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Abstract

In reactive systems, execution is driven by external events to which the
system should respond with appropriate actions. Such events can be
simple, but systems are often supposed to react to sophisticated situa-
tions involving a number of simpel events occurring in accordance with
some pattern. A systematic approach to handle this type of systems is
to separate the mechanism for detecting composite events from the rest
of the application logic. A detection mechanism listens for simple event
occurrences and notifies the application when one of the complex event
patterns of interest occur. The event detection mechanism can for ex-
ample be based on an event algebra, i.e., expressions that correspond to
the event patterns of interest are built from simple events and operators
from the algebra.

This thesis presents a novel event algebra with two important char-
acteristics: It complies with algebraic laws that intuitively ought to hold
for the operators of the algebra, and for a large class of expressions the
detection can be correctly performed with limited resources in terms of
memory and time. In addition to the declarative algebra semantics, we
present an imperative detection algorithm and show that it correctly im-
plements the algebra. This algorithm is analysed with respect to memory
requirements and execution time complexity. To increase the efficiency of
the algebra, we also present a semantic-preserving transformation scheme
by which many expressions can be transformed to meet criteria under
which limited resource requirements are guaranteed. Finally, we present
a prototype implementation that combines the algebra with the event
system in Java.
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Why can’t you just forget about algebra
it’s all about you now
And all your talk of logic and formula
could never help you now
(not anymore)

A Camp – Algebra
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Chapter 1

Introduction

In a reactive system, execution is driven by a stream of external events to
which the system should react with appropriate responses. A wide range
of applications fall under this category, including active databases, sys-
tems for monitoring network traffic, electronic stock brokers, and many
real-time and embedded systems.

For many reactive systems, the desired behaviour can be seen as
reactions to complex patterns of events rather than to single event oc-
currences. A systematic way to handle this is to separate the detection
of such event patterns from the implementation of the appropriate re-
actions. This separation of concerns facilitates design and analysis of
reactive systems, as detection of complex events can be given a formal
semantics independent from the application in which it is used, and the
remaining part of the system is free from auxiliary rules and information
about partially completed patterns.

The event detection part reacts to the simple events of the system,
referred to as primitive events, and detects the occurrences of composite
events representing the complex event patterns of interest. In the rest
of the system, these composite events are used to trigger specific actions
in the same way as the primitive events.

Example 1.1. Consider a system with primitive events including a but-
ton B, a pressure alarm P and a temperature alarm T, where one desired
reaction is that the system should perform the action A when the button
is pressed twice within two seconds, unless either of the alarms occurs in
between. This can be achieved by a set of rules that specify reactions to

1



2 Chapter 1. Introduction

the three primitive events, so that the combined behaviour implements
the desired reaction. Alternatively, a separate detection mechanism can
be used to define a composite event E that corresponds to the described
situation, with a single rule stating that an occurrence of E should trig-
ger the action A. The two approaches are illustrated by Figure 1.1.

�

B -

P -

T -

...

A-

...

Application logic

B -

P -

T -

...

E
-

...
A-

...

Event
detection

Application
logic

Figure 1.1: Integrated and separated detection of composite events.

A reactive systems is classified as a real-time system if it has tempo-
ral, as well as logical, constraints on the expected system behaviour. For
this type of systems, correctness is defined as the ability to produce a
correct result at the correct time. In a hard real-time system, a violated
temporal constraint is considered a serious error, while systems classified
as soft would consider it a performance degradation.

To establish the correctness of a hard real-time system, one must be
able to show that no temporal constraints are violated, even in a worst
case scenario. This is especially important in safety critical applications
where a single constraint violation might cause serious damage. Ensuring
timeliness requires that the resource requirements for all parts of the
system, or at least safe approximations thereof, are known. If a separate
detection mechanism is used, it must be possible to derive a bound on
the memory required to correctly detect a given complex event pattern,
as well as the worst case execution time of the detection mechanism for
that pattern.

The mechanism to detect complex event patterns can be based on
an event algebra, i.e., expressions that correspond to the event patterns
of interest are built from simple events and operators from the algebra.
Event algebras have been used in a variety of reactive system domains,
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in particular for active databases but also in areas such as real-time
systems and middleware platforms. It is desirable that an event algebra
for reactive systems meets the following criteria:

• Sufficient expressiveness: The algebra should be rich enough to
express many different types of composite events that might be of
interest to the targeted type of systems.

• Formal semantics: A formal definition reduces ambiguity and fa-
cilitates reasoning about the algebra or a system that utilises it. In
particular, formal reasoning about the system behaviour requires
formal semantics.

• Intuitive operators: The usability of the algebra is improved if the
operators have a simple and intuitive meaning. One aspect of this
is that algebraic properties such as associativity should comply
with the intuition of the operators.

• Efficient implementation: The detection mechanism should have a
low overhead in terms of memory and execution time. For embed-
ded and real-time systems it is vital that safe estimates of worst
case memory usage and execution time can be derived statically.

1.1 Problem Formulation

The desired properties of an event algebra that are described above
are all relatively straightforward to achieve in isolation. Many exist-
ing approaches, in particular those based on temporal logic or similar
formalisms, are highly expressive and provide operators with intuitive
properties, but in general this means that efficient implementation of
event detection can not be achieved. Similarly, several event algebras
are defined in terms of finite state machines which trivially ensures lim-
ited resource requirements, but typically at the cost of complicated and
non-intuitive semantics for some operator combinations.

This thesis addresses the task of developing a formally defined event
algebra for reactive systems that (i) complies with algebraic laws that
intuitively ought to hold for the algebra operators, and (ii) permits an
efficient implementation with limited resource requirements.

The problem statement is motivated by resource-conscious applica-
tions such as real-time and embedded systems. This type of systems
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require that bounds for memory usage and execution time can be stat-
ically determined. Furthermore, they often appear in safety-critical ap-
plications for which formal verification is required. Providing laws that
the algebra conforms to allows reasoning on a high level of abstraction,
and facilitates verification.

1.2 The Approach

The operators of the proposed algebra, or variants of them, are basic
operators found in many of the existing event algebras from different
application domains. We believe that this choice of operators provides
a good starting point. As future work, we plan to perform a thorough
investigation of the expressiveness demands of the intended application
domain to determine if the algebra would benefit from additional oper-
ators. This is discussed further in Section 8.1.

The algebra is defined by a set-based declarative semantics, rather
than in terms of state automata, Petri nets or similar constructs. This
simplifies the tasks of proving algebraic properties, at the cost of not pro-
viding a direct model of how the algebra can be implemented. Instead,
we provide a separate imperative detection algorithm to investigate time
and memory issues in detail, and establish a simple relation between this
algorithm and the declarative algebra semantics.

We use techniques such as interval-based semantics to preserve in-
tuitive operator properties under operator composition, and a carefully
designed restriction policy to deal with the memory complexity caused
by some of the properties. These techniques are described further in
Chapter 2.

The two objectives, intuitive algebraic properties and a bounded
memory implementation, are contradictory to some extent. In situations
where a trade-off has been unavoidable, the choice has been to priori-
tise algebraic properties over bounded memory. Consequently, rather
than ensuring limited resource requirements in general, we have settled
for identifying a class of expressions that can be correctly detected with
limited resources. The aim when designing the algebra has then been to
make this class as large as possible.
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1.3 Related Publications

The event algebra presented in this thesis has evolved into the current
form through a number of versions, some of which have been published.

• J. Carlson and B. Lisper, An interval-based algebra for restricted
event detection. In Proceedings of the First International Work-
shop on Formal Modeling and Analysis of Timed Systems (FOR-
MATS 2003), Marseille, France, September 2003.

A first version of the algebra is presented in this paper. The tem-
poral restriction construct is not present, and two different restric-
tion policies are used (one for sequences and one for the remaining
operators). No general resource bounds are presented, and the
algebraic properties are weak compared to the current version, es-
pecially the relation between the unrestricted semantics and the
result when the restriction policy is applied.

• J. Carlson and B. Lisper, An improved algebra for restricted event
detection. MRTC Technical Report MDH-MRTC-159/2004-1-SE,
February 2004.

This paper improves the algebra by introducing temporal restric-
tion, but for sequences only. For expressions where every sequence
has a finite temporal restriction, limited memory requirement is
ensured.

• J. Carlson and B. Lisper, An event detection algebra for reactive
systems. Submitted, April 2004.

The paper presents the same algebra version as in this thesis, but
without the results on how information about the minimum sepa-
ration time between primitive events can be used to achieve tighter
resource bounds.

• J. Carlson and B. Lisper, An event detection algebra for reactive
systems. MRTC Technical Report MDH-MRTC-117/2004-1-SE,
April 2004.

This technical report extends the previous paper with formal proofs.
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1.4 Contributions

The main contributions of this thesis are:

• A novel event detection algebra that conforms to many algebraic
laws that intuitively ought to hold for the algebra operators. These
laws facilitate formal as well as informal reasoning about the alge-
bra and the behaviour of a reactive system that uses it.

• A formal restriction policy that is used to establish the relation
between the intuitive but inefficient algebra semantics, and a valid
implementation thereof. The restriction policy is carefully designed
to allow an efficient implementation while retaining the algebraic
properties of the algebra semantics.

• An event detection algorithm that conforms to the algebra seman-
tics with restriction applied, for which a large class of events can
be detected with limited resources. In a time triggered setting,
the algorithm provides a straightforward implementation of the
algebra.

• A semantic preserving transformation algorithm, based on the al-
gebraic laws for temporal restriction, that allows many expressions
to be transformed to meet the criteria under which detection can
be performed with limited resources.

• A prototype implementation in Java that provides an opportunity
to test the algebra in practice, and illustrates some concerns related
to implementing the algebra in an event triggered setting.

1.5 Organisation

The thesis is organised in the following way. Chapter 2 gives a brief in-
troduction to concepts and techniques common to many event detection
frameworks. The algebra in presented in Chapter 3. First, the declara-
tive semantics of the algebra, including the restriction policy, is defined.
Then, a number of important properties are proved, in particular the
effect of applying the restriction policy in a nested fashion. This is fol-
lowed by a description of an imperative detection algorithm in Chapter
4, together with a correctness result that establishes the relation between
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the algorithm and the declarative semantics of the algebra. The chap-
ter also contains an analysis of the memory and time complexity of the
detection algorithm, and suggestions on how they can be improved.

Chapter 5 presents an event expression transformation algorithm for
decreasing the memory needed to detect an event correctly, possibly from
infinite to limited memory. We also show that the meaning of the event
expression is preserved when the transformation algorithm is applied.
In Chapter 6, a prototype implementation is presented in which the
algebra is incorporated with the Java event system. Chapter 7 surveys
related work, and a discussion followed by a description of future work
in Chapter 8 concludes the thesis.





Chapter 2

Event Detection

Conceptually, the task of an event detection mechanism is to compute the
occurrences of a given composite event from the occurrences of primitive
events. The way in which the composite event is specified, and what is
meant by an occurrence, differ between methods, as well as the type of
event patterns that can be specified.

In some applications the event detection is performed on a finite col-
lection of primitive event occurrences that was gathered in an earlier
phase, for example as the result of monitoring a system or an environ-
ment. This allows the detection mechanism to process the data in arbi-
trary order and possibly in several passes, and typically do not impose
hard resource constraints. Contrasting these off-line methods, reactive
applications require events to be detected continually during the entire
system lifetime (which might be infinite in theory). This implies that the
detection mechanism has no knowledge of future occurrences of primitive
events, and typically only limited information about past events can be
stored due to resource restrictions.

Naturally, the term event means a different thing in different con-
texts. In particular, it is sometimes used to denote a single occurrence,
and sometimes for one source or type of occurrences. In this thesis we
distinguish between the two by referring to the former as an occurrence
or instance. The latter is called an event type, or just event. Following
this, the proposed algebra is an event type algebra rather than an event
instance algebra, since the operators of the algebra combine simple event
types into more complex event types.

9



10 Chapter 2. Event Detection

When event detection is done by means of an event algebra, com-
posite events are defined by expressions built recursively from primitive
events and the operators of the algebra. The choice of operators differ
between algebras, and is influenced by the type of systems for which
the algebra is intended. Table 2.1 lists the operators used in this the-
sis, together with an informal description of their meaning. For formal
definitions, see Section 3.1.

Operator Notation Informal meaning
Disjunction A∨B occurs when A or B (or both) occurs.
Conjunction A+B occurs when A and B have occurred (in

any order, and possibly not simultane-
ously).

Negation A−B occurs when there is an occurrence of
A, during which B does not occur.

Sequence A;B occurs when an occurrence of A is fol-
lowed by an occurrence of B.

Temp. restr. Aτ occurs when there is an occurrence of A
shorter than τ time units.

Table 2.1: Informal description of the algebra operators.

Some basic operators, such as disjunction, conjunction, sequence and
negation, are found in many algebras, although their meaning might be
slightly different. For example, the sequence operator might or might not
allow partly overlapping events to be identified as a sequence, and con-
junction is sometimes restricted to simultaneous occurrences. In addition
to these common operators, the proposed algebra contains a temporal
restriction construct that limits the length of the event occurrence. In al-
gebras where this type of events can be specified, it is typically provided
by variants of the ordinary operators, such as a temporally restricted
sequence. Using an interval based semantics, described below, for our
algebra allows a more general temporal restriction construct that can be
applied to any event expression. The negation operator is also more gen-
eral than what is provided by most algebras, as a result of the interval
based semantics.

Example 2.1. The meaning of the negation operator and the temporal
restriction construct is best understood by examples. The expression
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(A;B)−C denotes a composite event that occurs when an occurrence
of A is followed by an occurrence of B an there is no occurrence of C
in between. An event defined by the expression (A;B)τ occurs when an
occurrence of A is followed by an occurrence of B within τ time units.

�

Example 2.2. The composite event E from Example 1.1 corresponds
to the expression (B;B)2−(P∨T). �

2.1 Single Point or Interval Semantics

In most event algebras, each event occurrence, including events that re-
quire more than one occurrence of simpler events, is associated with a
single time point (the time of detection, i.e., the time of the last oc-
currence that was required). Galton and Augusto [17] showed that this
results in unintended semantics for some operator combinations, for ex-
ample nested sequence operators, as described in Example 2.3. Inspired
by methods in knowledge representation, they suggest that the problem
can be solved by associating the occurrence of a complex event with the
occurrence interval rather than the time of detection.

A

B

C

A;C

B;(A;C)

B;C

A;(B;C)

Figure 2.1: Comparison between single point semantics (left) and inter-
val semantics (right).

Example 2.3. Figure 2.1 illustrate the difference between single point
and interval semantics. In these figures, time flows from left to right, and
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each row shows the occurrences of a primitive event type or the detected
occurrences of an expression.

When single point detection is used, an instance of the event B;(A;C)
is detected if A occurs first, and then B followed by C. The reason is
that these occurrences cause a detection of A;C which is associated with
the occurrence time of C. Since B occurs before this time point, an
occurrence of B;(A;C) is detected. Figure 2.1 shows this situation in the
left column, together with the intuitively correct detection of A;(B;C).

With interval semantics, the sequence A;B can be defined to occur
only if the intervals of A and B are non-overlapping. In our example, no
occurrence of B;(A;C) would be detected, since there is no occurrence
of B prior to the interval associated with the occurrence of A;C. The
result of the interval-based version is depicted in the right column of
Figure 2.1. �

We base the event algebra on interval semantics, since it facilitates
the design of operators that are intuitive also under composition. Instead
of defining the occurrence interval for each operator, explicitly included
in the operator semantics, we define the interval of an occurrence to be
the smallest interval containing all primitive occurrences that caused it
to occur.

2.2 Event Contexts

The operator semantics described informally above does not specify how
to handle situations where an occurrence could participate in several
occurrences of a composite event. For example, three occurrences of
A followed by two occurrences of B result in six occurrences of A+B.
While this may be acceptable, or even desirable, in some applications, the
memory requirements (each occurrence of A and B must be remembered
forever) and the increasing number of simultaneous events means that
it is unsuitable in many cases.

A common way to modify the operator semantics to take this into
account is by means of event contexts. First, each operator is given
a simple meaning that defines the constraints on the participating oc-
currences that characterise the operator, similar to that of Table 2.1.
Then a number of event contexts are defined that act as modifiers to
the simple operator semantics. These contexts specify constraints on
how occurrences may be selected when looking for occurrence patterns
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that match the operator semantics. As a result, each combination of an
operator and a context can be seen as a separate operator with a specific
meaning.

Example 2.4. To illustrate the concept of event contexts as they are
typically used, we define informally three of the contexts in Snoop [13],
called unrestricted, recent and chronicle. To avoid details, we describe
their effect on the sequence operator, rather than the general form that
can be applied to any operator. When detecting A;B, the event contexts
have the following meanings.

• Unrestricted: All instances of A and B are valid.

• Recent: If an instance of B can be combined with several instances
of A to form instances of A;B, only the most recent instance of A
is valid.

