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Abstract. In industrial manufacturing rigorous testing is used to ensure that the 
delivered products meet their specifications. Mechanical maladjustment or 
faults often show their presence through abnormal acoustic signals. This is the 
same case in robot assembly - the application domain addressed in this paper. 
Manual diagnosis based on sound requires extensive experience, and usually 
such experience is acquired at the cost of reduced production efficiency or de-
graded product quality due to mistakes in judgments. The acquired experience 
is also difficult to preserve and transfer and it often gets lost if the correspond-
ing personnel leave the task of testing. We propose herein a Case-Based Rea-
soning approach to collect, preserve and reuse the available experience for ro-
bot diagnosis. This solution enables fast experience transfer and more reliable 
and informed testing. Sounds from normal and faulty robots are recorded and 
stored in a case library together with their diagnosis results. Given an unclassi-
fied sound signal, the relevant cases are retrieved from the case library as refer-
ence for deciding the fault class of the new case. Adding new classified sound 
profiles to the case library improves the system’s performance. So far the de-
veloped system has been applied to the testing environment for industrial ro-
bots. The preliminary results demonstrate that our system is valuable in this ap-
plication scenario in that it can preserve and transfer the related experience 
among technicians and shortens the overall testing time. 

1 Introduction 

Mechanical faults in industrial robots often show their presence through abnormal 
acoustic signals compared with the normal ones. Correct classification of the robot 
sound may be a very critical part of the end-test. An incorrect classification of the 
sound can result in the delivery of a faulty robot to the customer. A technician needs 
rich experience to make a reliable diagnosis of robots. The importance of fault detec-
tion based on sound is confirmed by a current activity of Volkswagen which sells CDs 
containing recordings of different faults in equipments to aid technicians in classifying 
audible faults. The use of sound and vibration measurements for the purpose of fault 
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detection in end-testing of industrial equipments is today most commonly practiced by 
gearbox manufacturers. The measurements are shown graphically and analysed manu-
ally by a technician via careful observations of the measurements (normal/high ampli-
tude level, frequency distribution etc.). Some toolbox systems exist (e.g. Math Lab or 
more sound and vibration profiled tools such as the Plato toolbox [6]) that offer a 
variety of aids enabling experts to analyse and visualise data in different ways. Some 
additional modules are offered able to classify a measurement as pass/failure or com-
pare it with a library of faults. These systems are semiautomatic, large and run on PC 
computers. Some diagnostic systems use neural nets, such as Dexter [7] employing 
probabilistic neural net for classification. 

We propose the use of a Case-Based Reasoning (CBR) system resorting to a near-
est neighbour approach for a lightweight solution of recognising and diagnosing audi-
ble faults in industrial robots. Sound is recorded with a microphone and compared 
with previous recordings; similar cases are retrieved and shown to the user with corre-
spondence to relevant diagnosis results in history. A prototype system for this purpose 
has been developed. 

AI techniques such as Case-Based Reasoning (CBR) have some advantages in this 
category of applications. The fundamental idea of CBR – applying old knowledge of 
problem solving to solve new problems is very feasible for industrial applications. 
Implementing this technique in industrial applications preserves experience that would 
be often lost if skilled personnel leave their employments. The system aids technicians 
in making a correct diagnosis of industrial robots based on earlier classifications of 
similar sounds. It also eases the knowledge acquisition bottleneck [1]. 

This paper gives an overview of the CBR system for robotic fault classification 
and describes the implemented prototype system as well as some initial evaluation 
results. The system is able to successfully diagnose faults in an industrial robot based 
on sound recordings (4 recordings from faulty robots and 20 recordings from normal 
robots are used in the evaluation). The system elicits classifiable features from the 
sound recordings and makes a diagnosis according to prior knowledge. 

The paper is organized as follows. Section 2 gives a brief overview of the sound 
classification technique. Section 3 describes the model used in this paper to classify 
sound recordings. Sections 4, 5 and 6 describe the implementation of the prototype 
classification system based on the model. Section 7 discusses system evaluation with a 
case study. Section 8 gives an experimental comparison of FFT and wavelet analysis 
and finally section 9 concludes this paper with summary and conclusions. 

