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Abstract. When multiple robots are required to collaborate in order to accom-
plish a specific task, they need to be coordinated in order to operate efficiently.
To allow for scalability and robustness, we propose a novel distributed approach
performed by autonomous robots based on their willingness to interact with each
other. This willingness, based on their individual state, is used to inform a deci-
sion process of whether or not to interact with other robots within the environ-
ment. We study this new mechanism to form coalitions in the on-line multi-object
κ-coverage problem, and evaluate its performance through two sets of experi-
ments, in which we also compare to other methods from the state-of-art. In the
first set we focus on scenarios with static and mobile targets, as well as with a
different number of targets. Whereas in the second, we carry out an extensive
analysis of the best performing methods focusing only on mobile targets, while
also considering targets that appear and disappear during the course of the ex-
periments. Results show that the proposed method is able to provide comparable
performance to the best methods under study.

Keywords: κ-coverage problem · Collaborative agents · Coalition formation.

1 Introduction

Robots have evolved from performing mundane work to tackling complex tasks with
high efficiency. By enabling them to collaborate and interact, they can potentially achieve
their tasks faster while requiring less resources. This has reached a level where a group
of robots can accomplish tasks that an individual robot would not be able to complete
at all. However, collaboration towards a specific goal requires coordination of the all
participating robots, and the coordinated formation of coalitions among them. Numer-
ous coalition formation approaches have been proposed which either rely on central
components [2, 14, 37] or focus on a single task to be accomplished [33] in order to
achieve meaningful interaction and collaboration. These approaches require dissipation
of information about available coalitions as well as negotiations about participation of
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each potential coalition member [33,37,42]. While coalitions are usually formed around
single tasks, the use of multiple teams has been shown to be beneficial when pursuing
goals that require multiple tasks to be accomplished concurrently [8, 39]. Moreover,
when considering autonomously operating robots that aim to achieve multiple tasks,
the individuals have to make decisions on when and how to form coalitions, and to
what end the coalition is formed.

In this work, we are interested in the ability of autonomously operating robots to
interact and collaborate, without a central component involved, in order to provision
varying sets of tasks efficiently. We propose an approach where each robot makes in-
dividual decisions about whether or not to provision a specific task. For this decision,
each robot employs local information about (i) its own status, e.g. its battery level, (ii)
its ability (i.e. having the tools to complete the task), and (iii) its interest (i.e. expected
performance value the robot contributes to the collective) in performing such task. More
specifically, we propose a novel distributed coalition formation and study this approach
in the online multi-object κ-coverage problem [9, 10]. This problem is related to the
cooperative multi-robot observation of multiple moving targets (CMOMMT) problem
proposed by Parker and Emmons [30]. In contrast, the number of target varies through-
out the scenario and targets can appear and disappear randomly. Furthermore, the robots
do not have any knowledge about the current number of targets at any time nor the num-
ber of robots available to interact. For that reason, the set of robots have to tackle the
multiple tasks concurrently.

First, the robots need to discover initially unknown moving objects in the environ-
ment. They do not possess any a priori information about the number or location of
these objects. Furthermore, objects may be mobile, requiring robots to change their
own location respectively in order to continuously provision them. This introduces an
additional degree of complexity as the robots cannot rely on a single solution but have
to continuously re-evaluate their performance and find new optimal solutions on an on-
going basis. Second, each object needs to be provisioned with at least κ robots concur-
rently, i.e. κ robots having the object within their sensing/actuating region at the same
time. Here, detecting new targets is considered the first task, however, every newly dis-
covered target generates a new task of covering this known target for the collective.
This generates a trade-off between detecting new objects and covering known objects
with κ robots when the collective tries to maximise the duration and number of targets
covered by κ robots. However, a robot not only needs to decide between provisioning
a specific target or exploring the area to discover new targets, but also which of the
different known targets it wants to provision. In order to achieve an efficient outcome in
this trade-off, the robots are required to form new coalitions for each individual target.
According to the taxonomy of Robin and Lacroix [34], the on-line multi-objective κ-
coverage problem is hunting mobile search, monitoring multiple targets, with different
viewpoints.

In this paper, we extend previous work that presented a novel distributed coalition
formation algorithm considering several tasks [12]. At its core, the proposal consisted
in introducing a willingness to interact to each individual robot as the main driver for
the coalition formation. The willingness could depend on a robot’s local conditions like
battery level, and current level of activity. Utilising this willingness, robots can make
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decisions on whether or not to interact and provision a specific object which eventually
leads to forming coalitions with other robots. The experimental evaluation of the afore-
mentioned work has been extended, by investigating additional scenarios with varying
values of the κ-coverage, as well as scenarios in which the targets appear and disap-
pear at random times. Additionally, the willingness and utility functions are refined
further, and cover for the distance of agents to the targets. The present paper provides
an account on both sets of experiments, over several scenarios of increasing number of
targets, considering both static and mobile targets, as well as appearing/disappearing
targets. The performance is assessed through different metrics, e.g. the average number
of agents covering one target, the average coverage time with at least κ agents. Fur-
thermore, the proposed approach is compared against six other methods presented in
the literature. The proposed approach shows performance that is comparable to the best
methods considered in the experiments.