• Chronicle: If an instance of B can be combined with several in-
stances of A to form instances of A;B, only the oldest instance of
A is valid. Also, this instance is never valid in the future.

Figure 2.2 shows the effect of these contexts on the sequence operator.
�

In many existing event algebras the event contexts are only defined
informally. Also, carelessly defined contexts might work as intended for
some operators but introduce unintended effects for other [40].

Event contexts provide variants of the algebra operators, to be used
by a developer of a reactive system to achieve a more specific behaviour
than what is specified by the operator semantics. Some contexts also af-
fect the resource requirements of the operator to which it is applied. For
example, in the recent context only the most recent instance of each con-
stituent type must be stored for future use, and thus all basic operators
can be implemented with limited resources in this context. Unfortu-
nately, event contexts typically ruin many of the algebraic properties
that hold for the simple operator semantics.

The restriction policy proposed in this thesis was originally influenced
by this type of event contexts, but the conceptual role of the restriction
policy is different. We consider the intuitive and simple operator se-
mantics to be the intended behaviour of the event detection, but due to



14 Chapter 2. Event Detection

A

B

A;〈unrestricted〉B

A;〈recent〉B

A;〈chronicle〉B

Figure 2.2: Comparison of three event contexts (unrestricted, recent and
chronicle) for the sequence operator.

efficiency considerations only a subset of these occurrences can be de-
tected. We use a restriction policy to formalise how this subset may be
selected. Thus, the restriction policy is conceptually applied once to the
event expression as a whole, and not to the individual operators.



Chapter 3

The Event Algebra

As described in the introduction, the algebra is defined by a declarative
semantics based on sets. We also introduce a formal restriction policy
that defines what is considered a valid implementation of the algebra.
Once the algebra is defined, we investigate the algebraic properties of
the operators and the restriction policy.

For simplicity, we assume a discrete time model throughout the the-
sis. The declarative semantics of the algebra can be used with a dense
time model as well, under restrictions that prevent primitive events that
occur infinitely many times in a finite time interval. We also assume
that occurrences of primitive events are instantaneous, and that each
primitive event occurs at most once each time instant.

3.1 Declarative Semantics

Before defining the syntax and semantics of the algebra we define con-
cepts needed to represent primitive events and their occurrences. These
concepts are then extended to encompass composite events as well.

3.1.1 Primitive Events

We assume that the system has a pre-defined set of primitive event types
to which it should be able to react. These events can be external (sam-
pled from the environment or originating from another system) or in-
ternal (such as the violation of a condition over the system state, or

15
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a timeout), but the detection mechanism does not distinguish between
these categories.

For some primitive events, it is useful to associate additional infor-
mation with each occurrence. For example, the occurrences of a temper-
ature alarm might carry the measured temperature value, to be used in
the responding action. These values are not manipulated by the algebra,
only grouped and forwarded to the part of the system that reacts to the
detected events.

Definition 3.1. Let P be a finite set of identifiers that represent the
primitive event types that are available to the system. For each identifier
p ∈ P , let dom(p) denote the value domain of p, i.e., the values that can
be associated with instances of p.

Definition 3.2. The temporal domain T is the set of natural numbers.

Occurrences of primitive events are assumed to be instantaneous and
atomic. In the algebra, they are represented by event instances that
contain event type, a value and occurrence time. Formally, we represent
a primitive instance as a singleton set, to allow primitive and complex
instances to be treated uniformly.

Definition 3.3. If p∈P , υ∈ dom(p) and τ ∈T , then the singleton set
{〈p, υ, τ〉} is a primitive event instance.

Together, the occurrences of a certain event type form an event
stream.

Definition 3.4. A primitive event stream is a set of primitive event
instances all of which have the same identifier and different times.

Both the set of identifiers and the value domains capture static as-
pects of the system. Instances and event streams, however, are dynamic
concepts that describe what happens during a particular scenario. An
interpretation is a formal representation of a single scenario, as it de-
scribes one of the possible ways in which the primitive event can occur.

Definition 3.5. An interpretation is a function that maps each identifier
p ∈ P to a primitive event stream containing instances with identifier p.

Example 3.1. For the system in the previous examples, we assume that
instances of the temperature alarm T carry temperature measurements
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represented by natural numbers. The pressure alarm P is less sensitive
and these instances only contain information about whether the pressure
is too low or too high. The button B instances do not carry any addi-
tional information, which is represented by a dummy element ⊥. These
static aspects of the system can be captured formally by P ={T, P, B},
with dom(T)=

�
, dom(P)={high, low} and dom(B)={⊥}.

As an example of a particular scenario, we consider an interpretation
I such that I(T) = S, I(P) = S ′ and I(B) = ∅, where S and S ′ are the
following primitive event streams:

S ={{〈T, 12, 2〉}, {〈T, 14, 3〉}, {〈T, 8, 5〉}} and S ′={{〈P, low, 4〉}}

�

3.1.2 Composite Events

Composite events are represented by expressions built recursively from
the identifiers and the operators of the algebra.

Definition 3.6. If A∈P , then A is an event expression. If A and B are
event expressions, and τ ∈T , then A∨B, A+B, A−B, A;B and Aτ are
event expressions.

Next, we extend the concepts of instances and streams to composite
events. An instance of a composite event is always triggered by one or
more instances of simpler events, and the information associated with
these simpler instances should somehow be included in the representation
of the composite event instance.

One design decision is whether the structure of the expression should
be visible in the representation of its instances, or not. For simplicity, we
use a flat instance representation that is independent from the structure
of the expression. Informally, an instance of a composite event will
consist of all the primitive event occurrences that caused it to occur,
either directly or indirectly by causing simpler composite events to occur.
Also, there is no explicit information in an instance about which event
type it is an instance of. This is implicitly provided by the events stream
to which the instance belongs.

As an example, consider an instance of A;B that is caused by an
instance a of A and one instance b of B. This instance will be represented
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by the set a∪ b. An alternative where the expression structure is visible
in the instances would be to represent this instance by 〈a, b〉.

The way in which instances are constructed is defined by the algebra
semantics. For now, we only define their structure.

Definition 3.7. An event instance is a non-empty union of primitive
event instances.

Since the semantics should be interval-based, we associate each in-
stance with an interval, through the following definition.

Definition 3.8. For an event instance a we define

start(a) = min( {τ | 〈p, υ, τ〉∈a} )
end(a) = max( {τ | 〈p, υ, τ〉∈a} )

The interval [start(a), end(a)] can be thought of as the smallest in-
terval which contains all the occurrences of primitive events that caused
a to occur. Note that a primitive event instance is an event instance,
and if a is a primitive event instance then start(a) = end(a).

Example 3.2. Let a={〈T, 12, 2〉, 〈P, low, 4〉, 〈T, 8, 5〉}. Then a is an
event instance, and we have start(a)=2 and end(a)=5. �

In the graphical notation used in the examples, composite event in-
stances are visualised by start and end time only. In cases where more
details are required, the times of all primitive instances in the composite
event instance are marked.

We also need a definition of general event streams. These will be
used to represent all instances of a composite event. By this definition,
a primitive event stream is an event stream, just as the names suggest.

Definition 3.9. An event stream is a set of event instances.

The variable naming convention used in the thesis is to use S, T and
U for event streams, and A, B, C, etc. for event expressions. Lower case
letters are used for event instances, and in general s belongs to the event
stream S, etc.



3.1 Declarative Semantics 19

3.1.3 Semantics

The interpretation provides the occurrences of each primitive event, by
mapping each identifier to an event stream. The role of the algebra
semantics is to extend this mapping to composite events defined by event
expressions. The following functions on event streams form the core of
the algebra semantics, defining the characteristics of the five operators.

Definition 3.10. For event streams S and T , and τ ∈ T , we define:

dis(S, T ) = S ∪ T
con(S, T ) = {s ∪ t | s∈S ∧ t∈T}
neg(S, T ) = {s | s∈S ∧ ¬∃t(t∈T ∧ start(s)≤start(t) ∧ end(t)≤end(s))}
seq(S, T ) = {s ∪ t | s∈S ∧ t∈T ∧ end(s)<start(t)}
tim(S, τ) = {s | s ∈ S ∧ end(s) − start(s) ≤ τ}

The semantics of the algebra is defined by recursively applying the
corresponding function for each operator in the expression.

Definition 3.11. The meaning of an event expression for a given inter-
pretation I is defined as follows:

[[A]]I = I(A) if A∈P
[[A∨B]]I = dis([[A]]I , [[B]]I)
[[A+B]]I = con([[A]]I , [[B]]I)
[[A−B]]I = neg([[A]]I , [[B]]I)
[[A;B]]I = seq([[A]]I , [[B]]I)
[[Aτ ]]I = tim([[A]]I , τ)

To simplify the presentation, we will use the notation [[A]] instead of
[[A]]I when the choice of I is obvious or arbitrary.

Example 3.3. Consider the expression T;P. According to the algebra
semantics, the meaning of this expression is

[[T;P]]I = seq([[T]]I , [[P]]I) = seq(I(T), I(P))

For the scenario captured by the interpretation in Example 3.1, the
concrete meaning of the expressions is

[[T;P]]I = {{〈T, 12, 2〉, 〈P, low, 4〉}, {〈T, 14, 3〉, 〈P, low, 4〉}}

Figure 3.1 illustrates this graphically. �



20 Chapter 3. The Event Algebra

Time 0 1 2 3 4 5 . . .

T

P

T;P

Figure 3.1: Graphical representation of Example 3.3.

The algebra semantics is reasonably intuitive and simple enough to
aid formal as well as informal reasoning about the meaning of expres-
sions. The operators behave properly also in complex, nested expres-
sions, which is captured by the algebraic laws presented in Section 3.2.
However, the algebra can not be efficiently implemented in this form, as
there are no bounds on the number of simultaneous instances, nor on
the memory required to store instances for future use.

To deal with this, we expect an implementation to detect only a
subset of the instances specified by the algebra semantics given above.
Naturally, allowing implementations to detect any subset is not very con-
structive. Instead, we introduce a formal restriction policy that defines
what is considered a valid subset for an implementation to detect. Con-
ceptually, this restriction policy is applied to the expression as a whole,
but it is designed to ensure that this semantically consistent with ap-
plying it recursively to all subexpressions, which is required to allow an
efficient implementation.

Ideally, the restriction policy should interfere as little as possible
with the properties of the unrestricted semantics. None of the removed
instances should have a crucial impact on the detection of enclosing ex-
pressions. At the same time, operators such as conjunction and sequence
must be able to identify non-valid instances early, before the end time
of the instance is reached, in order not to waste memory.

Our restriction policy is defined as a predicate and not as a function.
Alternatively, it can be seen as a non-deterministic restriction function,
or a family of valid restriction functions. For reasons of repeatability, it
is desirable that an implementation of the algebra is deterministic. From
a theoretical point of view, however, we prefer to leave open as many
detailed design decisions as possible, since we can still ensure that any
implementation which is consistent with the restriction policy predicate
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is guaranteed to have the properties described in this thesis. This design
decision is motivated by the increased flexibility it provides when imple-
menting the algebra. Choices that are non-deterministic in the formal
definition can be made on the basis of implementation details to increase
efficiency.

The basis of the restriction policy it that the restricted event stream
should be a subset that does not contain multiple instances with the same
end time. Informally, from the instances with the same end time, the
restriction policy keeps exactly one with maximal start time. Formally,
the restriction policy is defined as follows.

Definition 3.12. For two event streams, S and S ′, rem(S, S′) holds if
the following conditions hold:

1. S′ ⊆ S

2. ∀s(s∈S ⇒ ∃s′(s′∈S′ ∧ start(s)≤start(s′) ∧ end(s)=end(s′)))

3. ∀s, s′((s∈S′ ∧ s′∈S′ ∧ end(s)=end(s′)) ⇒ s=s′)

In Section 3.2.3 we show that this restriction policy can be applied
recursively to all subexpressions of an event expression with a well de-
fined impact on the resulting event stream. Section 4.2 argues that the
restricted version of the algebra can be efficiently implemented.

Example 3.4. Figure 3.2 illustrates the result of applying the restric-
tion policy to an event stream S. From the three instances of S with
end time 4 the one with start time 1 must be removed, together with
one of the two with start time 2. For the two instances that end at time
7, the one with earliest start time must be removed. The long instance
is the only instance ending at time 8, and thus it must be included in
the restricted stream.

The choice of which of the two short instances with end time 4 to
remove results in two valid restrictions of the event stream S, named S ′

and S′′ in the figure. It is straightforward to see that rem(S, S ′) and
rem(S, S′′) holds, and that there is no other event stream T such that
rem(S, T ) holds. �

Event contexts, for example those presented in Section 2.2, are typ-
ically defined in terms of conditions on the constituent event instances.
The restriction policy defined in this thesis differs from these in that it
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Time 0 1 2 3 4 5 6 7 8 . . .

S

S′

S′′

Figure 3.2: An event stream S with two valid restrictions, i.e., both
rem(S, S′) and rem(S, S′′) holds.

is explicitly applied to the event stream produced by the unrestricted
algebra semantics. This results in a simpler restriction policy semantics,
at the cost of reduced expressiveness when designing the policy, since re-
striction decisions must be based solely on the information in the event
stream. For example, we would not be able to modify the policy to
give priority to the left argument of a disjunction, unless the instance
representation is changed to include additional information.

For the sake of completeness, we show that this restriction policy is
constructive, i.e., that for any event stream there exists a valid restric-
tion.

Theorem 3.1.1. For any event stream S, there exists an event stream
S′ such that rem(S, S′).

Proof. The discrete time model ensures that there is at least one instance
with maximal start time in any subset of S. Thus, there is always at
least one way to select which of the instances with the same end time to
include in the restricted stream.

In a dense time setting, S could contain an infinite sequence of in-
creasingly shorter instances with the same end time. Then, there is no
instance with maximal start time to include in the restricted stream.
If the definition of primitive event stream is limited by the additional
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condition that for any finite time interval there is only a finite number
of instances with times within that interval, then the theorem holds for
a dense time model as well.

3.2 Properties

We have argued that the algebra semantics defined in the previous sec-
tion corresponds to the intuitive meaning of the operators, but intuition
is personal and in many cases inconsistent, and other considerations
sometimes conflict with what is intuitively valid. To aid a user of the
algebra, this section presents a number of useful laws that the algebra
complies with. These laws facilitate formal and informal reasoning about
the algebra and the system in which it is embedded, and show to what
extent the operators behave according to intuition.

We also investigate how these laws are affected by the restriction pol-
icy, and the result of applying restriction recursively to all subexpressions
of an expression. The latter is crucial for implementing the algebra with
limited resources. First, however, a notion of expression equivalence is
defined.

Definition 3.13. Two event expressions A and B are equivalent (de-
noted A ≡ B) iff [[A]]I = [[B]]I for any interpretation I.

Trivially, ≡ is an equivalence relation. Moreover, the following theo-
rem shows that it satisfies the substitutive condition, and hence defines
structural congruence over event expressions.

Theorem 3.2.1. If A ≡ A′, B ≡ B′ and τ ∈ T , then we have A∨B ≡
A′∨B′, A+B ≡ A′+B′, A;B ≡ A′;B′, A−B ≡ A′−B′ and Aτ ≡ A′

τ .

Proof. This follows in a straightforward way from Definitions 3.10 and 3.13.

3.2.1 Algebraic Laws

The following laws describe the properties of the disjunction, conjunction
and sequence operators, and how they distribute.

Theorem 3.2.2. For event expressions A, B and C, the following laws
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hold.
1. A∨A ≡ A
2. A∨B ≡ B∨A
3. A+B ≡ B+A
4. A∨(B∨C) ≡ (A∨B)∨C
5. A+(B+C) ≡ (A+B)+C
6. A;(B;C) ≡ (A;B);C
7. (A∨B)+C ≡ (A+C)∨(B+C)
8. (A∨B);C ≡ (A;C)∨(B;C)
9. A;(B∨C) ≡ (A;B)∨(A;C)

Corollary 3.2.1.

10. A+(B∨C) ≡ (A+B)∨(A+C)

Proof. Most of the laws follow in a straightforward way from Defini-
tions 3.13, 3.10 and 3.11.

