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Abstract—Fog computing allows to host industrial applications
in a cloud-like manner, while providing low latency and on-
demand resource availability. Robotics is one industrial domain
which stands to benefit from the advantages of fog computing.
However, the challenges in developing and implementing a fog-
based robotic system are manifold. To illustrate this, in this paper
we discuss a system involving robots and robot cells at a factory
level, and then highlight the software components necessary for
achieving the functionality provided by the robotic systems. Based
on this, we provide a simplified reference system architecture
and identify key requirements imposed by the architecture to
highlight the challenges in implementing such an architecture,
with emphasis on resource virtualization, memory interference
management, real-time communication, system scalability, de-
pendability and safety. Then, we discuss the challenges from a
system perspective where all these aspects are interrelated.

I. INTRODUCTION

Industrial robots are widely used in different automation
applications such as for painting and welding in automotive
facilities and for packaging in the food industry [1]. More
recently, the domain of robotics has evolved to support ware-
house automation with mobile robots and, at the same time,
emphasis on collaborative robots has also gained significant
attention [2]. Legacy software architectures supporting robotic
systems needs a significant increase in capabilities when it
comes to computational power and flexibility to successfully
manage the demands of new applications as well as the need
for better inter-operability between machines, and continuous
improvements in the performance of individual machines.
When evolving a fog computing system, there is also a need
to ensure dependability of the systems while at the same time
guaranteeing safety of human operators as well as that of the
equipment [3].

Fog computing brings benefits of cloud computing such
as computation on demand through hierarchical layers of
computing power between the edge devices and the cloud [4].
One such fog-based architecture for robotic systems was
proposed in [5]. Here, the software components of the robotic
system are distributed between the different layers of the
fog architecture depending on latency and/or other functional
requirements. For example, the low-level controller is usually
(physically) close to the robot, while offline motion planning

and predictive maintenance algorithms are run on the edge and
cloud layers, respectively. While conceptually promising, there
are several challenges that should be addressed before such
an architecture can be implemented in practice. For example,
ensuring non interference between independent applications on
shared multi-processor hardware is non-trivial [6]. Resource
management activities such as assigning tasks to different
processors may not be straightforward due to highly variable
execution times of motion planning [7].

To facilitate further discussions on fog-based software ar-
chitectures for industrial robotics, in this paper, we provide
a holistic overview of different technical aspects that are
necessary for a practical fog-based robotic system in Section II
and discuss their relevance with respect to a robotic cell
based factory automation environment and its requirements,
as described in Section III and Section IV. Here, we focus
primarily on virtualization, resource orchestration, multi-core
memory management and real-time communication along with
a discussion on dependability, safety and scalability challenges
concerning fog-based robotic systems. Finally, Section V
concludes the paper.

II. SYSTEM ARCHITECTURE

We consider a three layered fog computing architecture
(see Fig. 1) consisting of (i) cloud layer, (ii) fog layer, and
(iii) device layer. The cloud layer provides a high computing
capacity, but offers limited time predictability due to varying
data transmission latencies. The fog layer provides an elastic
environment in the vicinity of the origin of the data. It consists
of a number of interconnected physical hardware devices (fog
nodes) that are capable of hosting software applications on
shared node resources. The processing power of the fog layer
is less than that of the cloud layer, however, the level of time
predictability is improved as the infrastructure (i.e., real-time
capable fog nodes, real-time networking protocols) is designed
with the prior knowledge of the performance requirements.
The device layer consists of resource limited devices such
as sensor and actuator devices that typically pre-process data
from sensors and transmit it to the fog nodes, but also smart
sensors and actuators, that are capable of communicating
directly with the fog nodes.
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Fig. 1. Overview of a fog-based architecture.

As a fog-based industrial robotic system we denote a fog
computing system enhanced with real-time capabilities, i.e.,
capabilities to guarantee that a computational task is finished
and its result are transmitted within a predefined amount of
time. Such a system should have the following properties:
timeliness (the results of the computation must be finished
and transmitted within a predefined time), predictability (the
system must be analysable to guarantee performance of the
applications), efficiency (the system should efficiently utilize
available resources), scalability (the system should be able
to grow in size dynamically when new cloud/fog nodes are
discovered) and fault tolerance (the system should provide
mechanisms to deal with unpredictable failures).

