www.pecos-project.org/
7ABB Corporate Research Centre in Ladenburg, Home Page:

http://www.abb.com/

the fact that PECOS uses black-box components. In later
releases, the PECOS project is considering to use a more
open component model [23]. The devices are statically con-
figured.

3.6 CORBA Based Technologies

The Common Object Request Broker Architecture
(CORBA) is a middleware architecture that defines com-
munication between nodes. CORBA provides a communi-
cation standard that can be used to write platform indepen-
dent applications. The standard is developed by the Object
Management Group8 (OMG). There are different versions
of CORBA available, e.g., MinimumCORBA [12] for re-
source constrains systems, and RT-CORBA [14] for time-
critical systems.

RT-CORBA is a set of extensions tailored to equip Ob-
ject Request Brokers (ORBs) to be used for real-time sys-
tems. RT-CORBA supports explicit thread pools and queu-
ing control, and controls the use of processor, memory and
network resources. Since RT-CORBA adds complexity to
the standard CORBA, it is not considered very useful for
resource-constrained systems. MinimumCORBA defines a
subset of the CORBA functionality that is more suitable for
resource-constrained systems, where some of the dynamics
is reduced.

OMG has defined a CORBA Component Model (CCM)
[2], which extends the CORBA object model by defining
features and services that enables application developers to
implement, mange, configure and deploy components. In
addition the CCM allows better software reuse for server-
applications and provides a greater flexibility for dynamic
configuration of CORBA applications.

CORBA is a middleware architecture that defines com-
munication between nodes, independent of computer archi-
tecture, operating system or programming language. Be-
cause of the platform and language independence CORBA
becomes highly portable. To support the platform and lan-
guage independence, CORBA implements an Object Re-
quest Broker (ORB) that during run-time acts as a virtual
bus over which objects transparently interact with other ob-
jects located locally or remote. The ORB is responsible
for finding a requested objects implementation, make the
method calls and carry the response back to the requester,
all in a transparent way. Since CORBA run on virtually any
platform, legacy code can exist together with the CORBA
technology. This makes CORBA highly introducible.

While CORBA is portable, and powerful, it is very run-
time demanding, since bindings are performed during run-
time. Because of the run-time decisions, CORBA is not
very deterministic and not analysable with respect to timing

8Object Management Group. CORBA Home Page. http://www.omg.-
org/corba/



A
na

ly
sa

bl
e

T
es

ta
bl

e
an

d
de

bu
ga

bl
e

Po
rt

ab
le

R
es

ou
rc

e
C

on
st

ra
in

ed

C
om

po
ne

nt
M

od
el

lin
g

C
om

pu
ta

tio
na

lM
od

el

In
tr

od
uc

ib
le

R
eu

sa
bl

e

M
ai

nt
ai

na
bl

e

U
nd

er
st

an
da

bl
e

So
ur

ce
C

od
e

C
om

po
ne

nt
s

St
at

ic
C

on
fig

ur
at

io
n

A
ve

ra
ge

N
um

be
r

of
2’

s

N
um

be
r

of
0’

s

PECT 2 NA 2 NA 0 NA 2 NA NA 0 NA NA 1.2 3 2

Koala 0 1 1 2 0 2 0 2 2 2 2 2 1.3 7 3

Rubus Component Model 1 1 0 2 0 2 1 1 1 2 2 2 1.3 5 2

PBO 2 1 0 0 0 1 1 1 1 2 2 0 0.9 3 4

PECOS 2 1 2 2 0 2 1 2 1 2 0 2 1.4 7 2

CORBA Based Technologies 0 1 2 0 0 0 2 0 0 1 0 0 0.5 2 8

Average 1.2 1.0 1.2 1.2 0.0 1.4 1.4 1.2 1.0 1.5 1.2 1.2 1.1 4.3 3.5

Figure 1. Grading of component technologies with respect to the requirements

and memory consumption. There is no explicit modelling
language for CORBA. CORBA uses a client server model
for communication, where each object is active. There are
no non-functional properties or any specification of inter-
face behaviour. All these things together make reuse harder.
The maintainability is also suffering from the lack of clearly
specified interfaces.