1. [[A∨A]] = dis([[A]], [[A]]) = [[A]] ∪ [[A]] = [[A]]

2. [[A∨B]] = dis([[A]], [[B]]) = dis([[B]], [[A]]) = [[B∨A]]

3. [[A+B]] = con([[A]], [[B]]) = con([[B]], [[A]]) = [[B+A]]

4. [[A∨(B∨C)]] = [[A]] ∪ [[B]] ∪ [[C]] = [[(A∨B)∨C]]

5. [[A+(B+C)]] = con([[A]], con([[B]], [[C]])) =
{a ∪ b ∪ c | a ∈ [[A]] ∧ b ∈ [[B]] ∧ c ∈ [[C]]) = [[(A+B)+C]]

6. [[A;(B;C)]] = {a ∪ e | a∈ [[A]] ∧ e∈{b ∪ c | b∈ [[B]] ∧ c∈ [[C]] ∧
end(b)<start(c)} ∧ end(a)<start(e)} = {a ∪ b ∪ c | a∈ [[A]] ∧
b∈ [[B]]∧c∈ [[C]]∧end(a)<start(b)∧end(b)<start(c)} = [[(A;B);C]]

7. [[(A∨B)+C]] = con(dis([[A]], [[B]]), [[C]]) = con(([[A]] ∪ [[B]]), [[C]]) =
{e ∪ c | e∈ [[A]] ∪ [[B]] ∧ c∈ [[C]]} =
{a ∪ c | a∈ [[A]] ∧ c∈ [[C]]} ∪ {b ∪ c | b∈ [[A]] ∧ c∈ [[C]]} =
con([[A]], [[C]]) ∪ con([[B]], [[C]]) = [[(A+C)∨(B+C)]]

8. [[(A∨B);C]] = {e ∪ c | e∈ [[A]] ∪ [[B]] ∧ c∈ [[C]] ∧ end(e)<start(c)} =
{a ∪ c | a∈ [[A]] ∧ c∈ [[C]] ∧ end(a)<start(c)} ∪
{b ∪ c | b∈ [[B]] ∧ c∈ [[C]] ∧ end(b)<start(c)} = [[(A;C)∨(B;C)]]
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9. [[A;(B∨C)]] = {a∪ e | a∈ [[A]]∧ e∈ [[B]]∪ [[C]]∧ end(a)<start(e)} =
{a ∪ b | a∈ [[A]] ∧ b∈ [[B]] ∧ end(a)<start(b)} ∪
{a ∪ c | a∈ [[A]] ∧ c∈ [[C]] ∧ end(a)<start(c)} = [[(A;B)∨(A;C)]]

10. This follows from laws 2, 3 and 7.

Next, we present a set of laws for negation. To simplify the proofs,
we introduce the following predicate.

Definition 3.14. For an event stream S, and time instants τ, τ ′ ∈ T ,
define empty(S, τ, τ ′) to hold if ¬∃s(s∈S ∧ τ ≤start(s) ∧ end(s)≤τ ′).

Proposition 3.2.1.

i. a∈ [[A−B]] iff a∈ [[A]] and empty([[B]], start(a), end(a)).

ii. empty(S∪S′, τ, τ ′) iff empty(S, τ, τ ′) and empty(S′, τ, τ ′)

iii. If τ1 ≤ τ ′
1 and τ ′

2 ≤ τ2, then empty(S, τ1, τ2) implies empty(S, τ ′
1, τ

′
2)

Proof. The properties follow trivially from the definition.

Theorem 3.2.3. For event expressions A, B and C, the following laws
hold.

11. (A−B)−C ≡ A−(B∨C)
12. (A∨B)−C ≡ (A−C)∨(B−C)
13. (A+B)−C ≡ ((A−C)+B)−C
14. (A;B)−C ≡ ((A−C);B)−C
15. (A;B)−C ≡ (A;(B−C))−C

Corollary 3.2.2.

16. (A−B)−B ≡ A−B
17 (A−B)−C ≡ (A−C)−B
18. (A∨B)−C ≡ ((A−C)∨B)−C
19. (A∨B)−C ≡ (A∨(B−C))−C
20. (A+B)−C ≡ (A+(B−C))−C
21. (A−B)−C ≡ ((A−C)−B)−C

Proof. Here, ≡23 denotes that the equivalence follows from law number
23, etc. Similarly, =i or ⇔ii denotes that the equivalence is based on the
corresponding property in Proposition 3.2.1.
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11. a∈ [[(A−B)−C]] ⇔i

a∈ [[A−B]] ∧ empty([[C]], start(a), end(a)) ⇔i

a∈ [[A]] ∧ empty([[B]], start(a), end(a)) ∧
empty([[C]], start(a), end(a)) ⇔ii

a∈ [[A]] ∧ empty([[B]] ∪ [[C]], start(a), end(a)) ⇔i

a∈ [[A−(B∨C)]]

12. [[(A∨B)−C]] =i

{e | e ∈ [[A]] ∪ [[B]] ∧ empty([[C]], start(e), end(e))} =
{a | a∈ [[A]] ∧ empty([[C]], start(a), end(a))} ∪
{b | b∈ [[B]] ∧ empty([[C]], start(b), end(b))} =i

[[(A−C)]] ∪ [[(B−C)]] =
[[(A−C)∨(B−C)]]

13. e∈ [[((A−C)+B)−C]] ⇔i

e∈ [[(A−C)+B]] ∧ empty([[C]], start(e), end(e)) ⇔
e=a ∪ b ∧ a∈ [[A−C]] ∧ b∈ [[B]] ∧ empty([[C]], start(e), end(e)) ⇔i

e = a ∪ b ∧ a ∈ [[A]] ∧ b ∈ [[B]] ∧ empty([[C]], start(e), end(e)) ∧
empty([[C]], start(a), end(a)) ⇔iii

e=a ∪ b ∧ a∈ [[A]] ∧ b∈ [[B]] ∧ empty([[C]], start(e), end(e)) ⇔
e∈ [[A+B]] ∧ empty([[C]], start(e), end(e)) ⇔i

e∈ [[(A+B)−C]]

14. e∈ [[((A−C);B)−C]] ⇔i

e∈ [[(A−C);B]] ∧ empty([[C]], start(e), end(e)) ⇔
e=a ∪ b ∧ end(a)<start(b) ∧ a∈ [[A−C]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b)) ⇔i

e=a ∪ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b)) ∧ empty([[C]], start(a), end(a)) ⇔iii

e=a ∪ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b)) ⇔
e∈ [[A;B]] ∧ empty([[C]], start(e), end(e)) ⇔i

e∈ [[(A;B)−C]]

15. e∈ [[(A;(B−C))−C]] ⇔i

e∈ [[A;(B−C)]] ∧ empty([[C]], start(e), end(e)) ⇔
e=a ∪ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B−C]] ∧
empty([[C]], start(a), end(b)) ⇔i

e=a ∪ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b)) ∧ empty([[C]], start(b), end(b)) ⇔iii



3.2 Properties 27

e=a ∪ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b)) ⇔
e∈ [[A;B]] ∧ empty([[C]], start(e), end(e)) ⇔i

e∈ [[(A;B)−C]]

16. This follows from laws 1 and 12.

17. This follows from laws 2 and 11.

18. ((A−C)∨B)−C ≡12 ((A−C)−C)∨(B−C) ≡16 (A−C)∨(B−C) ≡12

(A∨B)−C

19. This follows from laws 2 and 12.

20. This follows from laws 3 and 13.

21. ((A−C)−B)−C ≡17 ((A−B)−C)−C ≡16 (A−B)−C

Next, we present laws describing how temporal restrictions can be
propagated through an expression. These laws are used in Chapter 5 to
construct an algorithm for transforming event expressions into equivalent
expressions that can be detected more efficiently.

Theorem 3.2.4. For event expressions A, B and C, and τ ∈ T , the
following laws hold.

22. A ≡ Aτ if A ∈ P
23. (Aτ )τ ′ ≡ Amin(τ,τ ′)

24. (A∨B)τ ≡ Aτ∨Bτ

25. (A+B)τ ≡ (Aτ +B)τ

26. (A−B)τ ≡ (Aτ )−B
27. (A−B)τ ≡ (A−Bτ )τ

28. (A;B)τ ≡ (Aτ ;B)τ

29. (A;B)τ ≡ (A;Bτ )τ

Corollary 3.2.3.

30. (Aτ )τ ′ ≡ (Aτ ′)τ

31. (A∨B)τ ≡ ((Aτ ) ∨ B)τ

32. (A∨B)τ ≡ (A ∨ (Bτ ))τ

33. Aτ∨Bτ ′ ≡ (Aτ ∨ Bτ ′)max(τ,τ ′)

34. (A+B)τ ≡ (A+Bτ )τ

35. (A−B)τ ≡ Aτ −Bτ
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Proof.

22. A ∈ P implies that end(a)−start(a) = 0 for any a ∈ [[A]], which
means that [[A]] = [[Aτ ]].

23. [[(Aτ )τ ′ ]] =
{a | a∈ [[A]] ∧ end(a)−start(a) ≤ τ ∧ end(a)−start(a) ≤ τ ′} =
{a | a∈ [[A]] ∧ end(a)−start(a) ≤ min(τ, τ ′)} = [[Amin(τ,τ ′)]]

24. [[(A∨B)τ ]] = {e | e ∈ A ∪ B ∧ end(e)−start(e) ≤ τ} =
{a | a ∈ A ∧ end(a)−start(a) ≤ τ} ∪
{b | b ∈ B ∧ end(b)−start(b) ≤ τ} = [[Aτ ]] ∪ [[Bτ ]] = [[Aτ ∨Bτ ]]

25. e∈ [[(Aτ +B)τ ]] ⇔ e∈ [[Aτ +B]] ∧ end(e)−start(e) ≤ τ ⇔
e=a ∪ b ∧ a∈ [[Aτ ]] ∧ b∈ [[B]] ∧ end(e)−start(e) ≤ τ ⇔
e=a ∪ b ∧ a∈ [[A]] ∧ end(a)−start(a) ≤ τ ∧
b∈ [[B]] ∧ end(e)−start(e) ≤ τ .
Since end(a) ≤ end(e) and start(e) ≤ start(a), we have:
end(a)−start(a) ≤ end(e)−start(e), so
end(e)−start(e) ≤ τ ⇒ end(a)−start(a) ≤ τ .
Thus, the last formula above is equivalent to:
e=a ∪ b ∧ a∈ [[A]] ∧ b∈ [[B]] ∧ end(e)−start(e) ≤ τ ⇔
e∈ [[Aτ +B]] ∧ end(e)−start(e) ≤ τ ⇔ e∈ [[(A+B)τ ]].

26. [[(A−B)τ ]] = {a | a∈ [[A−B]] ∧ end(a)−start(a) ≤ τ} =
{a | a∈ [[A]] ∧ end(a)−start(a) ≤ τ ∧
¬∃b(b∈ [[B]] ∧ start(a)≤start(b) ∧ end(b)≤end(a))} =
{a | a∈ [[Aτ ]]∧¬∃b(b∈ [[B]]∧start(a)≤start(b)∧end(b)≤end(a))} =
[[Aτ −B]]

27. [[(A−Bτ )τ ]] = {a | a∈ [[A]] ∧ end(a)−start(a) ≤ τ ∧
¬∃b(b∈ [[Bτ ]] ∧ start(a)≤start(b) ∧ end(b)≤end(a))} =
{a | a∈ [[A]] ∧ end(a)−start(a) ≤ τ ∧ ¬∃b(b∈ [[B]] ∧
start(a)≤start(b) ∧ end(b)≤end(a) ∧ end(b)−start(b) ≤ τ)}
Since end(a)−start(a) ≤ τ , start(a)≤start(b) and end(b)≤end(a)
implies end(b)−start(b) ≤ τ , that constraint can be removed with-
out affecting the set. Thus, the set above is equivalent to
{a | a∈ [[A]] ∧ end(a)−start(a) ≤ τ ∧ ¬∃b(b∈ [[B]] ∧
start(a)≤start(b) ∧ end(b)≤end(a))} ⇔ [[(A−B)τ ]].

28. [[(A;Bτ )τ ]] =
{a∪b | a∈ [[A]]∧b∈ [[Bτ ]]∧end(a)<start(b)∧end(b)−start(a) ≤ τ} =
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{a∪ b | a∈ [[A]]∧ b∈ [[B]]∧ end(b)−start(b) ≤ τ ∧ end(a)<start(b)∧
end(b)−start(a) ≤ τ}
Since end(a)<start(b) and end(b)−start(a) ≤ τ implies
end(b)−start(b) ≤ τ , this constraint can be dropped without chang-
ing the set. Thus, the set above is equivalent to
{a∪b | a∈ [[A]]∧b∈ [[B]]∧end(a)<start(b)∧end(b)−start(a) ≤ τ} =
[[(A;B)τ ]]

29. [[(Aτ ;B)τ ]] =
{a∪b | a∈ [[Aτ ]]∧b∈ [[B]]∧end(a)<start(b)∧end(b)−start(a) ≤ τ} =
{a ∪ b | a∈ [[A]] ∧ end(a)−start(a) ≤ τ ∧ b∈ [[B]] ∧
end(a)<start(b) ∧ end(b)−start(a) ≤ τ}
Since end(a)<start(b) and end(b)−start(a) ≤ τ implies
end(a)−start(a) ≤ τ , this constraint can be dropped without chang-
ing the set. Thus, the set above is equivalent to
{a ∪ b | a∈ [[A]] ∧ b∈ [[B]] ∧ end(a)<start(b) ∧
end(b)−start(a) ≤ τ} = [[(A;B)τ ]]

30. (Aτ )τ ′ ≡27 Amin(τ,τ ′) ≡ Amin(τ,τ ′) ≡
27 (Aτ ′)τ

31. (A∨B)τ ≡24 Aτ∨Bτ ≡23 (Aτ )τ ∨Bτ ≡24 (Aτ ∨B)τ

32. This follows from laws 2 and 31.

33. (Aτ ∨Bτ ′)max(τ,τ ′) ≡
24 (Aτ )max(τ,τ ′)∨(Bτ ′)max(τ,τ ′) ≡

23

Amin(τ,max(τ,τ ′))∨Bmin(τ ′,max(τ,τ ′)) ≡ Aτ ∨Bτ ′

34. This follows from laws 3 and 25.

35. (A−B)τ ≡27 (A−Bτ )τ ≡26 Aτ −Bτ

Finally, we introduce the empty event that never occurs, and laws
related to this.

Definition 3.15. Let 0 denote the empty event, semantically defined
as [[0]]I =∅ for any interpretation I.



30 Chapter 3. The Event Algebra

Theorem 3.2.5. For an event expression A and τ ∈ T , the following
laws hold.

36. 0∨A ≡ A
37. 0+A ≡ 0
38. A−A ≡ 0
39. 0−A ≡ 0
40. A−0 ≡ A
41. 0;A ≡ 0
42. A;0 ≡ 0
43. 0τ ≡ 0

Proof. These laws follow in a straightforward way from the definition of
0 and the operator semantics.

3.2.2 Impact from the Restriction Policy on the Laws

The laws consider equivalence between expressions with respect to the
algebra semantics. However, in an implementation where the restriction
policy is applied, equivalent expressions might produce different results
since the non-deterministic choices in the restriction policy might depend
on the structure of the expression in an implementation.

Example 3.5. Consider the event stream S from Example 3.4, and
imagine two equivalent event expressions A ≡ A′ with [[A]] = [[A′]] = S.
Since S′ and S′′ are both valid restrictions of S, it might be that an
implementation of the algebra results in S ′ when detecting A, and in S′′

when detecting A′. �

Consequently, it should be clarified to what extent the laws presented
above are still applicable when restriction is applied.

Theorem 3.2.6. If A ≡ A′ and rem([[A]], S) holds, then rem([[A′]], S)
holds as well.

Proof. Since A ≡ A′ implies that [[A]]=[[A′]], this follows trivially.

Thus, A ≡ A′ ensures that the result of an implementation detecting
A is always a valid result for A′. As long as reasoning is based on the
algebra semantics and the restriction policy, and not on the details of a
particular detection algorithm such as the one presented in Section 4.1,
it will be equally valid for equivalent expressions.
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Example 3.6. In the previous example, according to the algebra
semantic and the restriction policy, S ′′ is a perfectly valid result for A′.
Reasoning about the system should not be based on the fact that the
implementation happened to result in S ′ when detecting A. �

To further investigate the relation between equivalent expressions
when restriction is applied, notice that the restriction policy implies
that detected event streams for equivalent expressions always contain
instances with corresponding start and end times. This means that the
part of the system that responds to the detected event occurrences is
notified at the same time for equivalent expressions, but possibly with
different values attached to the detected occurrences. Formally, we ex-
press this as follows.

Definition 3.16. For event streams S and T , define S ∼= T to hold if
{〈start(s), end(s)〉 | s∈S} = {〈start(t), end(t)〉 | t∈T}

Trivially, ∼= is an equivalence relation.

Theorem 3.2.7. If rem(S, T ) and rem(S, T ′) holds, then T ∼= T ′

Proof. Take any t ∈ T . Then, since T ⊆ S, t ∈ S. By the second
condition in the definition of rem, there exists some t′ ∈ T ′ such that
start(t)≤ start(t′) and end(t) = end(t′). We also have t′ ∈ S, and thus
there is some t′′ ∈ T such that start(t′)≤start(t′′) and end(t′)=end(t′′).
According to the third condition in the definition of rem this implies
t= t′′, which means that we have start(t)≤ start(t′)≤ start(t) and thus
start(t′)=start(t). So, for any t∈T there is a t′∈T ′ with the same start
and end time. Trivially, the opposite holds as well.