Fog Software Components and Services:

We assume a fog computing architecture to be composed
of a network of fog nodes, which can be viewed as a single
logical entity [8]. The network is assumed to be hybrid
of wired and wireless networks to exploit the benefits of
both advanced wired and wireless technologies under the
practical constraints of reliability, timeliness, and security for
industrial environments. We briefly discuss some of software
components and services necessary for such a fog architecture
below:

• System Orchestration: The system level orchestrator is
responsible for ensuring that application requirements
such as latency and memory are met by assignment
of the applications to fog nodes. It takes into account
the hardware capabilities, already running applications,
task schedulability and application latency requirements.
Additionally, it provides interfaces that enable seamless
connection and disconnection of devices (e.g., additional
fog nodes, robots, sensors and actuators) as well as inter-
faces for application providers for deploying applications
in the fog system. Moreover, it continuously monitors
the status of fog nodes in terms of availability, resource
usage, and communication status and assesses the quality
of service provided to the applications.

• Application Virtualization: The application virtualization
component provides necessary functionality that allows
to co-locate multiple independent applications on a single
physical device in such a way that interference between
the applications is minimized. It ensures proper allocation
of resources and isolation between applications on the
shared hardware building virtualized environments.

• Memory Management: Memory management component
is responsible for ensuring spatial isolation among the
tasks running on the same hardware. Applications have
bounded memory space and cannot outbound its limits.
Shared memory is allowed as long as it is explicitly
declared by the applications and allowed by the operating
system.

• Real-time Communication: The communication compo-
nent is responsible for ensuring connectivity between the
nodes and the sensor and actuator interfaces to ensure
real-time data freshness, correlation and separation con-
straints of the applications [9]. It is also responsible for
non-real-time communication and supports both wired
and wireless communication.

• Scalability: Services related to scalability are responsible
for adding new physical and virtual compute nodes (as
well as sensing and actuating devices) to the system in
a dynamic manner. Due to such scalability services, the
system level orchestrator is agnostic of discovery and
integration mechanisms, but is able to consider all the
available computational resources for the execution of the
applications.

• Dependability and Safety: The dependability services
provide a set of functionality for ensuring system depend-
ability including the safety aspects by providing means
for fault prevention, fault tolerance, fault removal and
fault forecasting [10]

III. FACTORY AUTOMATION ENVIRONMENT

A common factory automation setup is composed of a set
of robotic cells [11]. A robotic cell consists of either a single
robot or a set of robots grouped together with additional non-
robotic machines to accomplish a task such as painting and
welding. We categorize multi-robot cells as (i) coordinated
cell, (ii) uncoordinated cell and (iii) mixed cell. In a coordi-
nated cell, all the robots work in a synchronized manner on a
single object. Here, the software components such as motion
planners can be shared by all the robots. In an uncoordinated
cell, the robot may work on different objects and need not
be synchronized. For example, a pick and place cell with two
robots operating on objects on two different conveyors need
not be in sync with the other. This implies that the robots
require independent software components. In a mixed cell,
the robots may be in sync as well as out of sync with each
other. In such a case, some of the software components are
independent such as the trajectory generation component while
others such as the communication component are shared. In
all the cases, a supervisory controller such as a programmable



logic controller may control the workflow between the robots
and other machines within the cell.

Each robot within a cell may be fitted with additional
sensors and actuators. Examples of sensors are seam tracking
lasers, force sensors, or vision systems, while actuators are
typically end-effector tools, such as an arc torch. The sensors
and actuators are physically connected to an interface device,
which processes the sensor data for transmission over a real-
time network. The interface device is responsible also for
the processing of information from the robot controller to
the actuator. It is possible that some of the sensors and
actuators can be wirelessly connected to the robot controller
via a wireless real-time network. In some cases, sensors and
actuators are still physically attached to the interface device
but the interface device itself can communicate wirelessly.