The remainder of this paper is structured as follows. Section 2 gives a formal def-
inition of the online multi-object κ-coverage problem, whereas Section 3 discusses the
related work. Section 4 covers the behaviour of the agents and targets, their interaction
as well as our novel coalition formation algorithm. Section 5 gives an overview of the
experimental setup, the performed experiments, and the obtained results. Section 6 dis-
cusses the generalisation of the proposed approach, while Section 7 concludes the paper
and outlines future work.

2 Problem Formulation

In the online multi-object κ-coverage problem, we assume a discrete 2D area Z with
a given width and height w and h, respectively, and no obstacles. We also consider a
set of active robots A = {a1,a2, . . . ,an}, and a set of targets or objects of interest O =
{o1,o2, . . . ,om} in this problem. Both robots and objects can freely move within Z, with
(nonconstant, yet limited) velocities vi, where i= 1, . . . ,n, and v j, where j = 1, . . . ,m; in
their motion the robots will always remain in Z. It is assumed that any robot can move
faster than the objects, and that the number of robots and targets is constant. Each robot
is controlled by an internal, autonomous software agent. We refer to both as ai. Each
robot has a visibility range, with radius r. An object is covered by any robot, only if it
is located within its visibility range. At this point, the robot will determine the number
of already provisioning robots for this object. Therefore, it will either initiate a new
coalition, in the case of no robots following the target, or join the existing coalition,
in the case that less than κ agents are following the target. All objects are appointed
to a constant interest level l j. Moreover, levels of interest can be different for different
objects, while also shaping the utility ui j(t) of a robot i for following an object j with
interest level l j at a discrete time-step t.

Every agent i can calculate its willingness wi to interact with others at each time-step
(as detailed in Section 4.3) . This can occur in different situations, e.g. (i) when a robot
i first detects an object j entering or leaving its sensing area (ii) when robot i receives
a request for help from another robot for following an object j. Thus, the willingness
to interact shapes the cooperative behaviour of an agent with respect to other agents,
both in terms of asking and giving help. It is assumed that robots are able to change
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and keep track of their own state and behaviour, as well as the state and behaviour of
other robots. Specifically, robot’s n state is composed of the following variables: battery
level bi, range d, location `x,y, and velocity va,i. Without loss of generality, we assume
that the level of interest for the targets is equally perceived by all the robots, i.e. the
knowledge on the levels of interest for the targets is shared by all agents involved.

The online multi-object κ-assignment problem is solved by having at least κ robots
covering any target in the set. Consequently, there are two goals that need to be achieved
concurrently: (i) maximising the number of covererd objects, and (ii) covering the tar-
gets with at least κ robots. This paper addresses the following questions:

1. What is the average time for which at least κ robots can provision all targets present
in Z in an environment when using the proposed coalition formation algorithm?

2. What is the average number of agents that can cover a target with the proposed
coalition formation algorithm?

3. How does the motion of the targets affect the obtained performance?
4. How does the defined value for κ affect the performance of the proposed approach?
5. How does allowing for appearing/disappearing targets affect the performance of the

proposed approach?
6. How does the proposed method compare with other state-of-the-art techniques for

the κ-coverage problem?

We address these questions using two sets of experiments with varying numbers of
either mobile or static (immobile) targets, as well as appearing/disappearing targets,
according to metrics that analyse the obtainable performance in terms of time to cover
targets with at least κ robots, and the average number of robots that cover the targets.
Furthermore, we compare our results with six other methods previously proposed in the
literature [9].

3 Related Work

The online multi-object κ-coverage problem as introduced by Esterle and Lewis [9] re-
quires moving targets to be detected and afterwards continuously covered by at least
κ robots. This is, on one hand a combination of search-and-rescue operations and the
κ-coverage problem [18], and on the other hand, an extension to the CMOMMT (Co-
operative Multi-robot Observation of Multiple Moving Targets) problem [30].

In search-and-rescue operations, the goal is to coordinate a set of robots to cover
a given area and find a set of targets [15]. To achieve this efficiently, Stormont [38]
employs a swarming technique to cover a given area rapidly. Bakhshipour et al. [1]
employ an heuristic algorithm to optimise and coordinate the movement of individual
robots. The combination of supervising robots and subordinate robots for sensing the
area enables them to rapidly find all targets and complete the mission successfully.
To determine how many searchers are needed for a given operation, Page et al. [29]
utilise simulations. They study the trade-off between employed agents and time required
to complete a search-and-rescue operation successfully. Yanmaz et al. [41] investigate
ad-hoc networks for collaboration in groups of unmanned aerial vehicles and show
how these ad-hoc networks allow for more efficient completion of search-and-rescue
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operations, among others. Ruetten et al. [35] propose using the RSSI of each drone to
optimise the area the swarm of robots can cover. This approach is completely distributed
and does not require a central component.