2 Classifying Sound Recordings 

This section gives short background knowledge for sound classification and outlines 
some of the methods and techniques used to filter, analyse and classify sound re-
cordings. 



 

2.1 Filtering and pre-processing 

Filtering is used to eliminate unwanted components in the signal by removing noise 
and distortions. A number of different techniques, such as adaptive filters, wavelet 
analysis and time domain averaging have been developed for signal filtering and noise 
reduction (see [2, 3]). The filtering process may be complicated in some scenarios 
because of heavy background noise. After a successful pre-processing the signal will 
have an increased Signal to Noise Ratio (SNR), which makes it more amenable for 
further processing such as feature extraction. 

2.2 Features and Feature Vector  

When experienced technicians are classifying robot sound they listen for abnormali-
ties in the sound. An indication of an abnormal sound can be the presence or absence 
of certain acoustic features. Using feature vector as the signature for sound is a well-
adopted method to detect and identify faults in machinery. It is also commonly used in 
CBR systems. A simplified example for feature vector from a sound profile is shown 
below where the elements above the sign ““ are signal amplitude values and those 
under “” denote the corresponding frequencies.  
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   The adoption of frequency-based features in this context is motivated by the aware-
ness of resonant frequency of each mechanical part that depends on its mass and rigid-
ity. Hence the faults occurring in different parts will result in different frequency spec-
tra. Experienced technicians often listen for such features on an intuitive basis in order 
to propose a diagnosis in terms of his/her experience. However technicians may not 
always be able to point out these features that he/she uses to classify sounds.  

Wavelet analysis [4] is a powerful technique for filtering out noises and transform-
ing analogue signals to frequency diagrams. It is hence adopted in our research to 
establish frequency-dependent features from polluted acoustic signals collected from 
environments with strong background noise. Extraction of sound features based on 
wavelet will be detailed in section 4.2.  

2.3 Classification Process 

A number of different methods are available for the classification of machine sound. 
The selection of classification method is based on the nature of the task. A simple 
classification may only require a single test with a threshold (e.g. amplitude above or 
below 10) for a complete classification.  

A different approach to the classification of feature vectors is to use Artificial Neu-
ral Nets (ANN). Reliable classification using the ANN approach requires prior train-
ing of the network with a sufficient number of classified examples. Moreover, once a 



 

new important case is recognized, the old network has to be retrained in order to as-
similate this new acquired experience. However, in our task of robot fault diagnosis, 
sufficient samples of classified sound recordings required for training are frequently 
not available. 

3 Case-Based Categorization of Machine Sound 

This section gives an overview and introduction to the case-based classification of 
machine sound. The different steps, pre-processing, feature identification and classifi-
cation are described in sections 4, 5 and 6, respectively. Sound is obtained from the 
robot to be diagnosed via a microphone as shown at the top left in Fig. 1. The sound is 
recorded to a computer and the recording is taken as input to the pre-processing step. 
The pre-processing component in Fig. 1 is responsible for filtering and removal of 
unwanted noise. It also extracts period information from the sound.  
 

 

Fig. 1. Schematic picture of the system 

In the feature identification process, the system uses a two-pass model, first identi-
fying features and then creating a vector with the extracted features. Once the features 
are identified, the system classifies the feature vector. The classification is based on 
previously classified measurements (case library) in Fig. 1. After a new sound has 
been classified it is added to the case library. The classification process will be de-
scribed in section 6. A diagnosis based on the result of the classification is shown to 
the technician. In the research prototype a ranked list of the most similar cases based 
on a nearest neighbour function is presented as decision support to the technician. 

3.1 Comparison to the OSA-CBM Architecture 

The design of the system described in this paper has some similarities with the Open 
System Architecture for Condition Based Maintenance (OSA-CBM) [9]. This archi-
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tecture is seen as a proposed standard for Condition Based Maintenance (CBM) sys-
tem which is recommended to consist of seven modules [10], including sensors, signal 
processing, condition monitoring, diagnosis, prognosis, decision support, and presen-
tation (see Fig. 2). In the system presented in this paper the microphone can be re-
garded as a sensor module. The pre-processing and feature extraction components 
play the role of signal processing. The classification (with the case-library) component 
performs both condition monitoring and diagnosis as it can both detect deviations in 
the sound profiles and classify different sound profiles into different fault modes.  
 