At the robot level, the runtime robot behaviour is directed
through a task specification interface, where a user typically
specifies the way-points that the robot should pass through,
the maximum speed the robot is allowed to take, along with
other attributes such as, if the robot should pass through the
way-points or just within a range of the way-points. The user
is also able to define logical behaviour such as to wait until a
specific signal is set or a timer has expired before moving to
the next way point. Finally, depending on the configuration and
the user task specification, the robot software determines the
trajectory of the robot using motion planning and trajectory
generation algorithms [12], [13]. The information from the
trajectory generation is fed to a low-level controller that runs
periodically, usually, with a fixed cycle time having a typical
value of 1 millisecond to control the joints of the robots [13].

To achieve this, a robot controller software, composed of
diverse components, is systematically put together to provide
a coherent mechanism for manipulator control supported by a
real-time operating system. The main components of a typical
robot controller software are motion planning and control.
These are augmented by additional components for real-time
and non-real-time communication. Unlike in regular real-time
systems, where the execution behaviour can be modelled via
different task models based on worst case execution times,
modelling the execution time of motion planning tasks is
complicated. The reason for this variability is twofold. One,
the user of the robotic system is free to program the robot
motion as desired. Two, the non-deterministic nature of the
motion planning and trajectory generation algorithms. Some
commonly used planning algorithms such as the Probabilistic
Road Map (PRM) sample the joint space to find a collision
free path [12]. In the best case, if a connection between initial
point and the target point is established without collisions in
the first iteration, no further computation is required. The
execution time in this case can be minimal. While in the
worst case, possibly in the presence of multiple obstacles, the
number of samples that need to be checked for connectivity
and collision can be huge, requiring larger computational time.
This makes the motion and trajectory planning algorithms
non-deterministic [7]. Given such a scenario, using traditional
worst-case execution time (WCET) based analysis and design

can result in significant wastage of resources. Additionally, if
multiple robots are to be controlled using shared resources,
it is difficult to guarantee that each planner will get sufficient
CPU time for finding a feasible path in time (when such a path
exists). The variable execution and arrival behavior limits the
ability to provide response time guarantees to other real-time
tasks that may be co-executing on the same hardware.

IV. USE-CASE ASPECTS

Following Section II, we further elaborate in detail on the
elementary set of aspects of fog computing in the context of
factory automation environments.

A. Virtualization and Real-time Aware Orchestration

1) Virtualization: The industrial use-case demands co-
locating applications such as trajectory generators and com-
munication components in a shared fog computing architecture
consisting of a number of heterogeneous devices. To host such
applications, the fog nodes must provide virtual environments
that ensure a proper resource allocation and the fulfilment
of the demands of the applications. Virtualization abstracts
physical hardware from the applications running on that hard-
ware, and thus, emulates computing environments in such a
way that it appears for the applications that they are executed
exclusively on a dedicated hardware. It allows to host multiple
isolated applications and their software dependencies on a
single physical device, and thus, reducing resource wastage.
However, sharing resources may lead to (time) unpredictabil-
ity, and consequently, the timing constraints may be violated.

There are two main classes of virtualization technologies:
Hypervisor-based virtualization and container-based virtual-
ization [14]. Hypervisor-based virtualization utilizes a hyper-
visor that distributes resources among virtual machines. This
solution introduces non-negligible overheads and performance
degradation mainly due to the need of full operating systems
in each of the virtual machine. Thus, the amount of virtual
machines on a single physical device is limited. Hypervisor-
based virtualization provides stronger resource isolation [15]
and minimization of interference between virtual machines. In
contrast, the container-based virtualization relies on function-
alities provided by the host operating system. It offers near
native performance, rapid startup times and low overhead.
These benefits are useful in fog computing systems as they
allow to deploy a higher amount of applications in fog nodes.
However, container-based virtualization provides a lower level
of resource isolation and therefore lower level of time pre-
dictability of the computation. Currently, the primary objective
of both the virtualization alternatives is to provide a defined
amount of resources to the virtualized applications without
emphasis on time-predictability.