4 Summary of Evaluation

In this section we assign numerical grades to each of
the component technologies described in section 3, grad-
ing how well they fulfil each of the requirements of sec-
tion 2. The grades are based on the discussion summarised
in section 3. We use a simple 3 level grade, where 0 means
that the requirement is not addressed by the technology and
is hence not fulfilled, 1 means that the requirement is ad-
dressed by the technology and/or that is partially fulfilled,
and 2 means that the requirement is addressed and is satis-
factory fulfilled. For PECT, which is not a complete tech-
nology, several requirements depended on the underlying
technology. For these requirements we do not assign a grade
(indicated with NA, Not Applicable, in figure 1). For the
CORBA-based technologies we have listed the best grade
applicable to any of the CORBA flavours mentioned in sec-
tion 3.6.

For each requirement we have also calculated an average
grade. This grade should be taken with a grain of salt, and
is only interesting if it is extremely high or extremely low.
In the case that the average grade for a requirement is ex-
tremely low, it could either indicate that the requirement is
very difficult to satisfy, or that component-technology de-
signers have paid it very little attention.

In the table we see that only two requirements have aver-
age grades below 1.0. The requirement "Component Mod-
elling" has the grade 0 (!), and "Testing and debugging" has

1.0. We also note that no requirements have a very high
grade (above 1.5). This indicate that none of the require-
ment we have listed are general (or important) enough to
have been considered by all component-technology design-
ers. However, if ignoring CORBA (which is not designed
for embedded systems) and PECT (which is not a complete
component technology) we see that there are a handful of
our requirements that are addressed and at least partially
fulfilled by all technologies.

We have also calculated an average grade for each com-
ponent technology. Again, the average cannot be directly
used to rank technologies amongst each other. However,
the two technologies PBO and CORBA stand out as having
significantly lower average values than the other technolo-
gies. They are also distinguished by having many 0’s and
few 2’s in their grades, indicating that they are not very at-
tractive choices. Among the complete technologies with an
average grade above 1.0 we notice Rubus and PECOS as be-
ing the most complete technologies (with respect to this set
of requirements) since they have the fewest 0’s. Also, Koala
and PECOS can be recognised as the technologies with the
broadest range of good support for our requirements, since
they have the most number of 2’s.

However, we also notice that there is no technology that
fulfils (not even partially) all requirements, and that no sin-
gle technology stands out as being the preferred choice.

5 Conclusion

In this paper we have compared some existing compo-
nent technologies for embedded systems with respect to
industrial requirements. The requirements have been col-
lected from industrial actors within the business segment of
heavy vehicles. The software systems developed in this seg-
ment can be characterised as resource constrained, safety
critical, embedded, distributed, real-time, control systems.



Our findings should be applicable to software developers
whose systems have similar characteristics.

We have noticed that, for a component technology to be
fully accepted by industry, the whole systems development
context needs to be considered. It is not only the techni-
cal properties, such as modelling, computation model, and
openness, that needs to be addressed, but also development
requirements like maintainability, reusability, and to which
extent it is possible to gradually introduce the technology.
It is important to keep in mind that a component technology
alone cannot be expected to solve all these issues; however
a technology can have more or less support for handing the
issues.

The result of the investigation is that there is no com-
ponent technology available that fulfil all the requirements.
Further, no single component technology stands out as be-
ing the obvious best match for the requirements. Each tech-
nology has its own pros and cons. It is interesting to see that
most requirements are fulfilled by one or more techniques,
which implies that good solutions to these requirements ex-
ist.

The question, however, is whether it is possible to
combine solutions from different technologies in order to
achieve a technology that fulfils all listed requirements?
Our next step is to assess to what extent existing tech-
nologies can be adapted in order to fulfil the requirements,
or whether selected parts of existing technologies can be
reused if a new component technology needs to be de-
veloped. Examples of parts that could be reused are file
and message formats, interface description languages, or
middleware specifications/implementations. Further, for a
new/modified technology to be accepted it is likely that it
have to be compliant to one (or even more than one) exist-
ing technology. Hence, we will select one of the technolo-
gies and try to make as small changes as possible to that
technology.