Huang and Tseng introduced the idea of κ-coverage to increase the reliability and
accuracy in sensor measurements [18]. In addition, the redundancy allows the network
nodes to take turns in covering a given area effectively conserving energy resources and
increasing the lifetime of the entire network [6, 23, 28]. However, the deployment of
the network is calculated a priori to ensure optimal coverage of static areas or specific
locations. Elhoseny et al. [7] introduced mobile nodes to cover a set of known targets
with κ sensors. Using evolutionary computation on a central controller, they find the
optimal location for all nodes to maximise the trade-off between number of nodes and
coverage of static targets. Liu et al. [26] take one step further and consider a set of un-
known targets. This requires their mobile nodes to detect the target points first before
optimisation can take place. Utilising Voronoi diagrams, Li and Kao [25] determine the
minimum number of required nodes to achieve κ-coverage. Having the Voronoi diagram
at hand, they can also calculate the shortest paths for each node to maximise κ-coverage
most efficiently. Instead of using a centralised approach, Hafeeda and Bagheri [16] en-
able the nodes to approximate optimal κ-coverage using a distributed approach. Fusco
and Gupta [13] explore the ability of a simple greedy approach to optimally place and
orient directed sensors for κ-coverage of static objects in the environment. Micheloni et
al. [27] generate activity density maps to identify highly frequented areas. Utilising the
density maps, they employ an expectation-maximisation process to determine optimal
orientations of Pan-Tilt-Zoom cameras.

The Cooperative Multi-robot Observation of Multiple Moving Targets (CMOMMT)
is an NP-hard problem, first introduced by Paker and Emmons [30]. They used artificial
force-fields on the set of known targets to attract robots tasked to track them. While they
treated all targets equally, Werger and Matarić [40] assigned weights to each target in
order to indicate their importance. Each robot broadcasts its eligibility and coordinates
directly with others. To learn where targets are located, Jung and Sukhatme [19] learn
density maps during runtime and steer the individual robots accordingly. This clusters
robots in those areas, leaving the remaining field of operation open and uncovered. To
minimise the time where targets are not covered at all, Kollin and Carpin [22] enable
each robot to predict when targets will be lost and notify other robots in the area ac-
cordingly. This ensures that available robots can move into position and targets can be
observed continuously by at least one robot. However, in CMOMMT the main concern
is to maximise the overall coverage of all objects with at least one sensor rather than
multiple at once.

In their original work [9], Esterle and Lewis enabled agents to advertise detected
objects to other agents in the environment. They further studied the effect of differ-
ent responses basing decisions on aspects like first-come/first-serve, distance, or simple
randomness. They further investigated the benefits of utilising topological interactions
by learning neighbourhood relations during runtime. King et al. used an entropy based
approach attracting agents towards newly detected targets but repelling them when the
coverage condition was satisfied [21]. Considering the trade-off between target detec-
tion and following targets, Esterle considered the problem as a team formation problem
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where each team would tackle different tasks, i.e. detecting new targets and following
detected ones. Due to the high dynamics of the problem, agents could switch teams
during runtime [8].

The interested reader can find more information on κ-coverage, search-and-rescue
operations, and CMOMMT [20, 31, 36].

4 Agent Model

In this section, we describe the operation of a robot, in terms of its motion , the manner
in which the agent embodied in the robot updates its willingness to interact, and the
manner in which the collective of agents makes decisions and cooperates through the
proposed interaction protocols. In the following the terms robot and agent are used
interchangeably.

4.1 Robot Kinematics

Every robot a ∈ A follows a simple unicycle kinematic model
ẋa(t) = va(t)cos(θa(t))
ẏa(t) = va(t)sin(θa(t))
θ̇a(t) = ωa(t)

(1)

where xa(t) and ya(t) are the x- and y-coordinate on the map and define the position
pa = (xa,ya) of a robot a at time t, θa is the orientation of the robot, va is the forward ve-
locity of the robot, and ωa is its angular velocity. We assume that the robot can localise
itself within the map, and that it can detect the obstacles within its visibility range.

A robot a ∈ A follows a set of objects Oa ⊆ O, each of which has a different level
of interest l. The direction da over which the robot moves is thus computed as

da(t) =
∑i∈Oa li(pa(t)−pi(t))

∑i∈Oa li
(2)

making the robot to move towards all the followed objects, weighted by their respective
interest. In this way, the robot will prioritise targets with higher level of interest. The
target orientation θ◦a and the forward velocity of the robot are therefore computed as:

θ◦a(t) = ∠da(t), (3)
ṽa(t) = ‖da(t)‖ (4)

where ∠p ∈ [0,2π) is the angle of the vector p = (px, py) in its reference frame, and
it is obtained as ∠p = atan2(py, px). In order to compute the proper value of the an-
gular velocity, we can just use a simple proportional controller with tracking error ea
normalised between [−π,π):

ea(t) = θ◦a(t)−θa(t) (5)
ω̃a(t) = Kp atan2(sin(ea(t)),cos(ea(t))) (6)
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Finally, we include saturations on the forward and angular velocities:

va(t) = min(ṽ(t),vmax) (7)
ωa(t) = min(max(ω̃a(t),−ωmax),ωmax) (8)