There are few solutions addressing time predictability in
hypervisor-based virtualization, e.g., RT-Xen [16] or PikeOS1.
However, time predictability in container-based virtualization
is a novel topic. As summarized in [17], real-time behavior

1https://www.sysgo.com/products/pikeos-hypervisor



of container-based virtualization must be supported by a
predictable host operating system and real-time scheduling
policies that are container-aware. The first is addressed by
the application of a real-time patch that makes the Kernel
fully preemptive [18] or by the use of a real-time co-kernel
that runs side-by-side with a standard Kernel. Real-time aware
scheduling policy for containers is addressed by utilization
of hierarchical scheduling that provides temporal isolation of
containers [19].

For a full adoption of real-time virtualization, we see the
following challenges: (i) We have to minimize the interfer-
ence between virtualized applications (e.g., co-located memory
or cache-intensive applications may experience performance
degradation of the physical fog nodes). (ii) There is a lack
of real-time communication mechanisms between virtualized
applications (that may be executed on different devices) and
enabling the communication in a time-predictable, secure, and
safe manner. (iii) The possibility of supporting a mixture of
both hypervisor-based virtualization (to satisfy hard real-time
requirements) and container-based virtualization (to satisfy
less stringent requirements) in a single fog computing system
should be explored. (iv) Deal with unpredictability of commu-
nication between virtualized applications in a fog computing
architecture due to network performance.

2) Real-Time Aware Orchestration: The role of the or-
chestrator in the fog-based industrial computing systems is
to maintain the deployment of virtualized applications (either
in containers or virtual machines) in the shared fog and
cloud computing environment in such a way that the resource
and timing requirements are fulfilled. The main phases that
an orchestrator should cover are: resource selection, service
deployment, service monitoring and resource control [20].
Although, there has been extensive research on orchestration,
taking into account various resources and optimization goals,
and there are several mature orchestrator systems available2,
none addresses real-time related requirements. Therefore, we
envision the following real-time enhancements of the orches-
trator that can serve in fog-based industrial computing systems.
It should enhance the orchestrators in: a) resource selection,
b) real-time deployment, c) real-time aware service monitoring
and d) real-time resource control.

a) Resource Selection: The orchestrator must be aware
of timing requirements of applications and real-time capabil-
ities provided by fog nodes. The orchestrator must perform
schedulability tests that ensure that the virtualized applications
will be granted enough CPU time for performing time-critical
actions. Additionally, the orchestrator should be aware of inter-
ference between virtualized applications and try to minimize
such impacts during the resource selection phase.

b) Real-time Deployment: The orchestrator should pro-
vide a bounded time for deployment of virtualized applica-
tions. It should take into account transmission times of the
applications from the repository to the fog node and the

2e.g., Kubernetes (https://kubernetes.io/), Docker Swarm (https://docs.
docker.com/engine/swarm/), or OpenStack(https://www.openstack.org/

startup time of the application. This enhancement is important
for safety and dependability aspects, e.g., during the re-
deployment of a failed application.

c) Real-time Aware Service Monitoring: Due to imper-
fections of underlying operating systems (e.g., Linux) that may
not provide accurate temporal isolation for virtualized envi-
ronments, the orchestrator must monitor the quality of service
delivered by the virtualized applications (e.g., deadline misses
or lateness3). The orchestrator should use this information
while resource selection phase.

d) Real-time Aware Resource Control: Based on real-
time related metrics obtained in the previous point, the orches-
trator should perform migration of virtualized applications in
order to improve their real-time behavior. This can be a case of
a memory or cache-intensive application that may experience
performance degradation when it is co-located with another
memory or cache-intensive application on a single node.