References

[1] P. Clements and L. Northrop. Software Product LInes.
Addison-Wesley, 2001. ISBN 0-201-70332-7.

[2] CORBA Component Model 3.0. Object Management
Group, June 2002. http://www.omg.org/technology/-
documents/formal/components.htm.

[3] I. Crnkovic and M. Larsson. Building Reliable Component-
Based Software Systems. Artech House publisher, 2002.
ISBN 1-58053-327-2.

[4] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match or why it’s hard to build systems out of existing parts.
In Proceedings of the Seventeenth International Conference
on Software Engineering, April 1995. Seattle, USA.

[5] T. Genssler, A. Christoph, B. Schuls, M. Winter, et al.
PECOS in a Nutshell. PECOS project http://www.pecos-
project.org.

[6] P. Khosla et al. The Chimera II Real-Time Operating Sys-
tem for Advanced Sensor-Based Control Applications. IEEE
Transactions on Systems, 1992. Man and Cybernetics.

[7] K.L. Lundbäck. Rubus OS Reference Manual – General
Concepts. Arcticus Systems: http://www.arcticus.se.

[8] K.L. Lundbäck and J. Lundbäck and M. Lindberg.
Component-Based Development of Dependable Real-Time
Applications. Arcticus Systems: http://www.arcticus.se.

[9] Microsoft Component Technologies. COM/DCOM/.NET.
http://www.microsoft.com.

[10] A. Möller, J. Fröberg, and M. Nolin. Industrial Require-
ments on Component Technologies for Embedded Systems.
In Proc. of the 7th International Symposium on Component-
Based Software Engineering. 2004 Proceedings Series: Lec-
ture Notes in Computer Science, Vol. 3054, May 2004. Ed-
inburgh, Scotland.

[11] O. Nierstrass, G. Arevalo, S. Ducasse, et al. A Component
Model for Field Devices. In Proceedings of the First In-
ternational IFIP/ACM Working Conference on Component
Deployment, June 2002. Germany.

[12] Object Management Group. MinimumCORBA 1.0, August
2002. http://www.omg.org/technology/documents/formal/-
minimum_CORBA.htm.

[13] Object Management Group. UML 2.0 Superstructure Spec-
ification, The OMG Final Adopted Specification, 2003.
http://www.omg.com/uml/.

[14] D. Schmidt, D. Levine, and S. Mungee. The Design of the
tao real-time object request broker. Computer Communica-
tions Journal, Summer 1997.

[15] B. Selic and J. Rumbaugh. Using UML for modelling com-
plex real-time systems, 1998. Rational Software Corpora-
tion.

[16] M. Sgroi. Quasi-Static Scheduling of Embedded Software
Using Free-Choice Petri Nets. Technical report, University
of California at Berkely, May 1998. Berkely, USA.

[17] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall; 1 edition, 1996.
ISBN 0-131-82957-2.

[18] D. Stewart, R. Volpe, and P. Khosla. Design of Dynamically
Reconfigurable Real-Time Software Using Port-Based Ob-
jects. IEEE Transactions on Software Engineering, pages
pages 759 – 776, December 1997.

[19] Sun Microsystems. Enterprise Java Beans Technology.
http://java.sun.com/products/ejb/.

[20] R. van Ommering et al. The Koala Component Model for
Consumer Electronics Software. IEEE Computer, 33(3):78–
85, March 2000.

[21] K. C. Wallnau. Volume III: A Component Technology for
Predictable Assembly from Certifiable Components. Tech-
nical report, Software Engineering Institute, Carnegie Mel-
lon University, April 2003. Pittsburg, USA.

[22] M. Winter, T. Genssler, et al. Components for Embedded
Software – The PECOS Apporach. In The Second Interna-
tional Workshop on Composition Languages, in conjunction
with the 16th ECOOP, June 2002. Malaga, Spain.

[23] R. Wuyts and S. Ducasse. Non-functional requirements in a
component model for embedded systems. In International
Workshop on Specification and Verification of Component-
Based Systems, 2001. OPPSLA.