4.2 Agent Behaviour

Software agents, operate autonomously and their behaviour can be described as a state
machine composed of four states: inspect, evaluate, inspect & follow, and evaluate &
follow (Figure 1). At run-time, all agents start their operation in the state inspect, and

Inspect

Inspect
& Follow

Evaluate

Evaluate
& Follow

New object
or New request

Not part of
the coalition

Lost
all targets

New object
or New request

Updated coalitions

Part of the
coalition

Fig. 1: Agent operation state machine [12].

continue moving in Z according to a given pattern. In case a new target is spotted,
or a request is received, an agent switches from inspect to evaluate. In this state, an
agent decides, based on its current state, whether it wants to be involved with the newly
detected target or help requests from other agents. The proposed interaction protocol is
described in detail in Section 4.4. The result of the interaction is a coalition of agents
that will follow the spotted target. If the agent is not part of the coalition after the
interaction, it will switch back to the inspect state, and it will continue scanning Z
for other targets. Otherwise, if the agent is part of the coalition, then it will switch
to the inspect & follow state. In this new state, the agent follows the target, while it
simultaneously inspects for new ones. If all targets an agent has been following go
outside its visibility range, then the agent switches to inspect. In case an agent either
has negative willingness, spots a new target, detects that a target is going outside its
visibility region, or it gets a request for help, then it switches to the evaluate & follow
state. In the latter, the agent either generates a help request, or it responds to a help
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request. In both cases, the agent decides whether to be part of a (new) coalition, or to
drop a target altogether. Once the interaction is complete, an agent switches back to the
inspect & follow state with an updated set of targets to follow.

Note that an agent can be part of more than one coalition, i.e. can follow several
targets at the same time according to their level of interest (as per Eq. 2), but a target
is only followed by a single coalition. Also, notice that transitions between states are
considered to be instantaneous.

When an agent is following a set of targets, its motion is described by the dynamic
model (1), and by the control strategy defined in (3)–(8). The interest level of a target
affects the motion of the agent according to (2), i.e. the agent’s direction is mostly
affected by the level of interest of the targets.

4.3 Willingness to Interact

The willingness to interact w shapes the cooperative behaviour of an agent, i.e. when
an agent should ask for help and when it should give help. This parameter reflects the
general disposition of any agent to cooperate with the others, without yet considering
specific targets. The willingness to interact w takes values in [−1,1]. When w ≥ 0 the
agent is able to help other agents in their provisioning tasks. When w < 0, the agent will
generate requests for help, and for w = −1 it cannot continue with the execution of a
task on its own. The value of the willingness is updated by each individual agent i based
on several individual factors, at discrete time instants t, according to the dynamics:

wi(t +1) = min(max(wi(t)+B>f(t),−1),1), (9)

f(·) = [ f1(·), . . . , fm(·)]> is an m×1 vector of the m factors that affect the willingness,
while B= [β1, . . . ,βm]

> is an m×1 vector that contains the weights of the corresponding
factors on the calculation of the willingness.

The calculation of a factor fi is given by

fi(k) = φi(k)−φi,min, (10)

where φ(k) represents the current measurement of that factor (e.g., the current battery
level), while φmin is a minimal threshold considered acceptable (e.g., the minimal bat-
tery level to perform a task). The terms φ and φmin take values in [0,1], where 0 is the
minimum value of the measured quantity, and 1 its maximum.

In this work, we consider two factors that affect the willingness to interact. These
are the battery level b, and the number of objects in Oa currently provisioned by a. Other
factors can be included in the calculation of the willingness, without loss of generality
of the proposed approach.

Factors can be divided into two categories: necessary and optional. The battery level
is a necessary factor, since a robot with a battery level lower than a certain threshold may
not be able to achieve its tasks. Therefore, such agents should rely on the help provided
by other agents. On the other hand, the number of targets (nO) an agent is tracking is
considered as optional. This is due to the fact that while an agent can follow several
targets, its task will become more difficult, e.g. if 1/nO goes below a certain threshold –
the agent is following too many targets – then the agent decreases its willingness to give
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help and consequently increase its willingness to ask for help. The effect of different
factors can be modulated by their corresponding weights. The weight for a necessary
factor βnec is defined as:

βnec(t) =

{
1/m, φnec(t)−φnec,min > 0,
−(1+w(t)), otherwise,

(11)

where m is the number of all the factors, whereas the weight for an optional factor βopt
is defined as:

βopt(t) =

0, if ∃φnec,φnec(t)−φnec,min < 0,
sgn(φopt(t)−φopt,min)

m
, otherwise.

(12)

This ensures that necessary factors have the highest impact on the willingness to inter-
act. As an example, in the case the battery level is below a threshold, then the agent
should ask for help, irrespective of other factors (w = −1). Thus, the weights of other
factors should be set to zero. While we provided an example for factors approaching
a minimum, factors approaching a maximum can also be applicable. Nevertheless, the
corresponding calculations for the factors and weights have to be adapted accordingly.
More examples on factors that can affect the willingness can be found in [11].