B. Multi-core Platforms and Memory Management

Computational power is one aspect that needs significant
improvements to support the demands of new robotic systems
applications. One way to increase the computational power
is to utilize multi-core platforms as fog nodes. However,
general Commercial Off-The-Shelf (COTS) Multi-Core Pro-
cessors (MCP) share hardware resources like cache and main
memory. Sharing such resources is one of the primary sources
of a task’s Worst Case Execution Time (WCET) unpredictabil-
ity [21]. In an MCP, the task execution time not only depends
on the task itself, but it is also significantly influenced by
applications running on the other cores. Nowotsch et al. [6]
showed that the latency of a single memory store request
can increase up to 25.82 times when the number of active
cores increases from 1 to 8. Since virtualization allows co-
execution of independent applications such as the control
tasks of different robots on the same hardware, bounding
the WCET is necessary for the use of schedulability analysis
and admission tests by the orchestrator. Such analysis allows
the orchestrator to optimally allocate the resources for the
applications.

Multiple solutions have been proposed to improve and also
to guarantee the tasks’ WCET on an MCP in the context
of real-time systems. Yun et al. [22] propose a memory
bandwidth management system called MemGuard. It is imple-
mented in the operating system layer and divides the available
memory bandwidth in two components, i.e., guaranteed and
best effort. In order to guarantee minimal memory bandwidth
to each core, and achieve performance isolation, the Mem-
Guard is based on the guaranteed component. The best effort
component takes the difference between the total available
memory bandwidth of the system and the bandwidth reserved
for the guaranteed part. The hardware platform provides a
Performance Monitor Counter (PMC) unit that allows counting
hardware-related events in the core. The PMC, in each core,
is programmed to account for the memory access usage, and

3The delay of a task completion with respect to its deadline.



raises an interruption when it reaches the limit keeping the
specified memory bandwidth. To improve memory bandwidth
utilization, the authors propose a reclaiming mechanism lever-
aging usage prediction on each core. Due to the reclaiming
algorithm being based on prediction, the proposed system is
intended to support mainly soft real-time applications.

Agrawal et al. [23] extend [22] and propose a dynamic
memory bandwidth isolation using a number of memory band-
width levels. The method is a runtime mechanism integrated
with a global scheduler that uses two servers running in each
core. One to regulate the execution time, and the other to
regulate the total number of memory accesses. An off-line
schedule table is computed to find the server budget for each
server on its respective core, and the global scheduler sets the
budget to the corresponding server.

The presented solutions based on time and memory band-
width management are well suited for time-triggered appli-
cations in a context where we know the number of active
cores at the same time, and the maximal contentions intro-
duced by these cores. It becomes unrealistic for a industrial
robotic system where the number of applications and their
requirements change dynamically and during runtime as, for
instance, regarding the nature of the robot motion planning and
trajectory generation algorithms cited in Section III. Therefore,
to achieve real-time guarantees in a system running on a
MCP, we have (i) to ensure the temporal isolation of tasks
and containers taking the platform resource contentions into
account, and (ii) to design a resource sharing mechanisms for
managing access to shared resources, such as bus and memory
controller, taking dynamic applications scenarios into account.

However, it is also unrealistic to assume that the maximum
memory bandwidth necessary for each legacy critical task
is known. The worst-case number of memory accesses that
an application can issue depends on many different factors,
for instance, hardware platform, system configuration, and
operating system. To address the lack of this data, an alterna-
tive solution is to bind the containers that run critical tasks
to a specific core and monitor their execution progress in
predefined checkpoints. In case execution is late, the other
non-critical containers can be paused to reduce the inter-
core interference preventing the critical one from missing a
deadline.

COTS multi-core processors are designed primarily for the
average-case performance and that is not enough to meet the
real-time requirements of robotic applications. Therefore, to
address the loss of predictability in this kind of hardware
platforms, we need to apply new mechanisms and know better
the application resources needs.