 
 

Fig. 2. The standard OSA-CBM architecture proposed in [9] 

4 Pre-processing 

Robot sound typically contains unwanted noise. The presence of a fault is often indi-
cated by the presence, or increase in impulsive elements in the sound. The detection of 
these impulsive sound elements can be hard. This is owing to the mixture of signals 
from normal running of the robot and from various sporadic background noises nor-
mally existing within an industrial environment. Before a classification attempt is 
made, the machine sound is pre-processed in order to remove as much unwanted noise 
as possible. In this system wavelets are used to purify the raw signal and transform the 
incoming sound into a series of wavelet coefficients. Selected wavelet values are then 
used as features. 
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Fig. 3. Pre-processing of the signal in the system 

Fig. 3 shows the pre-processing process. It contains two steps; splitting and wavelet 
analysis. In the first step the signal is split to windows of discrete time steps. The 
length of each window can be arbitrary. Each window is then sent to the wavelet 
analysis algorithm (step #2). The output from the wavelet analysis and from the pre-
processing step is a series of wavelet values. Below, the function of each step is fur-
ther explained. 

4.1 Time splitting 

Only a part of the input signal can be analysed each time conducting the wavelet algo-
rithm. Due to this fact the signal is divided into windows of discrete time steps. The 
length of each window can be arbitrary but its data size must be 2n where n>=2. This is 
due to the way the wavelet packet algorithm is implemented. 

4.2 The Discrete Wavelet Transform 

Wavelet transforms are popular in many engineering and computing fields for solving 
real-life application problems. Wavelets can model irregular data patterns, such as 
impulse sound elements better than the Fourier transform (see chapter 8). The signal 
ƒ(t) will be represented as a weighted sum of the wavelets )(tψ and the scaling func-

tion )(tϕ  by  
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where )(tψ is the mother wavelet and )(tϕ is the scaling function. 

In principle a wavelet function can be any function witch positive and negative ar-
eas canceling out. That means a wavelet function has to meet the following condition:  
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Dilations and translations of the mother wavelet function define an orthogonal basis 

of the wavelets as expressed by 
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where variables s and l are integers that scale and dilate the mother function )(tψ to 
generate other wavelets belonging to the Daubechies wavelet family. The scale index s 
indicates the wavelet's width, and the location index l gives its position. The mother 
function is rescaled, or "dilated" by powers of two and translated by integers. To span 
the data domain at different resolutions, the analyzing wavelet is used in a scaling 
equation as following 
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where )(tϕ is the scaling function for the mother function )(tψ , and kc are the 

wavelet data values. 
The coefficients {c0,…,cn} can be seen as a filter. The filter or coefficients are 

placed in a transformation matrix, which is applied to a raw data vector (see Fig.4). 
The coefficients are ordered using two dominant patterns, one works as a smoothing 
filter (like a moving average), and the other works to bring out the "detail" informa-
tion from the data. 

The wavelet coefficient matrix is applied to the input data vector. The matrix is ap-
plied in a hierarchical algorithm, sometimes called a pyramidal algorithm. The wave-
let data values are arranged so that odd rows contain an ordering of wavelet data val-
ues that act as the smoothing filter, and the even rows contain an ordering of wavelet 
coefficients with different signs that act to bring out the data's detail. The matrix is 
first applied to the original, full-length vector. Fig. 4 shows an example of a data vec-
tor consisting of 8 samples. The samples can be any type of data; sensor signals from 
various process applications, stock market curves etc. In this paper the samples are 
acoustic signals from a gearbox of an industrial robot. 

 

Fig. 4. Original signal consisting of 8 samples 

The data vector is smoothed and decimated by half and the matrix is applied again 
(see Fig. 5).  

3 8 3 4 1 3 1 2 



 

 

 

Fig. 5. Smoothed data vectors 

 
Then the smoothed, halved vector is smoothed, and halved again, and the matrix 

applied once more. This process continues until a trivial number of "smooth-smooth-
smooth..." data remain (see Fig 6). 