4.4 Interaction Protocol

The interaction protocol defines how agents create coalitions for any given target and
elect the corresponding leaders for these coalitions. The proposed protocol mostly com-
plies with the Self-organising Coordination Regions (SCR) design pattern [4], however
differently from SCR an agent can belong to different coalitions, hence it can have more
than one leader. An agent can trigger a help request either when it spots a new target,
or it wants to extend an existing coalition to reach κ−coverage, or it perceives that
targets in its visibility range are moving away from itself, or if it is necessary to ask
for help (e.g., battery level is under the accepted minimum). Furthermore, agents make
decisions on whether to interact with one another when they receive help requests from
others. The interaction protocol is illustrated in Figure 2.

When an agent spots a new target, an information request is broadcast to other
agents, which contains the agent’s willingness and respective utility for provisioning
the target. Thereafter, the agent waits for a specified time ∆t to receive a response from
other robots. We assume that agents can identify commonly observed objects and assign
common labels. In case a coalition already exists for the given target, the corresponding
leader will reply whether more agents are needed to reach the κ-coverage. If no help
is needed, then the sending the information request drop the targets and continues its
operation. If help is needed, then the agent will receive an assignment from the leader of
the coalition, based on the previously sent willingness and utility. In case the agent does
not receive a response within time ∆t to its initial information request, it assumes there
is no other coalition provisioning the target. Subsequently, the process for creating a
coalition and electing a leader responsible for following the target is triggered. Initially,
the agent calculates its own willingness to help in the future coalition, and the utility
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Request Information

Wait ∆t

Check
Response

Define own w

Broadcast help
request

Collect answers

Order by wtarget

Select κ agents
& leader

Notify κ agents

Got assigned

Ignore target

No
response

Help is
needed

Help is
not needed

Fig. 2: Activity diagram of the agent’s behaviour when a new target is spotted [12].

for following the target. The mechanism follows the logic of a fast bully algorithm [24],
well-known in distributed systems. A request for help to follow the object is broadcast
to all other agents. Other agents respond with their willingness to help, i.e. the willing-
ness to enter the coalition, and their utility for following the specific target. After the
responses are collected, agents with a negative willingness w < 0 are discarded. The
positive willingness of an agent i to interact is combined with its utility ui j to form the
willingness to interact to provision a specific object j at time t:

wi j(t) = wi(t)+ui j(t). (13)

Utilities are defined by each agent for the individual target and can generally vary from
agent to agent as well as between the different targets. Examples for this could be the
size, speed, or direction of movement of the object. In our experiments, we consider
different interest levels that are agent-independent, i.e. the agents share the same interest
for the same targets. The received values wi j(t) are ordered in decreasing value, and the
κ agents with highest wi j(t) are selected for the coalition. The agent with the highest
wi j(t) is elected the leader. The outcome is propagated to the other agents via broadcast.
The initiating agent does not necessarily need to be part of the coalition.

Furthermore, agents keep track of whether the targets in their visibility range are
moving outside the visibility range. We introduce another internal threshold with radius
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ai

din

d

tg1

tg2

Fig. 3: Agent ai with visibility range d, indicated with the red circle, and internal range
din, indicated with the blue circle. The targets tg1 and tg2 are indicated with crosses,
and they are moving towards and away from the agent, respectively [12].

din around the robots, where din < d (Figure 3). When a target, e.g. tg2 in Figure 3,
moves out of the internal range, yet remains within the visibility range, then a request
for help is triggered. If a target, e.g. tg1, is moving towards the agent while being within
the internal and visibility range, no request is issued. In case the willingness of an agent
becomes negative, help requests are generated, and the agent considers dropping its
targets one by one. If the willingness remains negative or becomes −1, eventually all
targets will be dropped.

A help request means that either an agent is looking for a replacement for itself, or
it is looking for an additional agent that can enter the coalition. This is illustrated in Fig-
ure 4. If an agent needs to leave a coalition, we distinguish between leading agents and
ordinary members of the coalition. Leader agents should take care of replacing them-
selves, as such the leader election needs to be repeated. The process can include other
agents not yet in the coalition, if κ-coverage is not achieved at that point in time. On
the other hand, common agents need only notify the respective leaders when they are
dropping a target. Leaders are also responsible for triggering continuously the exten-
sion of a coalition in order to reach or maintain κ-coverage, following a monotonically
increasing period.

5 Simulation Setup

The behaviour of the agents was evaluated with computer simulations3, that model the
agents’ kinematics, behaviour, and interaction. The communication between agents is
realised through the robot operating system (ROS) [17, 32]. Two sets of experiments
were conducted, namely Set I and Set II. The purpose of the experiments in Set I 4

is to compare the willingness to interact approach against a selection of methods in
the state-of-art [9], across several scenarios differing in the number of targets and their
mobility – static or dynamic. Whereas, the purpose of the experiments in Set II is to

3 The code for running the simulations is publicly available at https://gitagent@bitbucket.
org/gitagent/gitagent_2.git

4 The present paper is an extension of previous work [12], which contains the account on the
experiments and results for Set I.

https://gitagent@bitbucket.org/gitagent/gitagent_2.git
https://gitagent@bitbucket.org/gitagent/gitagent_2.git
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Is leader?