C. Timely and Reliable Communication

In the system architecture used in this paper, the fog nodes
communicate with a number sensors, actuators and other
devices in different layers, using both wired and wireless
connections to ensure the smooth operation of the fog-based
robotic system. However, when the probability of losing a
packet goes up, e.g., due to the noise in industrial environments

combined with the Doppler effect, multi-path fading, and
dynamic wireless channel [24], this can lead to an increase of
end-to-end latency. Therefore, to enable fog-based industrial
robotic systems, subject to real-time requirements, the commu-
nication protocols should be designed to fulfil strict timeliness
and reliability requirements, i.e., an upper bound of end-to-end
latency of 1 millisecond along with a probability that a packet
does not reach its destination before the deadline to not exceed
10−7 [25]. While wired networks can offer such deterministic
communications, wireless ones should guarantee deterministic
reliable communications at the same level.

In this context, Medium Access Control (MAC) protocols
and relaying strategies are central in achieving the desired re-
quirements. Rajandekar et al. [26] concludes that hybrid MAC
protocols can meet the stringent requirements on reliability
and timeliness. Moreover, there is a massive connection at the
fog layers, as presented in Section IV-D, thus, the proposed
MAC protocols must support a large number of simultaneous
connections. Li et al. [27] proposes a hybrid Time Division
Multiple Access (TDMA) Non Orthogonal Multiple Access
(NOMA) scheme for cellular-enabled machine-to-machine
communications. With NOMA, multiple nodes can be served
simultaneously utilizing the same time-frequency resources but
different power levels. A proposed time-sharing scheme is
introduced to deal with the massive deployment of devices,
while the total transmission time and energy efficiencies are
obtained. This solution is suitable for fog networks where a
NOMA transceiver may be deployed at the fog nodes [28].
Another approach, Hoang et al. [29] proposes a relaying
sequence that considers all cases that can happen in each
time slot. Hence, the probability of an error is an exact value
compared to an upper bound value as is the case in other
solutions related to multi-hop communication. Moreover, the
authors introduce a method of group based relaying on a
hybrid TDMA-CSMA (Carrier-Sense Multiple Access) pro-
tocol to address the drawback in relaying sequencing where
a relayer keeps silent if it does not have any correct copy of
the packet [30]. Therefore, the relaying strategies combined
with packet aggregation are practical techniques that can be
implemented on COTS devices as well as fog nodes. However,
these techniques, that are based on a hybrid protocol with
NOMA, need to be exploited further to reduce the end-to-end
latency coming with a massive connection at the fog layer.

To obtain timely and reliable communication, we observe
several challenges including: (i) the placement of fog nodes
must minimize the probability of error and end-to-end la-
tency, (ii) finding the number of fog nodes that meet all
constraints on timeliness and reliability should be found, for
each specific application, (iii) hybrid protocols with NOMA
should be studied to deal with the massive connection, and
(iv) in industrial environments, there are strict constraints,
i.e., a limited number of relay nodes and re-transmissions -
therefore, specific relaying strategies should be defined for
each application.



D. Scalability

Another aspect of the proposed use case is scalability [31].
In an industrial setting (as discussed in Section III), the
number of participating fog nodes can become very large
depending on the size of the factory because the network
involves not only the fog nodes but also sensors, actuators and
the interface devices. Furthermore, apart from interconnecting
the compute nodes of one factory, there is also benefit from
interconnecting various factories with each other. This may
increase the flexibility and efficiency of the production lines
due to considering a larger pool of available resources. This
becomes evident, for instance, when the production of an item
in a specific factory is reduced or halted due to potential faults
in the hierarchical or vertical communication of the nodes (see
Section IV-E). In such cases, other factories can change their
production plans in order to compensate for the faults. This can
be achieved by coordinating the function of multiple factories
through fog and cloud nodes.

Along with the potential benefits of interconnecting fac-
tories using fog and cloud nodes, and the advantages that
fog computing will bring to industrial environments, there
are also related concerns. In order to create such a scalable
industrial setting, the underlying communication mechanisms
need to be able to scale without generating a significant
amount of overhead which may hinder the operation of the
applications [31], and compromise the functionality of nodes
which execute tasks with strict deadlines (see Section IV-B).
Most current approaches that can be used for fog computing
aim at providing the necessary communication mechanisms to
allow computing close to the edge of the network [32]. How-
ever, they do not consider scalability metrics (e.g., generated
overhead) which show that scaling a fog computing system
to a large degree does not compromise the performance of
the applications. Additionally, the runtime management and
orchestration of virtualized resources need to trade off the
reconfiguration overhead with an optimal allocation of the
available resources [33]. This is also impacted by safety and
fault-tolerance mechanisms, that are often based on redun-
dancy (see Section IV-E).