Corollary 3.2.4. If A ≡ A′, rem([[A]], T ) and rem([[A′]], T ′) holds, then
T ∼= T ′.

Proof. This follows from the theorem since A ≡ A′ by definition implies
[[A]] = [[A′]].

Thus, A ≡ A′ ensures that for any implementation consistent with
the restriction policy, the instances found when detecting A and A′ have
the same start and end times. This means that the part of the sys-
tem that responds to the detected event occurrences is notified at the
same time for equivalent expressions, but possibly with different values
attached to the detected occurrences.
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3.2.3 Properties of the Restriction Policy

In order to achieve the desired efficiency, all subexpressions of an ex-
pression must be detected in an efficient way. This requires that the
restriction policy is applied not only to the whole expression but re-
cursively to every subexpression, resulting in a far more complicated
semantics than the one presented so far.

In general, this would require a user of the algebra to understand how
the restrictions in different subexpressions interfere with each other, and
how they affect different operator combinations. To avoid this, the oper-
ators and the restriction policy have been carefully designed to support
the following theorem. Informally, it states that introducing restriction
of the subexpressions gives a result which is valid also for the case when
restriction is applied only at the top level. The opposite does not hold,
however. The set of valid restricted streams when restriction is applied
recursively is a subset of the streams that are valid for single top-level
restriction. This is illustrated by Example 3.7 below. The theorem is
used in Section 4.1 to prove the correctness of the detection algorithm.

Theorem 3.2.8. If rem(S, S ′) and rem(T, T ′) holds, then for any event
stream U and τ ∈ T the following implications hold:

i. rem(dis(S′, T ′), U) ⇒ rem(dis(S, T ), U)
ii. rem(con(S′, T ′), U) ⇒ rem(con(S, T ), U)
iii. rem(neg(S′, T ′), U) ⇒ rem(neg(S, T ), U)
iv. rem(seq(S′, T ′), U) ⇒ rem(seq(S, T ), U)
v. rem(tim(S′, τ), U) ⇒ rem(tim(S, τ), U)

Proof.

i. Assume rem(dis(S′, T ′), U). For any u∈U we have u∈dis(S ′, T ′)
and thus u ∈ S′ ∪ T ′. Then, since S′ ⊆ S and T ′ ⊆ T , we have
u ∈ S ∪ T , implying u ∈ dis(S, T ). Thus U ⊆ dis(S, T ), which
satisfies the first constraint in the definition of rem.

Next, take an arbitrary u∈dis(S, T ). Then u∈S∪T and according
to the definition of rem there must exist an u′∈S′ ∪ T ′ such that
start(u)≤ start(u′) and end(u′)= end(u). We have u′ ∈dis(S′, T ′)
and thus rem(dis(S′, T ′), U) implies that there exists an u′′ ∈ U
with start(u′)≤start(u′′) and end(u′′)=end(u′). Since this means
that start(u) ≤ start(u′′) and end(u′′) = end(u), the second con-
straint in the definition of rem is satisfied.



3.2 Properties 33

Finally, rem(dis(S′, T ′), U) ensures that all instances in U have
different end times. Together, this gives rem(dis(S, T ), U).

ii. Assume rem(con(S′, T ′), U). For any u∈U we have u∈con(S ′, T ′)
and thus u=s∪ t with s∈S′ and t∈T ′. By the subset requirement
in the definition of rem, s∈S and t∈T . So u∈con(S, T ) and thus
U ⊆ con(S, T ).

Next, take an arbitrary u∈ con(S, T ). Then u = s ∪ t with s ∈ S
and t ∈ T , and by the definition of rem there exists s′ ∈ S′ and
t′∈T ′ with start(s)≤start(s′), end(s′)=end(s), start(t)≤start(t′)
and end(t′) = end(t). Let u′ = s′ ∪ t′. Now u′ ∈ con(S′, T ′) with
start(u)≤ start(u′) and end(u′) = end(u). This means that there
exists some u′′∈U with start(u)≤start(u′′) and end(u′′)=end(u),
which satisfies the second constraint in the definition of rem.

Finally, rem(con(S′, T ′), U) ensures that all instances in U have
different end times. Together, this gives rem(con(S, T ), U).

iii. Assume rem(neg(S′, T ′), U). For any u∈U we have u∈neg(S ′, T ′)
and thus u ∈ S′. By the subset requirement in the definition of
rem, u ∈ S. If there exists a t ∈ T with start(u) ≤ start(t) and
end(t) ≤ end(u), then there must exist some t′ ∈ T ′ such that
start(t)≤ start(t′) and end(t′) = end(t) which contradicts the fact
that u∈neg(S′, T ′). Since no such t can exist, we have u∈neg(S, T )
and thus U ⊆ neg(S, T ).

Next, take an arbitrary u∈neg(S, T ). Then u∈S and there exists
an u′ ∈ S′ with start(u) ≤ start(u′), end(u′) = end(u). If there
exists a t∈ T ′ with start(u′)≤ start(t) and end(t)≤ end(u′), then
the fact that t∈ T contradicts u∈ neg(S, T ). Since no such t can
exist, we have that u′ ∈ neg(S′, T ′). This means that there exists
some u′′∈U with start(u′)≤ start(u′′) and end(u′′)=end(u′), and
thus start(u)≤ start(u′′) and end(u′′)=end(u), which satisfies the
second constraint in the definition of rem.

Finally, rem(neg(S′, T ′), U) ensures that all instances in U have
different end times. Together, this gives rem(neg(S, T ), U).

iv. Assume rem(seq(S ′, T ′), U). For any u∈U we have u∈ seq(S ′, T ′)
and thus u=s ∪ t with s∈S′, t∈T ′ and end(s)< start(t). By the
subset requirement in the definition of rem, s ∈ S and t ∈ T . So
u∈seq(S, T ) and thus U ⊆ seq(S, T ).
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Next, take an arbitrary u ∈ seq(S, T ). Then u = s ∪ t such that
s ∈ S, t ∈ T and end(s) < start(t). By the definition of rem there
exists s′∈S′ and t ∪ T ′ with start(s)≤ start(s′), end(s′)=end(s),
start(t)≤start(t′) and end(t′)=end(t). Let u′=s′ ∪ t′. Now, since
end(s′) = end(s) < start(t)≤ start(t′), we have u′ ∈ seq(S′, T ′) and
start(u)≤ start(u′) and end(u′) = end(u). This means that there
exists some u′′∈U with start(u)≤start(u′′) and end(u′′)=end(u),
which satisfies the second constraint in the definition of rem.

Finally, rem(seq(S′, T ′), U) ensures that all instances in U have
different end times. Together, this gives rem(seq(S, T ), U).

v. Assume rem(tim(S′, τ), U). For any u∈U we have u∈ tim(S ′, τ)
and thus u∈S′ and end(u) − start(u)≤ τ . By the subset require-
ment in the definition of rem, we have u ∈ S which means that
u∈tim(S, τ) and thus U ⊆ tim(S, τ).

Next, take an arbitrary u ∈ tim(S, τ). Then u ∈ S and there ex-
ists an u′ ∈ S′ with start(u) ≤ start(u′), end(u′) = end(u). Since
end(u) − start(u) ≤ τ , we have end(u′) − start(u′) ≤ τ and thus
u′∈tim(S′, τ). According to the def of rem, this means that there
exists some u′′ ∈ U with start(u′) ≤ start(u′′), end(u′′) = end(u′).
Since this means that start(u) ≤ start(u′′), end(u′′) = end(u) the
second constraint in the definition of rem is satisfied.

Finally, rem(tim(S′, τ), U) ensures that all instances in U have
different end times. Together, this gives rem(tim(S, τ), U).

Example 3.7. This example illustrate that the implications in The-
orem 3.2.8 do not hold in the opposite direction. Consider the event
stream S = [[P;(B;T)]], and an interpretation consisting of the four non-
overlapping event instances p, b1, b2 and t occurring in this order, named
after the identifier to which they belong. Figure 3.3 depicts this scenario.

Clearly, S′ = {p ∪ b1 ∪ t} is a valid restriction of S, i.e., rem(S, S ′).
For the case of multiple restrictions, let T = [[B;T]]. No T ′ for which
rem(T, T ′) holds can contain b1 ∪ t. As a result, seq([[P]], T ′) can not
contain the instance p ∪ b1 ∪ t. Thus, one of the streams that are valid
when the restriction policy is applied once is not valid for recursive ap-
plication of restriction. �
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P
p

B
b1 b2

T
t

S

S′

T

Figure 3.3: Graphical representation of Example 3.7.

The following example illustrates that the fact that restriction is
based on start times is crucial to achieve good properties when restriction
is applied recursively.

Example 3.8. Consider the event streams S and T depicted in Fig-
ure 3.4 together with the stream for the corresponding negation. For T ,
we have a single valid restriction T ′. An important property of the pol-
icy is that replacing T in the negation by the restricted stream T ′, does
not introduce additional instances. If we consider instead an imaginary
restriction policy, for which T ′′ is a valid restriction to T , the resulting
event stream contains instances not found in the unrestricted variant. �
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S

T

neg(S, T )

T ′

neg(S, T ′)

T ′′

neg(S, T ′′)

Figure 3.4: Graphical representation of Example 3.8.



Chapter 4

An Event Detection

Algorithm

The simplicity of the declarative semantics is very helpful when investi-
gating the properties of the algebra, as shown in the previous chapter.
However, it does not provide much insight in whether the algebra can
be effectively implemented, or how an implementation could be con-
structed. In this chapter, we present an imperative algorithm for de-
tecting an event defined by a given event expression. This algorithm is
proven correct with respect to the declarative algebra semantics and the
restriction policy, and analysed for time and memory complexity.

Definition 4.1. Throughout this chapter, E denotes the event expres-
sion that is to be detected. The numbers 1 . . .m are assigned to the
subexpressions of E in bottom-up order, and we let Ei denote subex-
pression number i. Consequently, Em = E.

4.1 The Algorithm

Figure 4.1 presents the algorithm for detecting the event defined by the
event expression E. The algorithm is executed once every time instant,
and computes the current instance of E from the current instances of
the primitive events, and from stored information about the past.

Variables are indexed from 1 to m since each operator in the expres-
sion requires its own state variables. The variable ai is used to store the

37
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current instance of Ei, and thus am contains the output of the algorithm
after each execution. The auxiliary variables li, ri, ti and qi store infor-
mation about the past needed to detect Ei properly. In li and ri, a single
event instance is stored, ti stores a time instant and qi contains a set of
event instances. The symbol 〈〉 is used to represent a non-occurrence,
and we define start(〈〉)=end(〈〉)=−1 to simplify the algorithm.

The algorithm is designed for detection of arbitrary expressions, and
the main loop selects dynamically which part of the algorithm to execute
for each subexpression. For systems where the event expressions are
static, and known at the time of development, the main loop can be
unrolled and the top-level conditionals, as well as all variable indices,
can be statically determined. A concrete example of this is given in
Figure 4.2.

In the rest of this section we prove that the output of this algorithm
corresponds to a valid restriction of [[E]]. For this purpose, we need
a few auxiliary concepts. First, we formalise the algorithm output by
constructing corresponding event streams.

Definition 4.2. For 1≤ i ≤ m, define

A(i) = {e | e=out(i, τ) ∧ e 6= 〈〉 ∧ τ ∈ T }

where out(i, τ) denotes the value of variable ai after executing the algo-
rithm at times 0 to τ .

We also introduce what can be thought of as a pointwise restriction
predicate, and a lemma that captures how it relates to the ordinary
restriction policy.

Definition 4.3. For an event instance e, an event stream S and τ ∈ T ,
define valid(e, S, τ) to hold if:

(e∈S ∧ end(e)=τ ∧ ¬∃s(s∈S ∧ end(s)=τ ∧ start(e)<start(s))) ∨
(e=〈〉 ∧ ¬∃s(s∈S ∧ end(s)=τ))

Lemma 4.1.1. For event instances e0, e1, e2, . . . and an event stream S
such that valid(eτ , S, τ) holds for any τ ∈ T , let S ′ = {e0, e1, e2, . . .} −
{〈〉}. Then rem(S, S′) holds.

Proof. By the definition of valid, it follows that S ′ ⊆ S. Next, take
an arbitrary s ∈ S, and let τ = end(s). Since valid(eτ , S, τ), we must
have eτ 6= 〈〉, and thus eτ ∈ S′. From the definition of valid, we know
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for i from 1 to m
if Ei ∈ P then

ai := the current instance of Ei, or 〈〉 if there is none.
if Ei = Ej∨Ek then

if start(aj)≤start(ak) then ai := ak else ai := aj

if Ei = Ej +Ek then
if start(li)<start(aj) then li := aj

if start(ri)<start(ak) then ri := ak

if li =〈〉 or ri =〈〉 or (aj =〈〉 and ak =〈〉) then ai := 〈〉
else if start(ak)≤start(aj)

then ai := aj∪ri

else ai := li∪ak

if Ei = Ej−Ek then
if ti <start(ak) then ti := start(ak)
if ti <start(aj) then ai := aj else ai := 〈〉

if Ei = Ej ;Ek then
ai := 〈〉
if ak 6=〈〉 then

foreach e in qi

if end(e)<start(ak) and start(ai)<start(e)
then ai := e

if ai 6=〈〉 then ai := ak∪ai

if ti <start(aj) then
qi := qi∪{aj}
ti := start(aj)

if Ei = (Ej)τ then
if end(aj)−start(aj)≤τ then ai := aj else ai := 〈〉

Figure 4.1: For a given event expression E this algorithm computes an
event stream S for which rem([[E]], S) holds. Initially, ti =−1, li =ri =〈〉
and qi =∅ for 1 ≤ i ≤ m.
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a1 := the current instance of T, or 〈〉 if there is none.
a2 := the current instance of P, or 〈〉 if there is none.
if a1 = 〈〉 or (a2 6= 〈〉 and start(a1) ≤ start(a2)) then a3 := a2

else a3 := a1

a4 := the current instance of B, or 〈〉 if there is none.
if a4 6= 〈〉 and t5 < start(a4) then t5 := start(a4)
if a3 6= 〈〉 and t5 < start(a3) then a5 := a3 else a5 := 〈〉

Figure 4.2: Statically simplified algorithm for detecting (T∨P)−B. Ini-
tially, t5 =−1.

that start(s)≤ start(eτ ). We also have end(eτ ) = end(s), which means
that the second requirement in the definition of rem is satisfied. Finally,
all elements in S′ have different end times. Together, this implies that
rem(S, S′) holds.

The correctness proof is organised as follows. For each of the six oper-
ators, we prove a lemma showing that the operator is correctly detected
with respect to the instances detected for its arguments. Finally, these
lemmas are combined with Theorem 3.2.8 from the previous chapter to
prove the algorithm correct.

Before turning to the operators, some general observations regarding
the algorithm can be made. It is straightforward to see that during the
ith iteration of the loop only variables with index i are changed, and
all variables that are used have indices less than or equal to i, since
the subexpressions of E are numbered in bottom-up order. Thus, when
proving correctness for subexpression Ei, it is sufficient to consider the
ith iteration. The auxiliary predicates defined in this section do not refer
to variables of index higher than i, and thus if they hold after the ith
iteration, they will hold after iterations i+1 to m as well.

4.1.1 Disjunction

The disjunction operator is fairly simple and requires no auxiliary vari-
ables. If Ej and Ek occur at the same time, the restriction policy re-
quires that the one with latest start time is selected. When the start
times are the same, this implementation gives precedence to the right
subexpression.
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Lemma 4.1.2. For 1≤ i ≤ m such that Ei = Ej∨Ek, and any τ ∈ T ,
the following holds:

i. valid(ai, dis(A(j),A(k)), τ) holds after executing the algorithm at
time τ .

ii. rem(dis(A(j),A(k)),A(i)).

Proof.

i. If one or both of aj and ak are 〈〉, then valid(ai, dis(A(j),A(k)), τ)
trivially holds after executing the disjunction part of the algorithm.
Otherwise, both aj and ak belong to dis(A(j),A(k)), and thus the
one with maximum start time satisfies the condition of valid. If
the start times are equal, the algorithm selects ak, which satisfies
the condition.

ii. Follows from i and Lemma 4.1.1.

4.1.2 Conjunction

For conjunctions, it is necessary to store for each of the two subexpres-
sions the instance with maximum start time so far. This is formalised
by the following definition, which holds at the start of time instant τ if
li and ri have correct values.

Definition 4.4. For 1≤ i ≤ m such that Ei = Ej +Ek, and for τ ∈ T ,
we define constate(i, τ) to hold if the following holds:

• li is an element in {e | e∈A(j) ∧ end(e)<τ} with maximum start
time, or 〈〉 if that set is empty.

• ri is an element in {e | e∈A(k) ∧ end(e)<τ} with maximum start
time, or 〈〉 if that set is empty.