Is there
a coalition?

Notify leader

Start full
leader election

Start partial
leader election

Drop target

Yes No

NoYes

Fig. 4: Activity diagram of the agent’s behaviour when it needs to replace itself in a
coalition [12].

focus the analysis on the best performing methods identified in Set I, for mobile targets,
considering also scenarios in which targets may appear or disappear from the area Z.

5.1 Set I Experiments and Results

In these experiments the method utilising the willingness to interact, was compared to
six other methods that were previously proposed in the literature for solving the multi-
object κ-coverage problem [9]. Each method is a combination of one communication
model and one response model. Two communication models are considered, broadcast
BC and random RA. In BC an agent broadcasts a help request to everyone, whereas in
RA it sends a help request to κ agents chosen randomly. Regarding response models,
the following three are considered: (i) newest-nearest NN, (ii) available AV , and (iii)
received calls RE. In NN an agent will answer to the newest request, and in case of
simultaneous requests, it will respond to the nearest one. In AV the agent answers to re-
quests according to the newest-nearest strategy only if it is not following other target(s).
In RE, an agent will answer to requests for objects with the least coverage, only if it
is not following other targets. The six methods chosen for comparison, based on these
models, are: BC-NN, BC-AV , BC-RE, RA-NN, RA-AV , and RA-RE. Such selection is
due to previous results [9], where the broadcast and random communication models
were evaluated better with respect to the rest, while the response models were reported
to have a significant impact on the κ-coverage.

In all simulations, we consider a total number of nA = 10 robots starting from the
same initial position (0,0), with a random direction, and vi,max = 2 units per time-step.
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If an agent hits any boundary in Z, it will bounce back at a 90° angle, i.e. Z is assumed
to be a limited area surrounded by walls. The objects to be covered are generated uni-
formly in area Z of size 100m×100m. In our experiments, we consider 7 different sce-
narios with an increasing number of objects. The number of objects distributed in the
environment are 1, 4, 7, 13, 16 and 19 for the corresponding scenarios S0 to S6. For
each simulation the interest level of any target was randomly sampled from a set of
levels L = {0.3,0.6,0.9}. We performed 20 experiments for each scenario, with each
experiment having a duration of Tsim = 300 discrete time steps and a specified seed. The
latter impacts the initial location of the targets, the initial direction for agents and mo-
bile targets, as well as the level of interest of targets for each experiment corresponding
to a scenario. Given these settings, we analysed the behaviour of our agents to achieve
κ-coverage where κ≥ 3, and κ≥ 5.

Results for static targets. In these experiments, targets remain in their initial locations
(v j = 0). Once targets are covered, they remain covered for the rest of the simulation, as
such, the time for reaching the desired coverage is considered one of the performance
indicators for evaluation.

For every scenario, we run N different experiments. For every experiment e =

1, . . . ,N, we compute for every target j the time to reach 1-coverage t(1)j,e , and the time to

reach κ-coverage t(κ)j,e . Based on this information we can calculate: (i) the average time

to get one target to be covered by at least κ agents t(κ)avg, and (ii) the average minimum
time to get all the targets covered by at least κ agents t(κ)min. These two metrics give an in-
dication of a minimum coverage, and a complete coverage.. They are formally defined
as:

t(κ)avg =
1
N ∑

e

1
|O|∑j

t(κ)j,e (14)

t(κ)min =
1
N ∑

e
max

j
t(κ)j,e (15)

In particular, in these experiments we study (i) the average time to get one target to be
covered by at least by 1 agent, t(1)avg, (ii) the average time to get one target to be covered
by at least by κ agent, t(κ)avg, (iii) the average minimum time to get all the targets covered
by at least 1 agent, t(1)min, and (iv) the average minimum time to get all the targets covered
by at least κ agents, t(κ)min. In all the metrics, the lower, the better.

Results for κ≥ 3 as well as κ≥ 5 are shown in Figure 5, where t(κ)min is given on the
x-axis, and t(κ)avg is given on the y-axis. For both metrics, the lowest the value, the better.
In the graph the corresponding Pareto frontier is included in order to highlight the best
performing methods. We also compare this directly to the cases for κ≥ 1 (only a single
agent covers the target), however, the agents still aim to cover all targets with κ∈ {3,5}
and therefore might cluster at specific objects even when reporting results for κ≥ 1.