 

Fig. 6. The result of the pyramidal algorithm 

This system uses the wavelet packet transform algorithm. It is a computer imple-
mentation of the Discrete Wavelet Transform (DWT). It uses the Daubecies mother 
wavelet, scaling function and wavelet coefficients [11]. 

The result of the pyramidal algorithm is a tree of smoothed data values (see Fig. 
6). Each collection of smoothed data values (node in the tree) can be seen as a “time-
frequency-packet”. Each “time-frequency-packet” can be seen as a filtered version of 
the original data samples. As an example, the left “packet” in Fig. 5 can be seen as a 
low pass filtered version of the original data and the right “packet” in Fig. 5 can be 
seen as a high pass filtered version of the original data. The leaves of the tree can be 
seen as high and low pass units of length 20.  

The depth of the tree is determined from the length of the input data. If the input 
data are of length 2n the depth of the tree will be n. A suitable collection of “time- 
frequency-packets” can be selected by taking a cross section of the tree at an arbitrary 
depth. Each sibling in the cross section of the tree is spanning the entire time of the 
original data set. This means that going deeper in the tree produces at better resolution 
in frequency but a poorer resolution in time. The best compromise between time and 
frequency resolution is to take a cross section in the tree were the length of each sib-
ling is the same as the number of siblings in the cross section. At a given depth n and 
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with original data size S, the length of a sibling (or leaf) is S/2n and the number of 
siblings is 2n. 

The wavelet packet algorithm offers the basis for the Pre-processing process. The 
input signal is first divided into windows of discrete time steps. Each window is then 
passed to the wavelet packet algorithm resulting in a wavelet “packet tree” as pictured 
in Fig 6. The wavelet data values from a cross section of the wavelet packet tree are 
then passed to the Feature Extraction process. 

5 Feature Extraction Process 

It is necessary to find a suitable form in which to represent and compress the sound 
data while storing enough information to be able to classify the sound correctly. The 
feature extraction component uses a two-pass model to achieve this. First, wavelet 
data values obtained from pre-processing are fed as inputs to the feature extraction 
component which extracts features from these coefficients (left box in Fig. 7). The 
extracted features are then stored in a feature vector (right box in Fig. 7).  

 

 

Fig. 7. Feature identification in the system 

5.1 Feature Identification 

Our system uses normalized wavelet data values as features. The values are selected 
from a cross-section of the wavelet packet tree. Gear defects often show their presence 
as sharp peaks or dips in the sound. Such peaks or dips can be spotted in some domi-
nant wavelet data values in certain packets in the cross section of the wavelet packet 
tree. The feature extraction component examines the wavelet data values and extracts 
one dominant value from each packet in a cross section at an arbitrary depth. In Fig. 8 
the grey area shows a cross section at level 2 in the tree. The chosen coefficients are 
those that are marked as bold. They are chosen because they are the dominant values 
in each packet in that cross section. 
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Fig. 8. Feature identification from wavelet data values 

5.2 Assembly of a Feature Vector 

A feature vector is assembled from these dominant wavelet values. A feature vector 
forms a cross section of wavelet data values at level n in the wavelet packet tree con-
taining 2n features. This system is dynamic and can assemble vectors from all depths 
of the tree. The feature vector assembled from Fig. 8 is [6, 2, 1, 4]. 

In order to purify sounds from various sporadic background noises normally exist-
ing within an industrial environment - several cross sections of the wavelet packet tree 
from a series of windows are passed from the Pre-processing component to the feature 
extraction component. The amount of cross sections passed to feature extraction is 
dependent on the length of the recorded sound and the size of the window. We denote 
the vector produced from window i by Xi. Then a mean vector x  is calculated by  
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Here w is the number of windows and x  is the final feature vector that will used as 
condition description of a case.  

Apart from the final feature vector, a case contains information about the robot be-
ing diagnosed. Typical information contained in a case is the serial number, model 
number of the robot and a field that can be manually filled with expert’s classification. 
Each case also contains a weight vector of the same dimension as the feature vector. 
The weight vector is used to adjust and suppress unwanted features in the feature 
vector in the matching process (explained in the next section). A typical case data 
structure is displayed in Fig 9. The data structure can be extended to contain more 
information if wanted. Other useful information could be graphs of the sound, the 
sound itself etc. 
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Fig. 9. Data structure for stored cases in the case library 

6 Fault Classification 

When a feature vector for a new case is assembled from the robot sound, it is com-
pared with known cases that were previously stored in the case library. The compari-
son is called matching and is based on a nearest neighbour algorithm.  