Lemma 4.1.3. For 1≤ i ≤ m such that Ei = Ej +Ek, and any τ ∈ T ,
the following holds:

i. constate(i, τ) holds at the start of time τ .

ii. valid(ai, con(A(j),A(k)), τ) holds after executing the algorithm at
time τ .
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iii. rem(con(A(j),A(k)),A(i)).

Proof.

i. constate(i, 0) holds for an initial state where li = ri = 〈〉. Next,
assume that constate(i, τ) holds at the start of time τ . Then the
first conditional in the conjunction part of the algorithm ensures
that li contains an instance consistent with constate(i, τ+1), after
executing the conjunction part. Similarly, the second conditional
ensures the correctness of ri. By induction, the lemma holds for
any τ ∈T .

ii. From the proof of i, we know that constate(i, τ + 1) holds af-
ter executing the first two conditionals of the conjunction part.
If the guard of the third conditional is satisfied, it trivially fol-
lows that there is no instance in con(A(j),A(k)) with end time
τ , and thus the lemma holds after assigning 〈〉 to ai. If the
guard is false, we identify three separate cases. For the case when
aj = 〈〉, we know that li ∪ ak ∈ con(A(j),A(k)). Assume the ex-
istence of e ∈ con(A(j),A(k)) with start(li ∪ ak) < start(e) and
end(e) = τ . Then, as aj = 〈〉, we must have e = e′ ∪ ak with
e′ ∈ A(j), start(li) < start(e′) and end(e′) < τ . This contradicts
constate(i, τ+1), and thus no such e′ exists which means that li∪ak

is valid. Since aj = 〈〉, the inner conditional evaluates to false and
li ∪ ak is assigned to ai, meaning that the lemma holds for this
case. Similarly, for the case when ak = 〈〉 the lemma holds after
after assigning aj ∪ ri to ai. The third case, when neither aj nor
ak are 〈〉, both aj ∪ ri and li ∪ak belong to con(A(j),A(k)). Using
the same reasoning as in the previous cases, we have that there
can exist no e ∈ con(A(j),A(k)) with start(li ∪ ak) < start(e),
start(aj ∪ ri) < start(e) and end(e) = τ . If the inner conditional
holds, we have start(ak)≤start(aj) and by constate(i, τ+1) we also
have start(ak)≤ start(ri). Thus start(li ∪ ak)≤ start(aj ∪ ri), and
the lemma holds after assigning aj ∪ri to ai. Similarly, if the inner
conditional does not hold, the lemma holds after assigning li ∪ ak

to ai.

iii. Follows from ii and Lemma 4.1.1.
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4.1.3 Negation

According to the semantics of the negation operator, an instance of B
is an instance of B−C unless it is invalidated by some instance of C
occurring within its interval. If the current instance of B is invalidated
at all, it is invalidated by the instance of C with maximum start time (of
those that have occurred so far). Thus, it is sufficient to store a single
start time, since the end time is trivially known to be less than the end
time of the current instance of B.

Definition 4.5. For 1≤ i ≤ m such that Ei = Ej−Ek, and for τ ∈ T ,
we define negstate(i, τ) to hold if ti is the maximum element in the set
{start(e) | e∈A(k) ∧ end(e)<τ}, or −1 if this set is empty.

Lemma 4.1.4. For 1≤ i ≤ m such that Ei = Ej−Ek, and any τ ∈ T ,
the following holds:

i. negstate(i, τ) holds at the start of time τ .

ii. valid(ai, neg(A(j),A(k)), τ) holds after executing the algorithm at
time τ .

iii. rem(neg(A(j),A(k)),A(i)).

Proof.

i. negstate(i, 0) holds for an initial state where ti =−1. Next, assume
that negstate(i, τ) holds at the start of time τ . Then the first
conditional in the negation part of the algorithm ensures that ti

contains the value specified by negstate(i, τ+1) after executing the
negation part. By induction, the lemma holds for any τ ∈T .

ii. From the proof of i, we know that negstate(i, τ +1) holds after
executing the first conditional of the negation part. If the guard
of the second conditional holds, then we have aj 6= 〈〉 and thus
aj ∈ A(j). According to negstate(i, τ +1) there is no e in A(k)
with start(aj) ≤ start(e) and end(e) < end(aj) = τ , and thus
aj ∈ neg(A(j),A(k)). Trivially, since aj is the only instance in
A(j) with end time τ , we have valid(aj , neg(A(j),A(k)). Thus,
the lemma holds after assigning aj to ai.

iii. Follows from ii and Lemma 4.1.1.
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4.1.4 Sequence

The sequence operator requires the most complex algorithm. The reason
for this is that in order to detect a sequence B;C correctly, we must store
several instances of B. Once C occurs, the start time of that instance
determines with which of the stored instances of B it should be combined
to form the instance of B;C.

Definition 4.6. For 1≤ i ≤ m such that Ei =Ej ;Ek, and for τ ∈T , we
define seqstate(i, τ) to hold if the following holds:

• ti is the maximum element in {start(e) | e∈A(j) ∧ end(e)<τ}, or
−1 if this set is empty.

• qi = {e | A(j) ∧ end(e)<τ ∧
¬∃e′(e′∈A(j)∧ e′ 6=e∧ start(e)≤start(e′)∧ end(e′)≤end(e))}

Lemma 4.1.5. For 1≤ i ≤ m such that Ei =Ej ;Ek, and any τ ∈T , the
following holds:

i. seqstate(i, τ) holds at the start of time τ .

ii. valid(ai, seq(A(j),A(k)), τ) holds after executing the algorithm at
time τ .

iii. rem(seq(A(j),A(k)),A(i)).

Proof.

i. seqstate(i, 0) holds for an initial state where ti = −1 and qi = ∅.
Next, assume that seqstate(i, τ) holds at the start of time τ . The
first conditional of the sequence part of the algorithm does not
change the values of ti and qi. If the second conditional holds,
ti is updated to the value specified by seqstate(i, τ +1). Also, by
seqstate(i, τ), we know that there is no e ∈ A(j) with ti < start(e)
and end(e) < τ , which implies that seqstate(i, τ +1) holds after
adding aj to qi. If the second conditional does not hold, no changes
are required for seqstate(i, τ+1) to hold. By induction, the lemma
holds.

ii. From i, we know that seqstate(i, τ) holds at the start of time τ .
Consider first the case when ak = 〈〉. Then there is no instance
in seq(A(j),A(k)) with end time τ . Thus, the lemma holds after
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assigning 〈〉 to ai. In the second case we have ak 6= 〈〉. If ai = 〈〉
after executing the foreach statement, then there is no instance e
in qi with end(e)< start(ak), and thus by seqstate(i, τ) there is no
e ∈ A(j) with end(e) < start(ak). This implies that there is no
e′ ∈ seq(A(j),A(k)) with end(e′) = τ , and thus the lemma holds
after assigning 〈〉 to ai. If ai 6= 〈〉 after the foreach statement,
we have end(ai) < start(ak) and thus ai ∪ ak ∈ seq(A(j),A(k)).
By seqstate(i, τ) we also know that there is no e′ ∈ A(j) with
start(ai) < start(e′) and end(e′) < start(ak), and thus we have
valid(ai ∪ ak, seq(A(j),A(k)) and the lemma holds after assigning
ai ∪ ak to ai.

iii. Follows from ii and Lemma 4.1.1.

4.1.5 Temporal Restriction

The temporal restriction is fairly straightforward to implement and re-
quires no auxiliary state variables.

Lemma 4.1.6. For 1≤ i ≤ m such that Ei =(Ej)τ ′ , and any τ ∈T , the
following holds:

i. valid(ai, tim(A(j),A(k)), τ) holds after executing the algorithm at
time τ .

ii. rem(tim(A(j),A(k)),A(i)).

Proof.

i. If aj = 〈〉, the lemma holds after assigning 〈〉 to ai, which is done
in both branches of the conditional. If aj 6= 〈〉 and the conditional
holds, we have aj ∈ tim(A(j), τ ′). Since aj is the only instance
in A(j) with end time τ , it follows that the lemma holds after
assigning aj to ai. If the conditional is false, there is no instance
in tim(A(j), τ ′) with end time τ , so the lemma holds after assigning
〈〉 to ai.

ii. Follows from i and Lemma 4.1.1.
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4.1.6 Putting it all Together

The following theorem establishes the correctness of the algorithm. For
each subexpression Ei, including E itself, the detected instances corre-
spond to a valid restriction of [[Ei]].

Theorem 4.1.1. For any i such that 1 ≤ i ≤ m, rem([[Ei]],A(i)) holds.

Proof. As the base case, consider Ei ∈ P . Then A(i) = [[Ei]] under the
assumption that the interpretation I correctly represents the real-world
scenario, and thus rem([[Ei]],A(i)) holds trivially.

For the inductive case, assume that for some x, rem([[Ei]],A(i)) holds
for any 1≤ i < x. If Ex = Ej ∨Ek, then according to Lemma 4.1.2 we
have rem(dis(A(j),A(k)),A(x)). Since the subexpressions are numbered
bottom-up, we have j <x and k <x, so by assumption rem([[Ej ]],A(j))
and rem([[Ek]],A(k)) holds. According to Theorem 3.2.8, this implies
rem(dis([[Ej ]], [[Ek]]),A(x)), so rem([[Ei]],A(i)) holds for any 1≤ i<x+1.
Using the other lemmas in this section, a similar proof can be constructed
for each of the other operators as well. By induction, the theorem holds
for any 1≤ i≤m.

4.2 Resource Requirements

Instances are not of a fixed size, but an instance of any subexpression
of E contains at most m/2 primitive instances, one from each identifier
occurrence in E. Thus, assuming that the elements in the value domains
are of constant size, the size of a single event instance is bounded.

A quick analysis of the algorithm presented in the previous section
reveals that each disjunction, conjunction, negation and temporal re-
striction in the event expression requires a limited amount of storage,
and contributes with a limited factor to the computation time of the
whole detection algorithm. The storage required for a sequence operator
depend on the maximum size of qi, for which no bound exists in the
general case. For an important class of sequence expressions, however,
the detection algorithm can be redefined to ensure bounded memory and
time.

4.2.1 Memory Complexity

For a sequence A;B where we know that the length of the instances of B
never exceeds τ , which can be expressed by the equivalence B ≡ Bτ , this
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limits the number of instances of A we need to store in order to detect
the sequence correctly. Informally, the start of any instance of B will
be at most τ time units back in time, and thus there is no need to store
more than one instance of A that ends earlier than this, if we store one
with maximum start time. From the instances of A that end later than
this point in time, we need to store several, as in the original algorithm
version. The following example illustrates this idea.

Example 4.1. A possible scenario during the detection of the event
expression A;B4 is depicted in Figure 4.3. Before the current time instant
10, there has been six occurrences of A. If a B4 instance occurs in the
current time instance, and the start time of this instance is 9 or 10, it
should be combined with a6 to form an instance of A;B4. If the start time
is 8, it should be combined with a5 and if it is 7 it should be combined
with a4, etc. Since an instance of B4 with an end time of 10 must start
no earlier than 6, it follows that it must be combined with one of a3, a4,
a5 or a6, and thus there is no need to store a1 and a2. Throughout the
detection of this expression, all instances of A that ended more than 4
time units ago, except the one with latest start time, can be discarded.

�

Time 0 2 4 6 8 10

A

a3a2 a5 a7

a1 a4 a6

B
4 -�

Figure 4.3: Detecting A;B4 with bounded memory.

The improved algorithm for detecting A;B when B ≡ Bτ with limited
memory is presented in Figure 4.4. Here, τ c denotes the current time
instant in which the algorithm is executed.

For this new algorithm, we prove a lemma similar to those in the
previous section. The state is similar to the state used for sequences
in the original algorithm, but this qi contains only a suffix of qi in the
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ai := 〈〉
if ak 6= 〈〉 then

foreach e in qi

if end(e)<start(ak) and start(ai)<start(e) then ai := e
if ai = 〈〉 then ai := li
if ai 6= 〈〉 then ai := ak ∪ ai

if ti < start(aj) then qi := qi ∪ {aj}; ti := start(aj)
foreach e in qi

if end(e) ≤ τ c−τ ′ then qi := qi−{e}; li := e

Figure 4.4: Algorithm for Ei = Ej ;Ek when Ek ≡ Ek
τ ′ .

original version. From the remaining elements, a single element with
maximum start time is stored in li.

Definition 4.7. For 1 ≤ i ≤ m such that Ei = Ej ;Ek and Ek ≡ Ek
τ ′ ,

and for τ ∈T , we define newstate(i, τ) to hold if the following holds:

• ti is the maximum element in {start(e) | e∈A(j) ∧ end(e)<τ}, or
−1 if this set is empty.

• qi = {e | e∈A(j) ∧ end(e)<τ ∧ τ−τ ′≤end(e) ∧
¬∃e′(e′∈A(j)∧ e′ 6=e∧ start(e)≤start(e′)∧ end(e′)≤end(e))}

• li is an element in {e | e∈A(j) ∧ end(e) < τ−τ ′} with maximum
start time, or 〈〉 if that set is empty.

Lemma 4.2.1. For 1≤ i ≤ m such that Ei =Ej ;Ek and Ek ≡ Ek
τ ′ , and

any τ ∈T , the following holds:

i. newstate(i, τ) holds at the start of time τ .

ii. valid(ai, seq(A(j),A(k)), τ) holds after executing the algorithm at
time τ .

iii. rem(seq(A(j),A(k)),A(i)).

Proof.

i. newstate(i, 0) holds for an initial state where ti = −1, qi = ∅ and
li = 〈〉. Next, assume that newstate(i, τ) holds at the start of time
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τ . The first conditional only changes ai, and thus does not affect
newstate. The second conditional updates qi and ti in the same
way as in the original sequence algorithm. If the conditional of the
last foreach statement holds for e, we actually have end(e) = τ−τ ′.
This means that the conditional holds for at most one element of qi.
The definition of newstate requires this e to be removed from qi in
order for newstate(i, τ+1) to hold. By newstate(i, τ), we also have
that e fulfills the requirement on li as specified by newstate(i, τ+1).
By induction, the lemma holds.

ii. From i, we know that newstate(i, τ) holds at the start of time τ .

The case when ak = 〈〉 follows the proof for the original sequence.
In the case when ak 6= 〈〉, if ai 6= 〈〉 after executing the first fore-
ach statement, then we have valid(ai ∪ ak, seq(A(j),A(k)) as in
the proof of the original sequence. If ai = 〈〉 after executing the
first foreach statement, then there can be no instance e in qi with
end(e) < start(ak). In this case, we assign li to ai. If li 6= 〈〉 we
know that end(li) < start(ak), and then since li has the value spec-
ified by newstate(i, τ+1), we have that valid(li∪ak , seq(A(j),A(k)))
holds.

Thus, arriving at the next conditional we know that either ai = 〈〉
and there is no instance e in A(j) with end(e)< start(ak), or that
valid(ai ∪ ak, seq(A(j),A(k))) holds. Thus, the lemma holds when
the second foreach statement is reached, and since ai is not assigned
any value in the remaining statements, the lemma holds at the end
as well.

iii. Follows from ii and Lemma 4.1.1.

From the definition of newstate it follows that for a sequence A;B
where B ≡ Bτ , the size of qi never exceeds τ at the start of each time
instant. Since at most one instance is added to qi during a single execu-
tion of the algorithm, this means that the storage requirement is limited
for such sequences.

For large values of τ , for example in systems with a fine granularity
timebase, this resource bound might not be sufficient in practice. Also,
for A;B the bound is a large overapproximation unless A occurs very
frequently. If we have information about the minimum separation time
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of primitive events (i.e., the minimum time between two consecutive
occurrences of the same event), we can derive the maximum number of
occurrences of A during any time interval of length τ .

Definition 4.8. The minimum separation time of primitive events is
represented by the function minsep : P → � +. An interpretation I is
consistent with minsep if the following holds. For any p ∈ P , if 〈p, υ, τ〉∈
I(p) and 〈p, υ′, τ ′〉∈I(p) with τ <τ ′ then minsep(p)≤τ ′−τ .

Based on the minimum separation time we could compute minimum
separation times for composite events, but for disjunction and conjunc-
tion the minimum separation is 1 regardless of the constituent events.
Instead, we derive the maximum number of times an event can occur in
any interval of a given size.

Definition 4.9. The function occ is defined as follows:

occ(A, τ) = dτ/minsep(A)e if A∈P
occ(A∨B, τ) = min(τ, occ(A, τ) + occ(B, τ))
occ(A+B, τ) = min(τ, occ(A, τ) + occ(B, τ))
occ(A;B, τ) = occ(B, τ)
occ(A−B, τ) = occ(A, τ)
occ(Aτ ′ , τ) = occ(A, τ)

This function represents the maximum number of A instances with
different end times that can occur in an interval of length τ , as the
following theorem states.