It can be observed that on average there are no differences between the utilised
methods for scenario S0 for κ ≥ 1, as shown in Figure 5. This is due to the fact that
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Fig. 5: Average time vs minimum time to cover all stationary targets (i.e., not moving)
with 1 (top) or κ agents (bottom), for κ≥ 3 and κ≥ 5 [12].

the only static target in the environment will be discovered at the exact same time by
any method for an experiment initiated with the same seed. There could be a shift with
a couple of time-steps in the discovery times, in case there is an occasional failure or
delay in the ROS service calls or broadcast used by agentst when handling targets that
appear in the visibility range. Nevertheless, for κ ≥ 5, Figure 5d, the minimum times
are not necessarily the same, e.g. the result for method RA-AV as compared to the six
other methods. With the increase of number of targets in each scenario, the average
and minimum times to coverage also increase. For each scenario S1–S6, a difference
on average between the different methods is observed. Mostly, the proposed method,
indicated with the ‘W’ in the legend, is either the best on average or at least on the
Pareto frontier, for scenarios S3 in Figure 5c; S2 and S5 in Figure 5b; S2, S5, and S6
in Figure 5d; and for scenarios S2 and S3 in Figure 5a; S2 in Figure 5c; S4 and S6 in
Figure 5b; and S4 in Figure 5d, respectively. Similar performance is displayed by the
BC-NN method, which is the best performing method among the ones considered in
this study.

When only one target is involved, the average minimum time to coverage is low-
est. In all cases, the agents will move in Z and eventually find and cover the targets.
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However, when increasing the number of targets (S1–S6), agents can gather on the first
targets found, leaving remaining targets undiscovered for the rest of the simulation. As
such, all metrics are affected, and the t(κ)j,e is saturated to the duration of the simulation
Tsim− 1 5 for the targets that were not discovered. In Figure 5, the points are accumu-
lated at the t(κ)min−1, which means that in those scenarios not all targets were discovered
by the agents.

Results for dynamic targets. In these experiments, targets move within map Z by ran-
domly changing direction, with velocity vt,max = 1.5 m per time-step. In both cases,
agents move with a higher velocity va,max = 2 m per time-step. Nevertheless, we still use
the same sets of scenarios. As for the performance, for a single experiment e = 1, . . . ,N,
we consider the time for which a target j is covered with at least κ agents over the sim-
ulation duration, τ(κ)j,e , and the average amount of agents that cover the target j over the
simulation α j,e. Based on these two quantities we compute the following metrics: (i)
the average time for which at least κ agents cover the targets, τ(κ)avg, and (ii) the average
amount of agents that cover the targets αavg. These quantities are computed as

τ(κ)avg =
1
N ∑

e

1
|O|∑j

τ(κ)j,e (16)

αavg =
1
N ∑

e

1
|O|∑j

α j,e (17)

While in the experiments featuring static targets, a target will be covered for the whole
duration of the simulation once a coalition is formed, in the dynamic case, such as-
sumption cannot be made, because agents can lose targets as all objects are moving in
Z. Furthermore, these metrics are calculated twice for active and passive coverage, i.e.
by (i) considering the targets which are actively being followed by agents, and (ii) con-
sidering targets that are within the visibility range of agents, but are not being actively
followed. In other words, agents are actively following targets when they adjust their
own motion based on the motion of the targets.

Results are shown in Figure 6, where the average time of coverage is given along
the x-axis, and the average number of agents is given on the y-axis. The method with the
willingness indicated with W in the legends of Figure 6 is overall on the Pareto frontier
for κ ≥ 3, with an exception for scenario S3. With respect to κ ≥ 5, the method with
the willingness is on the Pareto frontier for scenarios S0–S4, and the best on average
for S5–S6. The same is observed in the results for passive provisioning. Furthermore,
our approach tends toward maximising the number of agents covering a target, thus it
lies on the left side of the Pareto frontier. Similarly to the results in the static case, the
performance of the BC-NN strategy is comparable to the method with the willingness.

We can observe that for both κ≥ 3 and κ≥ 5 the average coverage time is highest
when the number of targets is lower, in S0 and S1, falls for S2–6 when the number of
targets to be covered increases. We speculate that an increase in the number of targets,

5 In the final time-step the multi-agent system shuts down, hence this time-step is not considered
when dealing with the results.
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Fig. 6: Average number of agents covering targets vs average coverage time of all targets
of the entire duration of the simulation for κ ≥ 3 and for κ ≥ 5. On the top we show
active coverage where we only consider the agents actively following a target while the
bottom includes passive coverage — agents having multiple targets in their visibility
range while following another target [12].

whilst the size of the area is unchanged, might increase the average coverage time as
agents can join multiple coalitions, i.e. are able to follow more tasts concurrently. How-
ever, this remains subject to further research. The impact of the chosen values for κ
can be observed as well in Figure 6, by inspecting the average coverage times, which
are lower for κ ≥ 5 than κ ≥ 3. Taking into account what is being covered passively
increases the average number of agents that cover a target.

Note that, the averages are taken over all time-steps of the simulation including
the time to discover the objects in the first place. Naturally, the lack of coverage prior
discovery penalises the shown results.

In our current approach, the agents are not aiming to exceed the desired coverage.
Nevertheless, race-conditions in the coalition formation process can result in coalitions
that extend the κ-coverage. Furthermore, this can also take place when an agent detects
that a target is moving away, and finds a replacement agent which also joins the coali-
tion. Note that, the target is not dropped by the former agent until it actually goes out
of its visibility range.
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Fig. 7: Average active coverage time for κ ∈ {2,3,4,5}.