In an industrial fog computing system, when adding new
compute nodes (e.g., new controllers, fog, and cloud nodes)
these nodes need to be discovered and integrated in the
system [34]. This means that the existing nodes need to store
the new nodes’ information (e.g., IP addresses, amount of
computational resources, etc.) so that they can communicate
(e.g., using widely-used communication protocols [35]). This
creates the problem of determining which nodes a new node
should connect to [36]. A simple solution to this problem
would be that each node maintains a global view of the system,
i.e., stores the information of all the other nodes. However, this
means that in a system with a growing number of nodes (such
as an industrial setting in which new nodes may be added
dynamically at any time), each node needs a growing amount
of storage resources, to store the necessary information. This is
unrealistic because some of the participating compute nodes

may have limited computational resources. For this reason,
scalability still poses a challenge in the proposed use case.

E. Dependability and Safety

Dependability: While fog-based robotic systems address
some of the limitation of existing architectures [5], they
introduce new challenges for ensuring dependability attributes,
for instance, reliability and availability, which are easier to
address in the existing architectures due to their dedicated
resource usage and less complexity. The fog-based software
architecture demands frequent data exchange between the
different layers of the fog platforms as well as within the
different nodes of the fog layer to accomplish a functionality
such as trajectory generation and control. This puts more focus
on ensuring reliability and availability of the fog platforms.
As a result, reliability and availability of the fog platforms is
critical for realising robotic applications on the fog platforms.

Different attributes of these services are challenged by
dependability threats known as errors, faults and failures [10],
which in turn might disrupt the entire functionality of the
system. Threats related to computational resources depict the
occurrence of faults in main components in the fog layer, i.e.,
fog nodes and the system orchestrator each providing a set of
functionalities for robot motion. Dependability threats related
to the orchestrator may lead to either a performance failure
or waste of resources. A failure in data storage might cause
data loss. This can result in loss of user-specified tasks or the
configuration settings mapping different sensors to the user
task specifications and data variables. Additionally, data stored
for future analysis in the cloud will not be accessible. Threats
related to communication are any faults that might disrupt or
prevent the connectivity between the different nodes as well as
the different layers in the architecture. Loss of communication
between the nodes and the edge devices can result in stoppage
of robots as the new trajectory parameters are not available for
the low level controllers. Such failures can have a cascading
effect within a robotic cell if the failure is local to a robotic
cell, especially that of a coordinated cell. It is therefore critical
to preserve a tight end-to-end communication, while providing
suitable fault tolerance mechanisms.

Dependability approaches for fog computing in the liter-
ature are mainly proposed to address dependability require-
ments using fault management solutions and redundancy tech-
niques [37]. Fault management solutions proposed are mainly
considering threat detection tools like monitoring [38] for fault
prevention and fault removal, or failure recovery solutions
like reconfiguration up on failure [39]. Redundancy techniques
proposed in the literature focus on different addressing dif-
ferent dependability requirements of the fog platform. For
instance, improving reliability [40], and availability [41], of
the system by implementing redundant components such as a
redundant node [40], in a network, redundant communication
channels [42] and task offloading [43] or application migra-
tion [44].

The proposed dependability solutions are mainly tied to
redundancy methods and replication techniques, for instance,



TABLE I
OVERVIEW OF THE ASPECTS AND THEIR INTER-RELATION AND CHALLENGES.

Aspect/Relation Virtualization & Orchestration Multi-Core Platform Communication Safety & Dependability Scalability
Virtualization & Orchestration – Platform abstraction and effi-

cient resource management.
Resource allocation for achiev-
ing tight end-to-end communi-
cation.