Theorem 4.2.1. For an event expression A, time instants τ, τ ′ ∈ T and
an interpretation I that is consistent with minsep, the following holds:

|{end(a) | a∈ [[A]] ∧ τ ′≤end(a) ∧ end(a)<τ ′+τ}| ≤ occ(A, τ)

Proof. Proof by induction. For the base case when A∈P , we note that
the maximum number of instances in an interval is achieved if instances
occur at minsep(A) distance. Then, exactly occ(A, τ) instances fit into
the interval. For the inductive case, assume that the property holds for
event expressions A and B. There are only τ time points in the interval,
so the number of end times can not be larger than τ . This justifies the
minimum construct for disjunction and conjunction.

Every instance of A∨B has an end time equal to the end time of an
instance of A or B, so the number of distinct end times is limited by the
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sum of distinct end times for A and B for this interval. According to
the assumption, this is not larger than occ(A, τ) + occ(B, τ). Since all
instances of A+B must have the same end time as some instance from A
or from B, the reasoning for disjunction applies to conjunctions as well.

An instance of A;B must have the same end time as an instance of B,
and by assumption there are no more than occ(B, τ) distinct instances
of B in the interval. Similarly, all instances of A−B, and all instances of
Aτ ′ , must have the same end time as an instance from A. By induction,
the theorem holds for any expression.

Corollary 4.2.1. In the improved sequence algorithm for Ei = Ej ;Ek

when Ek ≡ Ek
τ ′ , the size of qi never exceeds occ(Ej , τ ′).

Proof. All elements in qi belong to [[Ej ]], and according to the constraint
on qi defined by newstate they all have end times in an interval of length
τ ′. Then, the corollary follows directly from the theorem.

For some applications it can be beneficial to provide maximum oc-
currence values for some primitive events in addition to the minimum
separation time. This is especially useful for “bursty” events that can
occur a few times with high frequency but then do not occur for a long
time. Extending the definition above to take this kind of information
into account is relatively straightforward.

To formally identify the class of expressions that can be detected
with bounded memory, we formulate the following theorem.

Theorem 4.2.2. Let E be an event expression such that for any subex-
pression of E on the form A;B, we have B ≡ Bτ for some τ ∈ T . Then,
E can be correctly detected with limited memory.

Proof. Trivially, the memory needed to store information about the past
is limited for all operators except sequence. In the algorithm for detect-
ing this specific type of sequences, the size of qi is limited. Thus, the
total storage requirement is limited.

This theorem does not provide means for syntactically determining if
an expression can be detected with limited memory. Chapter 5 describes
how the laws of temporal restriction can be used to transform expres-
sions to meet the criteria under which limited resource requirements are
guaranteed. In addition, sufficient criteria are presented to syntactically
identify expressions that require only limited memory when transforma-
tion is applied.
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4.2.2 Time Complexity

As a result of instances not having a fixed size, assigning an instance
to a variable might not be a constant operation, but proportional to
the instance size. Thus, each operator contributes with at least a fac-
tor m to the time complexity of the whole algorithm. For sequences,
a straightforward representation of the qi variables gives a linear time
complexity for finding the best matching instance, with respect to the
size limit of that qi variable. This gives a a total complexity of O(mn′),
where m is the number of subexpressions in E, n′=max(m, n) and n is
the maximum size limit of the qi variables.

When the maximum size of qi is known, a more elaborate implemen-
tation is possible. We keep qi sorted with respect to end times, and
since newstate ensures that qi does not contain instances that are fully
overlapping, this means that they will be sorted with respect to start
times as well. Since an instance that is added to qi has a later start time
than the instances already in qi, and elements are removed when they
become too old, qi will behave like a first-in first-out queue.

Consequently, keeping qi updated can be done in constant time. How-
ever, when an instance of B occurs we need to find the best matching
instance in qi efficiently, i.e., the instance with latest start time among
those that end before the start time of the B instance. Since qi is sorted
with respect to both start and end times, this can be implemented as a
straightforward binary search if the implementation of qi allows constant
access to arbitrary elements.

To allow this, we base the implementation of qi on a static array, and
use two variables to mark the part of this array that currently contain
qi. When elements are added and removed, these variables are increased
accordingly, and when the end of the array is reached they simply con-
tinue at the beginning. Since the size limit of qi is known, using the
same size for the array ensures that there is always room for qi in the
array, i.e., that the start marker will not overtake the end marker. The
following example illustrates the implementation of the qi variables

Example 4.2. Figure 4.5 describes how instances of A are stored in the
qi variable during the detection of A;B4, assuming that no information
about minimum separation is available. The figure also shows how li is
updated with the element most recently removed from qi. �

The improved sequence algorithm is presented in Figure 4.6. The
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Figure 4.5: An example of how instances of A are stored in qi and li
during the detection of A;B4.

algorithm uses two indexed integer variables si and ei, and qs , qe and
qm which are temporary variables that can be shared by all sequence
operators in the expression. The variable si marks the start of the active
part of qi, where new instances are added, and ei marks the end of the
active part. In the initial state we have si = ei, representing that qi is
empty. The temporary variables mark the start, end and middle of a
subsection of the active part during the binary search. Accessing the
xth element of the array qi is denoted qi[x]. Using this implementation,
the total complexity of detecting E is O(mn′′), where m is the number
of subexpressions in E, n′′ = max(m, log n) and n is the maximum size
limit of the qi variables.
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ai := 〈〉
if ak 6= 〈〉 then

if si 6= ei and end(qi[ei]) < start(ak) then
qe := ei

qs := si − 1 mod o
while qe 6= qs

qm := qe + d((qs − qe) mod o)/2e mod o
if end(qi[qm ]) < start(ak) then qe := qm

else qs := qm − 1 mod o
ai := qi[qe ]

if ai = 〈〉 then ai := li
if ai 6= 〈〉 then ai := ak ∪ ai

if ti < start(aj) then
qi[si] := aj

si := si + 1 mod o
ti := start(aj)

if si 6= ei and end(qi[ei]) ≤ τ c−τ ′ then
li := qi[ei]
ei := ei + 1 mod o

Figure 4.6: Improved algorithm for Ei = Ej ;Ek when Ek ≡ Ek
τ ′ . Ini-

tially ti =−1, si =ei =0 and li =〈〉. For brevity, o denotes occ(Ej , τ ′+1).



Chapter 5

Expression Transformation

This chapter describes how an event expression can be automatically
transformed into an expression that can often be detected more effi-
ciently, but has the same meaning. The transformation algorithm is
based on the algebraic laws describing how temporal restrictions can be
propagated through an expression, presented in Section 3.2.

To simplify the presentation, we extend the algebra syntax with two
constructs. The symbol ∞ is added to the temporal domain to allow tem-
porally restricted and unrestricted expressions to be treated uniformly.
Formally, we define A∞ = A. Since the improved sequence algorithm is
defined for sequences A;B where B ≡ Bτ for some τ , we introduce the
notation A;τB to label sequences with this information.

5.1 The Transformation Algorithm

The transformation algorithm is based on a recursive function that takes
an expression and a time instant as input, and returns the transformed
expression and a time instant. This function is defined in Figure 5.1.
Informally, the input time instant represents a temporal restriction that
can be applied to the current subexpression without changing the mean-
ing of the expression as a whole. For example, if the whole expression
is on the form (A∨B)2, changing A into A2 changes the meaning of
this subexpression, but the meaning of the whole expression remains
unchanged. The returned time instant represents a temporal restriction
that can be applied to the transformed expression without changing its

55
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transform(A, τ) = 〈A, 0〉 if A ∈ P

transform(A∨B, τ) = 〈A′∨B′, τ ′〉
where 〈A′, τa〉 = transform(A, τ)

〈B′, τb〉 = transform(B, τ)
τ ′ = max(τa, τb)

transform(A+B, τ) = 〈A′+B′,∞〉
where 〈A′, τa〉 = transform(A, τ)

〈B′, τb〉 = transform(B, τ)

transform(A−B, τ) = 〈A′−B′, τa〉
where 〈A′, τa〉 = transform(A, τ)

τ ′ = min(τa, τ)
〈B′, τb〉 = transform(B, τ ′)

transform(A;B, τ) =

{

〈A′;τb
B′,∞〉 if τb ≤ τ

〈A′;τ (B′
τ ),∞〉 if τ < τb

where 〈A′, τa〉 = transform(A, τ)
〈B′, τb〉 = transform(B, τ)

transform(Aτ ′ , τ) =

{

〈A′, τa〉 if τa ≤ τ ′′

〈A′
τ ′′ , τ ′′〉 if τ ′′ < τa

where 〈A′, τa〉 = transform(A, τ ′′)
t′′ = min(τ, τ ′)

Figure 5.1: The recursive transformation function.
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meaning.
This informal description is formalised in the following lemma, which

states that the transformation function preserves the semantics of the
original expression when called properly. It also defines the meaning of
the returned time.

Lemma 5.1.1. For an event expression E and a time instant τ ∈T , if
transform(E, τ) = 〈E ′, τ ′〉, then Eτ ≡ E′

τ and E′ ≡ E′
τ ′ .

Proof. We prove the lemma by structural induction. In the proof, ≡22

denotes that the equivalence follows from law 22 in Theorem 3.2.4, and
≡a indicates that the equivalence follows from the assumptions.

For the base case, when E ∈ P , we note that the lemma holds for
transform(E, τ) = 〈E, 0〉 since E ≡22 E0. For the inductive case we
assume that the lemma holds for the subexpressions of E, and consider
each operator separately:

Disjunction For E = A∨B, we have Aτ ≡ A′
τ , A′ ≡ A′

τa
, Bτ ≡ B′

τ and
B′ ≡ B′

τb
by assumption. Then, we have

(A∨B)τ ≡24 Aτ∨Bτ ≡a A′
τ ∨B′

τ ≡24 (A′∨B′)τ .
Next, let τ ′ =max(τa, τb). Then A′∨B′ ≡a A′

τa
∨B′

τb
≡33

(A′
τa
∨B′

τb
)τ ′ ≡a (A′∨B′)τ ′ .

Thus, we have (A∨B)τ ≡ (A′∨B′)τ and A′∨B′ ≡ (A′∨B′)τ ′ , which
means that the lemma holds for transform(A∨B, τ) = 〈A′∨B′, τ ′〉.

Conjunction For E = A+B, we have Aτ ≡ A′
τ , A′ ≡ A′

τa
, Bτ ≡ B′

τ

and B′ ≡ B′
τb

by assumption. Then, we have
(A+B)τ ≡25,34 (Aτ +Bτ )τ ≡a (A′

τ +B′
τ )τ ≡25,34 (A′+B′)τ

and by definition (A′+B′)∞ ≡ (A′+B′) so the lemma holds for
transform(A+B, τ) = 〈A′+B′,∞〉.

Negation For E = A−B, we assume Aτ ≡ A′
τ , A′ ≡ A′

τa
, Bτ ′ ≡ B′

τ ′

and B′ ≡ B′
τb

where τ ′ = min(τa, τ). Then, we have
(A−B)τ ≡26 Aτ−B ≡a A′

τ −B ≡a (A′
τa

)τ −B ≡23 A′
τ ′−B ≡26

(A′−B)τ ′ ≡27 (A′−Bτ ′)τ ′ ≡a (A′−B′
τ ′)τ ′ ≡27 (A′−B′)τ ′ and

(A′−B′)τa
≡26 (A′

τa
−B′) ≡a (A′−B′) so the lemma holds for

transform(A−B, τ) = 〈A′−B′, τa〉.

Sequence For E = A;B, we have Aτ ≡ A′
τ , A′ ≡ A′

τa
, Bτ ≡ B′

τ and
B′ ≡ B′

τb
by assumption. We consider the two cases separately.

If τb ≤ τ , then (A−B)τ ≡28,29 (Aτ −Bτ )τ ≡a (A′
τ −B′

τ )τ ≡28,29



58 Chapter 5. Expression Transformation

(A′−B′)τ and trivially (A′−B′)∞ ≡ A′−B′. Thus, the lemma
holds for transform(A;B, τ) = 〈A′;B′,∞〉 in this case.
If τ < τb, then (A−B)τ ≡28,29 (Aτ −Bτ )τ ≡a (A′

τ −B′
τ )τ ≡28

(A′−B′
τ )τ and trivially (A′− (B′

τ ))∞ ≡ (A′− (B′
τ )). Thus, the

lemma holds for transform(A;B, τ) = 〈A′;(B′
τ ),∞〉 in this case.

The labelling has no impact on the semantics of the expression.
The fact that sequences are correctly labelled is addressed by The-
orem 5.1.1 below.

Temporal For E = Aτ ′ , we have Aτ ′′ ≡ A′
τ ′′ and A′ ≡ A′

τa
by assump-

tion. Let t′′ = min(τ, τ ′), and consider the two cases:
If τa ≤ τ ′′, then τa ≤ τ ′ and we have (Aτ ′)τ ≡30 (Aτ )τ ′ ≡a

(A′
τ )τ ′ ≡30 (A′

τ ′)τ ≡a ((A′
τa

)τ ′)τ ≡23 (A′
min(τa,τ ′))τ ≡ (A′

τa
)τ ≡a

A′
τ and by assumption A′

τa
≡ A′. Thus, the lemma holds for

transform(Aτ ′ , τ) = 〈A′, τa〉 in this case.
If τ ′′ < τa, then we have (Aτ ′)τ ≡23 ((Aτ ′)τ )τ ≡23 (Amin(τ ′,τ))τ ≡
(Aτ ′′)τ ≡a (A′

τ ′′)τ and (A′
τ ′′)τ ′′ ≡23 A′

τ ′′ so the lemma holds for
transform(Aτ ′ , τ) = 〈A′

τ ′′ , τ ′′〉 in this case.

By induction, the lemma holds for any event expression.

Finally, this lemma is used to prove that the transformation preserves
the semantic meaning of the expression. Also, we identify the class of
expressions that can be correctly detected with limited memory when
the transformation is applied.

Theorem 5.1.1. For an event expression E, let transform(E,∞) =
〈E′, τ ′〉. Then, the following holds:

i) E ≡ E′.

ii) For any subexpression of E ′ on the form A;τB, B ≡ Bτ holds.

iii) If τ 6= ∞ for every sequence A;τB in E′, then E can be correctly
detected with limited memory.

Proof.

i) Follows trivially from Lemma 5.1.1.

ii) A subexpression in E′ on the form A;τB was created by the se-
quence part of the transformation algorithm, which has two cases.
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In the first case, 〈B, τ〉 was the result of a call to transform, which
according to Lemma 5.1.1 implies that B ≡ Bτ In the second case,
B = (B′)τ , which trivially means that B ≡ Bτ .

iii) Trivially, all sequences in E ′ are on the extended form A;τB, and
according to ii) they satisfy the condition for using the specialised
sequence algorithm presented in Section 4.2.1.

Example 5.1. As a first example, we consider the expression P2;(B∨T).
The calls to the transformation function, and the returned tuples are
depicted in Figure 5.2. We see that the temporal restriction can be
removed, since instances of P are guaranteed to be instantaneous. Also,
the sequence is labelled with information specifying that B∨T ≡ (B∨T)0,
and thus the size of the corresponding qi variable will not exceed 1 during
the detection. �

transform(P2;(B∨T), ∞)
transform(P2, ∞)

transform(P, 2)
⇒ 〈P, 0〉

⇒ 〈P, 0〉 since 0 ≤ 2
transform(B∨T, ∞)

transform(B, ∞)
⇒ 〈B, 0〉
transform(T, ∞)
⇒ 〈T, 0〉

⇒ 〈B∨T, 0〉
⇒ 〈P;0B∨T, ∞〉 since 0 ≤ ∞

Figure 5.2: Transformation of P2;(B∨T).

Example 5.2. Next, consider the somewhat more complex expression
(B;B)2−(P;(P+T)). The transformation, shown in Figure 5.3, illustrates
two important aspects of the algorithm. If analysed separately, the sec-
ond argument of the negation is not detectable with limited resources,
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even when the transformation algorithm is applied. However, the nega-
tion allows the algorithm to propagate time restriction information from
the first argument to the second, where it is used to limit the sequence.
The sequence in the second argument to the negation exemplifies that
it is sometimes necessary to add explicit time restrictions. According to
the information passed down from earlier analysis, there is no need to
detect instances of P+T that are longer than 2, but transforming this
expression yields the information that the instances detected might be
of arbitrary length. In order to limit the sequence, an explicit temporal
restriction is added. �

transform((B;B)2−(P;(P+T)), ∞)
transform((B;B)2, ∞)

transform(B;B, 2)
transform(B, 2)
⇒ 〈B, 0〉
transform(B, 2)
⇒ 〈B, 0〉

⇒ 〈B;0B, ∞〉 since 0 ≤ 2
⇒ 〈(B;0B)2, 2〉 since min(∞, 2) < ∞
transform(P;(P+T), 2)

transform(P, 2)
⇒ 〈P, 0〉
transform(P+T, 2)

transform(P, 2)
⇒ 〈P, 0〉
transform(T, 2)
⇒ 〈T, 0〉

⇒ 〈P+T, ∞〉
⇒ 〈P;2(P+T)2, ∞〉 since 2 < ∞

⇒ 〈(B;0B)2−(P;2(P+T)2), 2〉

Figure 5.3: Transformation of (B;B)2−(P;(P+T)).