 

 

Fig. 10. Case-based classification as decision support 

The matching algorithm calculates the Euclidian distance between the case that is 
to be classified and those cases previously stored in the case library. The distance 
function uses the feature vectors along with a set of weights defined on the features. 
Such weights cj are incorporated into the distance calculation, as indicated in (7), to 
reflect different importance of different features.  
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The classification of robot sound is based on the above matching function. The re-

sult of matching yields a scored list of the most similar cases. This list can be pre-
sented to responsible technicians as decision support for their further evaluation. An 
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alternative is to derive a voting score for every class involved in the retrieved list of 
similar cases and then the final decision is settled upon the class exhibiting the highest 
voting score [13].  

It is worthwhile to mention that the performance of our CBR system is improved 
each time when a new classified case is injected into the case library. The system can 
thereafter be tested with sounds from other robots previously classified by experts so 
as to estimate its accuracy. If the accuracy is estimated to be adequate, this CBR sys-
tem can then be applied to diagnosing robot faults for practical usage. 

7 Evaluation 

Sounds from 20 robots have been recorded. All recordings were obtained during the 
end-test of the robots. The end-test involves a separate axis test. In the separate axis 
test, all axes on the robot were individually tested. Each individual axis was tested 
twice – with and without a payload attached to it. A microphone was mounted close to 
the axis of the industrial robot that was going to be measured. The robot was set to 
separate axis tests and the signals from axis 4 has been chosen for analysis 

Ten recordings were performed on robots not equipped with payloads and 10 re-
cordings were performed on robots equipped with payloads. The sound from a robot 
equipped with a payload differs a bit from that without a payload. 

Two types of faults have been recorded, hereafter called Fault #1 and Fault #2. 
Fault #1 is caused by a notch on the big gear wheel in the gearbox of axis 4. It is char-
acterized by a low frequency impulse sound in the middle of the rotation of the axis. 
Fault #2 is due to a slack between the gear wheels in the gearbox. This fault can be 
heard as a few low frequency bumps at the end of each rotation of the robot arm. Two 
robots with Fault #1 (hereafter called Fault #1a and Fault #1b) and two robots with 
Fault #2 (hereafter called Fault #2a and Fault #2b) were recorded. 

Below, Figs. 11, 12, 13 and 14 display the sound signals gathered from robots 
Fault #1a, #1b, #2a, and #2b respectively. The black plots show s the unfiltered origi-
nal sound profiles and the wavelet filtered sounds are represented by grey plots. The 
span of the frequency of the filtered sounds is from 384Hz to 512Hz. 

 



 

 
Fig. 11. Sound signals for robot Fault #1a 

 
Fig. 12. Sound signals for robot Fault #1b 

 
Fig. 13. Sound signals for robot Fault #2a 

 
Fig. 14. Sound signals for robot Fault #2b 



 

 

All recordings were analysed in the system and transformed to cases and inserted into 
the case library. Because of dramatic differences between sounds with and without 
payloads, recordings in both situations were collected and added to the case library. 
The number of features extracted equals 64.  

The cases were first manually analysed. The cases from normal robots were com-
pared to other cases from faulty recordings. The analysis betrays that feature 4 seems a 
strong attribute for distinguishing abnormality from normal ones. This is obvious to 
perceive by observing the following two figures. Fig. 15 shows the distribution of 
feature 4 extracted from the sound signals of the robots not equipped with payloads. 
Fig. 16 shows the distribution of feature 4 for the robots equipped with payloads. The 
feature in both figures is a normalised absolute value of the dominant wavelet coeffi-
cient at a frequency between 384Hz and 512Hz. Likewise we can use the same 
method to assess the discriminating capabilities of other features. 
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Fig. 15. Distribution of feature 4 for robots not equipped with a payload 



 

Feature 4 taken from wavelet analysis.
Payload attached.