Provide predictability and fault
tolerance.

Complexity.

Multi-Core Platform Provide real-time guarantees
and predictability.

– Virtualization & Orchestration
isolates the platform.

Intra-core isolation and pre-
dictability.

Challenges wrt. hierarchical
architectures & legacy.

Communication Heterogeneity, combination of
wired and wireless networks.

Virtualization & Orchestration
isolates the platform.

– Trade-off between reliability
and safety.

Large numbers along with big
data communication.

Safety & Dependability Heterogeneous safety levels. Certification. Tight end-to-end communica-
tion and fault tolerance.

– Redundancy overhead.

Scalability Runtime reconfiguration. Hardware architecture. Congestion. Increased complexity. –

using passive/ active replicas of the system components.
However, using replicas for each component will result in
overhead of cost and consumption of resources [45], and it
can impacts the scalability of the overall system.

Safety: Safety in robotics involves multiple domains such
as the design of the manipulator arm and layout of the
cell. We focus on safety from the software perspective. We
define safety in the present use-case as the property of the
system which guarantees the timely and correct execution
of safety-critical tasks (with hard real-time deadlines) under
all operational conditions [46]. This encompasses scenarios
wherein the system reverts to a safe state in the event of a
safety violation or hazard. Catastrophic consequences (such
as loss of life, danger to the surrounding environment) can
ensue in case of a failed execution of these safety-critical tasks
occur [47]. For example, in a factory automation environment,
safety implies that the control signals issued to the robot
arm do not lead to motion primitives that can cause the arm
to move in a non-deterministic manner. To ensure that such
faults are well handled, it is necessary that timing analysis,
schedulability tests and the network schedule are designed
considering the potential threats to safety. This poses one
of the main challenges for the verification and validation
methods for multi-core platforms, and more in general for fog
architectures.

For a thorough analysis of the fog computing system we
need to ensure such threats are handled at the design phase
itself, even in presence of heterogeneous safety levels. Addi-
tionally, as in all safety systems, there needs to be no single
point of failure. Along with these challenges, it is necessary to
investigate if real-time applications running in the fog provide
the same level of safety guarantees that existing safety-certified
robotic systems provide.

V. CONCLUSION

Fog-computing brings cloud-like capabilities to low latency
applications but the practical implementation of a fog archi-
tecture for real-time applications such as robot control is non-
trivial. To move a step forward in this direction, we need
a holistic approach that considers different technical aspects
independently but also in conjunction with each other. We
summarize the relationship between the different aspects in
Table IV-D. From an infrastructure point of view, we consider
the use of COTS-based multi-core processors as fog nodes for
providing the computational capabilities.

To make effective use of these resources, we need virtu-
alisation techniques such as hypervisors and containers with
real-time capabilities to support the timing requirements of
robotic cells and robot motion. To provide temporal isolation,
hypervisors and containers need memory management tech-
niques to limit the interference of shared caches and buses
within the multi-core architectures. By providing bounds on
the interference, we can enable the orchestrator with the capa-
bilities to use real-time schedulability analysis and appropriate
scheduling algorithms to allocate applications to fog nodes,
to ensure timing predictability. Since the fog platform is a
distributed system involving fog nodes and edge devices such
as low-level controller and sensors, we need real-time com-
munication mechanisms. Such communication can be wired or
wireless. The constraints imposed by communication technolo-
gies further guide the scheduling and allocation of resources
by the orchestrator. For robotic applications, dependability and
safety are important attributes to prevent any damage to the
equipment and more importantly, to safeguard the health of
the operators working in close proximity to such robots. To
this end, we need solutions that consider the requirements of
the applications as well as the new challenges imposed by the
fog platforms. In this paper, we briefly discussed a robotic cell
environment to highlight the usefulness of fog-based solutions
and discussed key aspects such as resource orchestration and
network scalability, virtualization and memory management
techniques supported by real-time communication paradigms.
Further we discussed the dependability and safety issues that
need to be considered when moving towards the fog-based
architectures for robotic applications.
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