Finally, we present sufficient criteria under which an event expression
is guaranteed to be detectable with limited resources after applying the
transformation algorithm.
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Theorem 5.1.2. If at least one of the following criteria holds for every
subexpression in E on the form A;B, then E can be detected with limited
memory after applying the transformation algorithm.

a) A;B occurs inside a temporal restriction, or

b) B does not contain any sequence or conjunction operators.

Proof.

a) From the transformation algorithm it follows that τ is finite in the
recursive call transform(A;B, τ), since this holds for any subexpres-
sion of a temporal restriction. Thus, for both cases in the sequence
part of the transformation algorithm, the resulting sequence label
is finite.

b) In this case, transform(B, τ) will return a pair 〈B′, τb〉 where τb

is finite, since infinite return time values are only introduced by
sequences and conjunctions. Thus, both cases in the sequence part
of the transformation algorithm produce a sequence with finite
label.

According to Theorem 5.1.1 this ensures that E can be detected with
limited memory.

Note that these are sufficient but not necessary criteria for limited
resource requirements. Some expressions are detectable with limited
memory without meeting these conditions, for example the expression
in Example 5.2.

5.2 Experiments

We have conducted two experiments to evaluate the transformation al-
gorithm. Expressions containing N operators were created randomly,
with equal probability for the five operators to occur. For temporal re-
strictions, random time values were generated uniformly between 0 and
a given limit T . Each configuration is represented by 10,000 expressions.

5.2.1 Experiment 1
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The first experiment investigates the class of expressions that can
be detected with limited resources when the transformation algorithm is
applied. For each randomly generated expression we apply the transfor-
mation algorithm and determine if the resulting expression belongs to
the class and, if it does, the maximum storage requirement in number of
instances. First, the experiment is performed with primitive events given
a minsep value of 1, representing that no information about minimum
separation is available. Then, the experiment is repeated with half of
the primitive events having minsep values uniformly generated between
2 and 50.

limited average
T N memory 25% 50% 75% memory

100 5 85% 11 13 16 14.7
100 10 74% 22 27 ∞ 34.4
100 20 61% 49 121 ∞ 79.0
100 30 51% 101 232 ∞ 126.4
300 5 86% 11 13 16 20.4
300 10 73% 22 27 ∞ 55.3
300 20 60% 50 269 ∞ 143.5
300 30 52% 158 671 ∞ 236.0

Table 5.1: Summary of Experiment 1a. All primitive events have a
minsep value of 1.

The results are presented in Appendix A but a summary is given
in Table 5.1 and Table 5.2. For each configuration, they present the
percentage of expressions for which resource requirements are limited.
The following three columns indicate the 25th, 50th and 75th percentiles.
For example, a value of 11 in the first of these columns means that 25%
of the expressions require 11 or fewer instances to be stored. The last
column contains the average storage size for expressions with limited
resources.

The experiment indicates that the class of expressions that can be
detected with limited resources is fairly large. As anticipated, the per-
centage does not depend on the range of time variables or minsep infor-
mation. Furthermore, the average storage requirements are reasonably
low for all configurations, and does not increase dramatically when the
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limited average
T N memory 25% 50% 75% memory

100 5 85% 11 13 16 13.6
100 10 74% 22 26 ∞ 30.3
100 20 60% 48 101 ∞ 68.0
100 30 52% 83 244 ∞ 108.9
300 5 85% 11 13 16 16.8
300 10 73% 22 27 ∞ 46.0
300 20 60% 49 222 ∞ 116.0
300 30 52% 112 542 ∞ 190.5

Table 5.2: Summary of Experiment 1b. Half of the primitive events have
minsep values uniformly generated between 2 and 50.

time value range is increased from 100 to 300. Introducing informa-
tion about minimum separation for some primitive events improved the
storage size by roughly 20% for the higher time value limit.

5.2.2 Experiment 2

In earlier versions of the algebra, limited resource requirements were
ensured by only providing a temporally restricted sequence operator,
corresponding to a sequence on the form (A;B)τ in the algebra presented
in this thesis [11]. Since such an expression is equivalent to (A;(Bτ ))τ ,
the specialised sequence algorithm can be applied.

This experiment is restricted to expressions where all sequences are
on the form (A;B)τ , which ensures that the detection can be performed
with limited resources. For this type of expressions, we investigate the
efficiency gained by introducing the transformation algorithm. Sum-
maries of the results are presented in Table 5.3 and Table 5.4. For
each configuration, the tables present three percentiles like in the previ-
ous experiment, and the average storage requirement, before and after
the transformation algorithm is applied. For additional results, see Ap-
pendix A.

The experiment shows that for this class of expressions, syntacti-
cally constrained to ensure that the expressions are detectable with lim-
ited resources, the average storage size is significantly reduced when the
transformation algorithm is applied.



before transformation after transformation

T N 25% 50% 75% average 25% 50% 75% average

100 5 13 33 81 48.9 9 11 14 16.0

100 10 53 99 141 102.6 20 33 35 34.6

100 20 145 203 262 208.2 43 56 93 71.9

100 30 239 310 386 316.1 69 95 136 108.1

300 5 13 74 213 120.0 9 11 13 25.7

300 10 111 246 366 256.8 20 24 71 61.8

300 20 342 510 696 528.2 43 85 191 132.0

300 30 571 781 1002 799.6 76 158 276 197.0

Table 5.3: Summary of Experiment 2a. All primitive events have a
minsep value of 1.

before transformation after transformation

T N 25% 50% 75% average 25% 50% 75% average

100 5 12 16 49 34.0 9 11 13 14.0

100 10 28 61 106 72.5 19 23 28 30.7

100 20 95 141 194 149.0 41 49 66 63.3

100 30 162 218 280 225.4 65 80 116 95.1

300 5 13 18 119 76.0 9 11 13 19.4

300 10 34 132 267 168.0 19 23 32 49.4

300 20 195 328 485 353.1 42 54 144 106.6

300 30 353 518 714 544.9 68 119 226 163.7

Table 5.4: Summary of Experiment 2b. Half of the primitive events have
minsep values uniformly generated between 2 and 50.



Chapter 6

Prototype Implementation

This chapter describes an event triggered prototype implemented in Java,
where the algebra is integrated with the existing event framework in
the Abstract Window Toolkit (AWT) used for graphical user interface
programming.

The detection algorithm presented in Section 4.1 can be directly used
as an implementation of the algebra for time triggered reactive systems.
Each time instant, the current primitive events are processed and the
detected instances of composite events are handed over to the reactive
part of the system. When designing real-time systems, the time trig-
gered approach is sometimes considered overly costly, for example in
applications where the expected rate of primitive event occurrences is
low, and in systems with soft real-time demands. An alternative is to
use an event triggered approach where the execution is fully driven by
the arrival of events. This results in a lower overhead cost during peri-
ods of low activity, at the cost of making it more difficult to guarantee
a timely behaviour in a worst case scenario.

The chapter is not intended to describe how to best design an imple-
mentation of the algebra in a resource-conscious event triggered system.
Rather, the prototype provides a possibility to test the algebra in prac-
tice and to highlight some of the issues that are related to the event
triggered setting.

65
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6.1 Design Decisions

Integrating the algebra with the existing AWT event handling provides
a straightforward way to use the algebra in an application. Primitive
events can be tied to events in a graphical interface, such as a button
being pressed. An event expression is treated in the same way as a
graphical component that produces events, meaning that objects can
register that they want to be informed when the event defined by an
expression occurs, just like they register with, for example, a button.

The AWT event mechanisms are dynamic, so event producers and
consumers can be created, deleted and redefined at runtime. To achieve
a seamless integration of the algebra, we want event expressions to ex-
hibit the same high level of dynamicity. An application can construct
new composite event expressions from existing expressions or subexpres-
sions at runtime. For example, if A is defined as the expression P∨T,
then A′ can later be defined as A+B. This affects how the transforma-
tion algorithm can be applied, as the transformation of a subexpression
depends on the expression in which it occurs. Currently, the transfor-
mation algorithm is not part of the prototype implementation, and it
is assumed that the application performs transformations before con-
structing the expressions, if necessary. In a sharp implementation, the
possibility to dynamically construct composite expressions from existing
ones might be restricted to allow the transformation algorithm to be
automatically applied.

An expression is represented by objects corresponding to the individ-
ual operators, and there is no central object governing each expression.
As a result, the way in which the handling of an occurrence propagates
through the expression can not be based on global information about
the whole expression. This requires a rather intricate communication
scheme, as described in the next section.

The implementation is limited to the Java subset defined by J2ME
Personal Profile, a set of Java APIs that supports resource-constrained
devices [30].

6.2 System Description

A class diagram describing the main classes is depicted in Figure 6.1.
Time is measured in milliseconds, following the Java standard. To keep
resource requirements low, primitive events can be given minsep val-
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AlgebraEvent

AlgebraEventListener

algebraEventOccurs()

<<Interface>>

BinaryEventExpressionUnaryEventExpression

Disjunction Conjunction SequenceNegationTemporal

Primitive

EventListener

<<Interface>> EventObject

CompositeEventExpression

EventExpression

addAlgebraEventListener()
removeAlgebraEventListener()
getOcc()
startEval()

0..*

1..2

+parent

0..*

+child

1..2

umpa

ActionListener

actionPerformed()

<<Interface>>

File: D:\Arbete\Hll\eventalgebra\impl\UML\eventalgebra.mdl    16:54:21 den 4 maj 2004    Class Diagram: Logical View / Main  Page 1

Figure 6.1: Class diagram for the event algebra package. Dark classes
denote existing Java classes and interfaces.
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ues when constructed. Occurrences that violate this are ignored by the
primitive event object. A default minsep value of 1 is used when no
information about minimum separation is available. Sequences can be
created with an additional time value indicating the maximum length of
the instances of the second subexpression, corresponding to the notation
A;τB from Chapter 5. If this value is provided, the limited sequence
algorithm is used, and the maximum size of the storage structure is
computed from the minimum separation of primitive events.

An expression is built from instances of the classes corresponding to
the respective operators, associated through the parent/child references.
A concrete example of the object structure is given in Figure 6.2.

t : Temporal

s : Sequence

d : Disjunction

listener : 
AlgebraEventListener

button1

button2

b : Primitivea : Primitive

File: D:\Arbete\Hll\eventalgebra\impl\UML\eventalgebra.mdl    17:06:47 den 4 maj 2004    Collaboration Diagram: Logical View / NewDiagram3  Page
1

Figure 6.2: Object diagram describing the representation of the expres-
sion (A;(A∨B))5000 where A and B are connected to two buttons. Dark
objects denote entities outside the event algebra part of the system.

The references between parent and child are navigable in both direc-
tions, since messages are sent in both directions during event processing.
This causes problems if an expression is no longer of interest to the
application, i.e., if there is no AlgebraEventListener connected to the ex-
pression and no variable referring to it. In such a case, the fact that
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all objects are still reachable by a chain of references from some active
object (the event sources) makes the Java garbage collection unable to
destroy the objects and reclaim the resources allocated by the expression.
A solution to this problem is provided by weak references. If an object is
not reachable from any active object unless at least one weak reference
is used, the object is said to be weakly reachable and may be finalized
by the garbage collector [35]. By using weak references from child to
parent, and ordinary references in the opposite direction, an expression
that is of no further use can be reclaimed even if it share for example a
primitive event with a currently active expression. If the application has
a reference to a subexpression, this part of the object structure is not
weakly reachable and thus will not be reclaimed. Thus, the application
is given the responsibility of identifying active expressions by keeping
explicit references to them.

We mentioned earlier that due to the lack of a central object govern-
ing an expression, the order in which an event occurrence is processed
must be based on message passing between parent and child only. This
causes some problems since expressions do not form trees but rather
directed acyclic graphs. It is vital to the correctness of the operator im-
plementation that if both of its arguments occur at the same time, this
information is present when the operator is evaluated.

A bottom-up evaluation, as in the original detection algorithm, would
ensure this but would require additional references between siblings or a
separate object controlling the order in which the expression is evaluated.
Both alternatives require that changes to an expression during runtime
are detected, to ensure that sibling references or the control structure,
respectively, are updated accordingly. Instead, we use a double traversal
of the expression, illustrated by the following example.

Example 6.1. The sequence diagram in Figure 6.3 describes the com-
munication controlling the evaluation of the expression (A;(A∨B))5000.
The occurrence of A causes a chain of startEval messages to be sent
from child to parent, indicating that the expression should be evaluated.
When this message reaches a node without parents, a second traversal of
the expression is initiated. Each operator recursively requests the chil-
dren to compute the current instance, before doing so itself. The result
is a post-order traversal of the tree, which is equivalent to the bottom-up
traversal in the original detection algorithm with respect to the correct-
ness result. During this traversal, new occurrences are also passed on to



70 Chapter 6. Prototype Implementation

any registered AlgebraListener.
By storing the time of the last message sent to the parent, and the last

request received, duplicated computation due to common subexpressions
can be avoided. In this example, the message sent from A to its second
parent is ignored when it reaches the sequence. �

a : Primitive d : Disjunction s : Sequence t : Temporal

listener : 
AlgebraEventList

b : Primitivebutton1

actionPerformed( )
startEval( )

startEval( )

getOcc( )
getOcc( )

getOcc( )
getOcc( )

getOcc( )

algebraEventOccurs()

startEval( )

startEval( )

File: D:\Arbete\Hll\eventalgebra\impl\UML\eventalgebra.mdl    16:43:30 den 4 maj 2004    Sequence Diagram: Logical View / NewDiagram2  Page 1

Figure 6.3: Sequence diagram depicting the communication within the
expression (A;(A∨B))5000 when A occurs.

6.3 Using the Prototype

The algebra package is available from the following URL:

http://www.mrtc.mdh.se/projects/HLL/Eventalgebra/index.html

This site also contains an example Java applet where the user can en-
ter event expressions and then generate primitive event occurrences to
investigate when the given event expressions are detected.
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The code snippet in Figure 6.4 exemplifies how an expression can be
constructed in the prototype implementation.

// Declare variables

Primitive a,b;

EventExpression d,s,t;

// Create two primitive events

a = new Primitive(100); // minsep = 0.1 sec

b = new Primitive(100); // minsep = 0.1 sec

// Create the expression

d = new Disjunction(a,b);

s = new Sequence(a,d,0,1); // tau=0, maxstorage=1

t = new Temporal(s,5000);

// or alternatively:

t = new Temporal(

new Sequence(a,new Disjunction(a,b),0,1), 5000);

// Register this object as the listener of the expression

t.addAlgebraEventListener(this);

// Connect primitive events to the GUI to start detection

button1.addActionListener(a);

button2.addActionListener(b);

Figure 6.4: Code for creating the expression (A;(A∨B))5000.





Chapter 7

Related Work

A lot of work, especially formal approaches, on composite event detection
has been done in the context of active databases. In addition, event
detection has been addressed as a way to design large-scale distributed
applications, as additional middleware functionality, and as a technique
to monitor complex systems. In the area of artificial intelligence, related
issues like how to represent and reason about time-dependent knowledge,
have been investigated.

In general, many of the systems described here cover aspects that are
not considered in this thesis, such as the specification of value constraints
and actions, or how to deal with timing issues in distributed systems. In
this summary we focus primarily on the event specification and detection
functionality.

7.1 Active Databases

One area where event algebras are used is active databases which, unlike
passive databases, react automatically to situations that arise within or
outside the database. The reactions are specified by so called event-
condition-action rules (ECA rules) stating that when a certain event
occurs, and the condition is satisfied, the given action should be per-
formed. The event part of an ECA rule can be expressed by an event
algebra to allow the database to react to complex events.

The event expression language used in the object database Ode has
the same expressive power as regular expressions, which allows the de-
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tection mechanism to be implemented by finite state automata [20]. The
definition is based on a global, totally ordered set of primitive event oc-
currences, implying that primitive events can not occur simultaneously.
To allow event occurrences to carry values and composite events that oc-
cur only under given restrictions on the values of the constituent events,
the automata mechanism is extended with data structures that store the
values of events that have occurred.

In the active database SAMOS, event detection is implemented us-
ing Petri nets [18, 19]. Event occurrences are associated with a number
of parameter-value pairs, and it can be specified that a complex event
should occur only if the constituent event occurrences have the same
value for a given parameter. SAMOS does not allow simultaneous prim-
itive event occurrences.