1

6

1

2

0

2

4

6

8

< 1 stdev +/- 1 stdev > 1 stdev

Standard deviation

N
u

m
b

er
 o

f 
m

ea
su

re
m

en
ts

Faulty recordings

Normal recordings

 
Fig. 16. Distribution of feature 4 for robots equipped with a payload 

Example of Case Retrieval  

In Fig. 11 the sound of the notch can be seen as two repeated prominent peaks in the 
filtered sound in the middle of the figure. The frequency of the filtered sound spans 
from 384 HZ to 512 Hz. This figure also indicates three successive rotations of the 
robot arm. A feature vector with 64 features is assembled from the sound and matched 
with the previously inserted cases in the case library. Table 1 illustrates a ranked list 
of the most similar cases retrieved. As can be seen form table 1, a previously diag-
nosed notch fault is regarded to be the closest  

 
Case name Similarity degree  Case ranking 

Fault #1a 99.1% 1. 

Normal case #3 84.1% 2. 

Normal case #10 83.2% 3. 
 

Table 1. The three most similar cases in the case library 

to the current recording, thus making the strongest recommendation for diagnosis as 
Fault #1a. The cases ranked as the second candidate (case #3) and the third candidate 
(case #10) comes from normal recordings in the case library. 

The above matching and classification process involves prior specification of the 
weights for individual features by means of available background knowledge and/or 
preliminary analysis of extracted features from pre-diagnosed sound recordings (as 
what is done in Figs. 15 and 16). One other method for weighting is to automate the 



 

process using machine learning technique [12]. The matching process can also be 
extended with a neural net classifier.  

8 How about FFT in This Context  

FFT analysis is another common method for feature extraction from signals and it has 
been shown to be useful in some classification tasks. In this section the performance 
of FFT is highlighted to explain why it is not employed in our context. An FFT analy-
sis with a Hanning window of length 512 was conducted on the recordings. The FFT–
spectrum was broken down into 64 features and a feature vector was assembled from 
the features as described in section 5. A manual analysis of the FFT-spectrum and of 
the feature vectors was made in order to find out if any difference between faulty and 
normal recordings in the frequency spectrum could be spotted. Figs. 17 and 18 show 
the results of a standard deviation calculation for feature 4 in the feature vectors. 
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Fig. 17. Distribution of feature 4 for robots not equipped with a payload 



 

Feature 4 taken from FFT analysis.
Payload attached.
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Fig. 18. Distribution of feature 4 for robots equipped with a payload 

As can be seen in the distributions in Figs. 17 and 18, feature values from faulty re-
cordings end up amongst those from normal recordings, making it impossible to sepa-
rate features between faulty and normal signals. This is true when performing suchlike 
analysis on any other features. The connotation is that FFT does not offer well distin-
guishable features for case-based classification in our context. Unlike wavelet analy-
sis, FFT does not clean raw signals and thus is not able to discriminate different kinds 
of robot sounds that are overwhelmed by even stronger background noise.  

9 Conclusions 

Case-Based Reasoning is a feasible method to identify faults based on sound re-
cordings in robot fault diagnosis. Sound recordings were made under realistic indus-
trial conditions. The proposed CBR system has a number of benefits as an industrial 
diagnostic tool: 
• New cases are easy to be added to the library, one sound recording is sufficient. 
• The method is easily accepted by technicians and is seen as a tool enabling them to 

perform better. 
• It transfers experience; technicians are able to listen to different sounds and make 

manual comparisons.  
• The system does not need to be “complete” from the beginning. A list of similar 

sounds and their classifications can be shown to technicians as decision support.  
• System performance increases continuously. If a new “abnormal” sound is re-

corded but cannot be classified by the system, the technician contributes to the sys-
tem experience by classifying the sound after the fault has been identified and cor-
rected. 

 



 

In the validation we have shown that one recording is sufficient for identification of a 
similar sound in the case library. Also a straightforward feature vector extracted from 
the original sound recording is sufficient for good results in the matching based on 
nearest neighbour algorithm. The feature vector and matching process has good poten-
tial for improvement. The selected features in the tests are peak wavelet values. Poten-
tial users have been interviewed and their reaction to our research prototype tool is 
very positive and they all consider that it would improve their performance and pro-
ductivity. 
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