Snoop [14, 13] is an event specification language for active databases.
In addition to the unrestricted operator semantics, it defines four dif-
ferent event contexts (called parameter contexts). The operators are
defined formally, but the event contexts are only described informally.
The detection mechanism is based on trees corresponding to the event
expressions, where primitive event occurrences are inserted at the leaves
and propagate upwards in the tree as they cause more complex events
to occur.

Zimmer and Unland present a formal event context framework in
which the event algebras of Snoop, SAMOS, Ode and a few other systems
are compared [40]. They also highlight a number of ambiguities and
inconsistencies of the various approaches. In this framework, contexts are
defined by two orthogonal concepts. An instance selection policy defines
which instances should be used when more than one are considered by the
unrestricted operator semantics. Then an instance consumption policy
defines how this affects the detection of future occurrences, for example
if instances are allowed to be used more than once. The selection and
consumption policies are explicitly applied to the individual constituent
events, making the framework more flexible than event contexts defined
in terms of occurrences that initiate or terminate the composite instance.

The event algebra presented by Baily and Mikulás follows this frame-
work [4]. It is defined formally in temporal logic and includes four event
contexts. They identify a class of composite events for which testing for
event equivalence is decidable, and show that testing for implication is
undecidable. I.e., in general it is not possible to check for two events
whether an occurrence of the first event always implies that the other
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event occurs as well.

The event detection mechanisms described above provide no assis-
tance to a developer in terms of algebraic laws, and in general little is
said about the memory and time complexity associated with the detec-
tion of complex events. The algebra presented in this thesis was orig-
inally influenced by Snoop, which is visible in the choice of operators
and the use of a restriction policy. Since our ambition was to provide
intuitive algebraic laws, the operator semantics differ to some extent,
but the main difference lies in the way restriction is applied. In our ap-
proach, the restriction policy is designed to be applied to the expression
as a whole, rather than to the individual operators, resulting in a less
complex semantics for nested operators.

7.2 Event Monitoring in Real-Time Systems

A formalised schema for composite event detection, including a defini-
tion of the operations and event contexts of Snoop using this schema,
has been defined by Mellin and Andler [29]. The operators have defini-
tions parameterised on event contexts, which facilitates formal reasoning
about the operators with different contexts applied, without requiring
explicit definitions for each combination of operator and context. Re-
cent work by Mellin includes Solicitor, a full event specification language
based on Snoop, that has been designed within the proposed schema [28].
The language targets real-time systems in particular, and achieves pre-
dictable resource requirements by ensuring that resource bounds can be
derived for events with an expiration time, for any combination of op-
erator and context. This corresponds to our observation that any event
on the form Aτ can be correctly detected with bounded resources in
our algebra. However, thanks to the transformation algorithm many ex-
pressions not on this form can be detected with bounded resources as
well.

Solicitor is similar to the algebra proposed in this thesis in several
respects. Both are based on the interval semantics of Galton and Au-
gusto [17] and use temporal restriction to ensure bounded resources. In
addition to Solicitor being a full event specification language, an impor-
tant distinction is that our algebra is designed to provide intuitive and
well documented algebraic laws.

Liu et al. use Real Time Logic to define a system where composite
events are expressed as timing constraints and handled by general tech-
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niques for monitoring of timing constraints [27]. They present a mech-
anism for early detection of timing constraint violation, and show that
it is possible to derive an upper bound on the length of the structures
needed to correctly detect an event. In general, the time complexity of
detection is in O(n3), but for a certain subset of expressions, an algo-
rithm with linear complexity is possible [32, 33]. They also show how
their technique can be applied to the area of active databases [27]. The
constraints can be defined over event instances, which for example allows
the definition of an event that occurs when the ith instance of A occurs
after the ith instance of B. As a result, the technique is highly expressive
compared to algebras over event types, such as the one presented in this
thesis.

Bækgaard and Godsken [3] present a language based on TCCS [39],
similar in style to the process algebra CCS [31], targeting the ECA
paradigm. Triggering events are defined as processes, possibly composed
from several communicating subprocesses executing concurrently, that
synchronise on primitive events to detect a certain pattern.

7.3 Event Notification Services

Large, distributed systems can be designed based on an architecture of
event subscribers and publishers. In such a system, rather than having
subscribers register their interest in a number of primitive event types,
and perform their own filtering and composite event detection, this func-
tionality can be provided by the publisher. The subscribers register event
patterns, specified for example in an event algebra. The publisher per-
forms the event detection and notifies the individual subscribers when
their pattern is detected. This reduces the communication within the
system, and potentially gives a higher overall efficiency since the pub-
lisher can perform some of the event detection for multiple subscribers
concurrently when the registered event patterns overlap.

Many systems of this type has been proposed. Since most of them
do not target resource-conscious applications in particular, they gener-
ally do not provide resource bounds. Also, none of the studied systems
provide algebraic laws for the operators. The READY event notification
service by Gruber et al. contains a simple event algebra for register-
ing composite events. [21]. Hayton et al. describes an object-oriented
system with an event algebra that is implemented by nested pushdown
automata [22]. The event algebra developed by Hinze and Voisard is de-
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signed to suit general event notification service systems [24, 23]. Their
algebra provides time restricted sequence and conjunction, and a con-
struct to detect the ith occurrence of a given event. Following the frame-
work presented by Zimmer and Unland [40], the algebra is parameterised
with respect to policies for event instance selection and consumption.

Middleware, i.e., software located between a client and a server or
between an application program and a network, often contain event de-
tection functionality to deal with high volumes of event occurrences. In
many applications a single exceptional event, for example a network fail-
ure, causes a burst of low-level failure event occurrences throughout the
system. Ideally, such occurrences should be correlated and reported as a
single, composite, event occurrence. Sánchez et al. present an event cor-
relation language for middleware platforms [37]. In their approach, event
expressions are translated into correlation machines, a type of nested
state machines that represent the state of several concurrent detection
activities, similar to Petri nets.

7.4 Knowledge Representation

The interval semantics suggested by Galton and Augusto [17] was in-
spired by work in the area of knowledge representation where concepts
similar to those of event detection are used to represent and reason about
event occurrences. In general, these methods focus on defining and relat-
ing complex events and to allow logical inference to be made from facts
about event occurrences, rather than on detecting composite events as
they occur. They are typically highly expressive, with good algebraic
properties, but do not address efficiency of detection or bounded re-
source requirements.

Allen’s interval algebra [1] defines thirteen possible relations between
temporal intervals. An algorithm is presented by which a network of
interval relations can be updated and to some extent checked for incon-
sistencies when new information is added. Based on this interval algebra,
a temporal interval logic is defined where the truth value of predicates
may vary over time [2]. Event Calculus [26, 25] is similar in style to the
temporal interval logic but avoids the use of non-classical logic. Events
are expressed by means of Horn clauses, augmented by negation as fail-
ure, and can be executed as Prolog programs.

Chronicle recognition [15, 16] addresses the detection of a certain
type of event patterns. A chronicle is a disjunction of event sequences,
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possibly with limits on the time between events in a sequence. To deal
with complexity, a solution similar to event contexts is suggested where
only non-overlapping occurrences of a chronicle are reported.



Chapter 8

Conclusions

The algebra proposed in this thesis is based on a straightforward, declar-
ative semantics. We have presented a number of algebraic laws that
facilitate formal reasoning and support the claim that the algebra op-
erators behave according to intuition also under composition. A formal
restriction policy was designed to define the constraints that an imple-
mentation of the algebra must satisfy.

The restriction policy, as well as the algebra semantics, was carefully
designed to ensure that the algebra can be efficiently implemented. To
show this, an imperative detection algorithm was presented and analysed
with respect to memory requirements and execution time complexity.
We also identified a class of expressions that can be detected with lim-
ited memory. An algorithm, based on the algebraic laws, was described
by which many expressions can be transformed to meet the criteria for
limited memory requirements while retaining their semantic meaning.

Finally, we presented a prototype implementation that combines the
algebra with the event system in Java. Primitive events can be associated
with event sources in a graphical user interface, e.g., buttons or text
fields, and objects register their interest in events defined by expressions
in the same way as they register with ordinary event sources.

The algebraic laws identify expressions that are equivalent with re-
spect to the algebra semantics without restriction, but an implementa-
tion should correspond to the algebra semantics with restriction applied.
Thus, it is essential to establish to what extent the algebraic laws can
be used when reasoning about the behaviour of an implementation.
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A designer can use the straightforward semantics of the algebra, and
the algebraic laws, to reason about the meaning of a given expression A.
The restriction policy ensures that at any point in time that A occurs
according to the algebra semantics, the detection algorithm detects ex-
actly one of the occurrences. This still holds when A is transformed into
an equivalent expression A′. If A ≡ A′ holds, the result of detecting A′

is guaranteed to be a valid restriction to [[A]]. Thus, at any time A oc-
curs, exactly one of these occurrences are detected by an implementation
detecting A′.

8.1 Future Work

A number of future research directions have been discussed. Some of
them concern extensions to the algebra, in terms of new operators and
constructs, and others consider the larger perspective of how this algebra
is to be used in concert with the rest of the reactive system.

8.1.1 Evaluating the Algebra

The design of an event algebra with limited resource requirements was
originally motivated by the demands of real-time and embedded sys-
tems. A natural next step would be to evaluate the proposed algebra
with respect to this type of systems, and in particular to identify what
extensions to this basic set of operations might be required to allow
typical events of this domain to be expressed.

It would also be interesting to evaluate the algebra with respect to
other applications domains, for example active databases and middle-
ware platforms.

8.1.2 Delay Operator

The temporal restriction construct can be used to define events with
timeouts, but not to define the timeout event itself. For example, we
can define (A;B)τ , but not the complement event of an A occurrence
that is not followed by B within τ time units.

To allow this type of timeout events, the algebra could be extended
with a delay operation (here denoted by the symbol .) similar to the
one used by Mellin [28]. Informally, for any occurrence of A there is an
occurrence of A.τ with the same start time, but ending τ time units
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later. Then, the timeout event in the example above could be defined as
(A.τ)−B.

Extending the algebra in this way requires that the formal semantics
of the operator is defined in such a way that the general algebraic prop-
erties still holds. Also, new properties for this operator must be proved
to ensure that it behaves according to intuition.

8.1.3 Dealing with Values

Values do not play a significant role in the current algebra. The values
from primitive event occurrences are simply merged when instances of
composite events are constructed. At the top level, we assume that the
values are handed over from the event detection mechanism to the part
of the system that reacts to the detected event.

Many existing event algebras allow event expressions that describe
value dependent events. For example, an occurrence of A with a value
lower than 5, or an occurrence of A followed by a B occurrence with
the same value. Value dependent constructs include filtering an event
stream with respect to a predicate over the values of instances, and the
possibility to assign values when instances are created.

This is not yet supported by the algebra in this thesis. Of course,
filters can be applied outside the algebra, either to the primitive event
streams or to the result of the algebra before it is handed over to the
reactive part of the system. From the point of view of the algebra, each
filtered primitive is simply regarded as a separate primitive and thus
does not affect the algebra much. If filters are applied to the result,
however, the restriction policy might result in unexpected results. For
example, imagine detecting the expression A; A and then applying a filter
specifying that the two A instances must have the same value. Then,
three consecutive occurrences of A with values 1, 2 and 1, do not result
in a detection since the restriction policy only considers two of the three
A; A instances to be valid.

As future work, we consider investigating how filters can be used
within expressions, and to define filters with proper algebraic proper-
ties. Also, it might be useful to provide means to specify how instances
of composite events are created. Keeping only some values from the sim-
pler instances, or computing a new value from them, does not change
the properties of the algebra as long as the start and end times are con-
sistent with the current semantics, but might increase the efficiency of
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an implementation.

8.1.4 Implementing the Algebra

The event algebra proposed in this thesis forms the core of an event
detection mechanism, but additional work is required to turn it into a
sharp implementation. A general event detection mechanism should pro-
vide an interface for defining the primitive events of the system, possibly
including information about minimum separation and type definitions
for values. The interface should also allow new composite events to be
registered for detection, and removal of existing events.

Handling events with common subexpressions is facilitated if the
transformation algorithm can create duplicates of common subexpres-
sions when this allows a more efficient detection. For some applications
it might be useful to allow existing expressions to be dynamically mod-
ified without resetting the stored information. For example, a mode
change in the system might affect the time value of a temporal restric-
tion, but events that span the mode change must still be detected. This
also requires extensions to the transformation algorithm.

We intend to investigate how the event algebra can be combined
with existing languages that specifically target reactive and real-time
systems. The prototype implementation of the algebra is based on the
J2ME Personal Profile, a subset of Java suitable for resource-constrained
devices. The Real-Time Specification for Java [7] describes additions to
the Java platform that allow Java programs to be used for real-time
applications. We would like to examine how the event algebra can be
used together with this extended Java platform.

The functional reactive language suite AFRP [38, 34], including the
robot programming language FROB [36], is based on time varying be-
haviours and discrete events. We belive that an efficient implementation
of the event algebra in AFRP would facilitate development as well as
formal reasoning about AFRP programs.

Timber [12] is an object-oriented reactive language with a purely
functional core, designed to target embedded systems in particular. It
should be reasonably straightforward to develop a Timber implementa-
tion of the algebra from the current, object-oriented, Java implementa-
tion.

Another possible direction is to combine the algebra with the syn-
chronous language Esterel [5, 6]. Esterel is built around a notion of
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discrete time intervals during which a number of events can occur that
should be reacted to. Incorporating the event algebra so that the Esterel
program reacts to occurrences of composite events rather than primitive
would separate pure event detection from the rest of the application logic,
which would hopefully increase readability and provability of programs.
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Appendix A

Experimental Results

Here, we present more detailed results for the two experiments described
in Section 5.2. Expressions containing N operators were created ran-
domly, with equal probability for the five operators to occur. For tem-
poral restrictions, random time values were generated uniformly between
0 and a given limit T .

First, we assume that no information about minimum occurrence
separation is available for the primitive events. Then, the experiment is
repeated with half of the primitive events having minsep values uniformly
generated between 2 and 50.

Each configuration is represented by 10,000 expressions. The results
are presented in diagrams where storage size, measured in number of
instances, is represented on the x-axis, and the y-axis indicates how
many of the 10.000 expressions that require a particular storage size.
For some configurations, especially when transformation is not applied,
the required storage size exceeds 2,000 instances for a few expressions.
To make the significant parts more readable, only storage sizes up to 250
are included in the diagrams.

A.1 Experiment 1

For each expression the transformation algorithm is applied and the
resulting expression is analysed with respect to the maximum number
of instances that must be stored by the detection algorithms in order to
detect the expression correctly. The diagrams in Figures A.1 and A.2
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present the results.

A.2 Experiment 2

The second experiment is restricted to expressions where all sequences
are on the form (A;B)τ , which ensures that the detection can be per-
formed with limited resources. Results are presented in Figures A.3
to A.6. Each figure contains two diagrams, with the storage size before
and after the transformation algorithm is applied, respectively.

When transformation is applied, the number of expressions with low
storage size requirements increases dramatically. The total number of
expressions is the same in all diagrams, but the corresponding decrease
of large storage sizes is scattered over a large part of the x-axis, and thus
it is less noticeable in the diagrams. The main cause of this storage size
decrease is that the temporal restriction of many sequence operators can
be decreased when the transformation algorithm is applied.

The sawtooth effect in the diagrams for expressions after transforma-
tion indicates that odd storage sizes are more common than even sizes,
especially for small expressions. The same effect is visible also in the first
experiment, but it is much more prominent for the class of expressions
used in this experiment.

For a brief explanation to this, we note first that a primitive event
requires an odd number of instances (one) to be stored. If we consider
the ways in which expressions of odd storage size can be combined into
a composite expression, we notice that the storage size of the resulting
expression is more often odd than even. One contributing factor is that
most temporal restrictions are removed by the transformation algorithm.
The imbalance is even larger for the class of expressions used in this
experiment. For general expressions, sequences often result in an even
storage size when the subexpressions have odd storage sizes, but here
they always occur in a temporal restriction that makes the storage size
odd again.
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Figure A.1: Experiment 1a: Storage requirement when and all primitive
events have a minsep value of 1, for T = 100 (top) and T = 300 (bottom).
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Figure A.2: Experiment 1b: Storage requirement when half of the prim-
itive events have random minsep values between 2 and 50, for T = 100
(top) and T = 300 (bottom).
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Figure A.3: Experiment 2a: Storage requirement before (top) and after
(bottom) transformation, when T =100 and all primitive events have a
minsep value of 1.
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Figure A.4: Experiment 2a: Storage requirement before (top) and after
(bottom) transformation, when T =300 and all primitive events have a
minsep value of 1.
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Figure A.5: Experiment 2b: Storage requirement before (top) and after
(bottom) transformation, when T =100 and half of the primitive events
have random minsep values between 2 and 50.
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Figure A.6: Storage requirement before (top) and after (bottom) trans-
formation, when T = 300 and half of the primitive events have random
minsep values between 2 and 50.