5.2 Set II Experiments and Results

Extension of Set I experiments. Results from the experiments in Set I indicate that the
best performing methods across the investigated scenarios are the willingness approach,
BC−NN, followed by RA−NN. In order to gain a better insight on the performance of
these methods, additional experiments with different values of κ were run, specifically
for κ ∈ {2,3,4,5}. In these experiments, only mobile targets are considered with the
metrics adopted in Set I, and scenarios with number of targets in {13,16,19}, i.e. sce-
narios S4-S6. Furthermore, instead of running 20 experiments with different seeds, 10
different seeds were used, where for each seed 5 runs were performed, for a total of 50
experiments. The reason behind this choice is that experiments initiated with the same
seed do not necessarily produce the same exact results since it cannot be guaranteed that
the same coalitions will be formed every-time. Based on which message arrives in time
when an agent is gathering responses, a specific coalition will be created. Therefore,
affecting the rest of the simulation in terms of which targets are followed or discovered
next.

The results of these experiments are given in Figures 7, 8 for active coverage, and
Figures 9, 10 for passive coverage. Note that the metrics have been weighed based on
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Fig. 8: Average active number of agents per target for κ ∈ {2,3,4,5}.

the interest level of the targets. It can be observed that as κ increases, the average cover-
age time decreases (Figure 7), as is expected. The average agents per target metric de-
creases in the same manner (Figure 8). Additionally, for κ = 2 the coverage is achieved
and surpassed, while in the other cases it is not reached by any method. For κ= 3 the re-
sults are quite close to the desired coverage, however for κ = 4,5 the achieved coverage
is rather below the desired values. Results improve overall when considering passive
coverage (Figures 9, 10), and the average agents per target metric lies in (3,4] across
the different experiments. Conclusively, the performance of the methods is comparable,
with slight differences in average across the different scenarios.

Experiments with appearing/disappearing targets. A more relaxed version of the κ-
coverage problem, in which the targets are not only mobile but are also allowed to
appear/disappear during the simulation, is used to further evaluate the three methods
considered in the previous paragraph. For these experiments, it is assumed that area Z
is confined, however it is possible for new targets to come in. The decisions concerning
the removal and insertion of targets are made at every time-step. Furthermore, these
decisions are sequential, i.e. first it is decided on whether to remove an existing target,
thereafter it is decided on whether to insert a new one. The probabilities for removal
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Fig. 9: Average passive coverage time for κ ∈ {2,3,4,5}.

and insertion are set to the same value pR = pI = 0.2. Targets appear and disappear on
the spot. The rationale behind such implementation is that, a target disappears when
there is no interest associated to it, and appears when the interest jumps from 0.0 to
I j ∈ I = {0.3,0.6,0.9}. Initially, the number of targets present in the simulation is equal
to 19, corresponding to the S6 scenario in the previous experiments. Simulations were
run for values of κ in {2,3,4,5,6,7,8}.

The willingness to interact function has been simplified to account only for the state
of the robot at a given time-step, thus Equation 20 is modified as follows:

wi(t +1) = max(min(B>f(t),−1),1). (18)

Furthermore, only one factor shapes the willingness in these experiments, that is the
level of activity calculated as:

lA =
Oa

OALL
, (19)

where Oa is the number of objects provisioned by robot a, whereas OALL is the num-
ber of all objects of interest in Z. Note that, for experiments with appearing/disappearing
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Fig. 10: Average passive number of agents per target for κ ∈ {2,3,4,5}.

targets, it is assumed that agents know how many targets need to be provisioned at a
given a time. This assumption is not made in the other experiments. Depending on
how much knowledge agents have access to, the utility functions need to be modified
accordingly.

For these experiments, the utility for following a given target is modified to also
account for the distance to such target, where the distance is weighed based on the
interest level

uoi = min(
1

(1− Ioi) ·da−>oi

,1), (20)

where uoi represents the utility for following target oi, Ioi is the interest level of
oi, and da−>oi is the distance between robot a and target oi. The intuition behind the
equation is that, given the same distance, the utility will be higher for a higher interest
level, and lower otherwise.

There are two metrics of interest in these experiments: (i) the average coverage time
percentage of all targets τ(κ)avg% (Equation 21), and (ii) the average amount of agents
covering the targets βavg (Equation 22). The first metric (i) is calculated as
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τ(κ)avg% =
1
N ∑

e

1
|O|∑j

τ(κ)j,e(%), (21)

where τ(κ)j,e(%) is the percentage of time in which the target is covered, calculated as

c(κ)j
t p j

, where c(κ) j is the amount of time for which the target is covered by κ or more
agents, and t p j is the amount of time for which the target is present in Z (Note that
t p j <= Tsim). We also compute this metric by weighing τ(κ)j,e(%) based on the interest

level of target o j, i.e. τ(κ)j,e(%) · Io j . The second metric (ii) is calculated as

βavg =
1
N ∑

e

1
|O|∑j

β j,e, (22)

where β j,e is the average amount of agents that cover target o j during the part of the
simulation in which it is present in Z.

It is possible to observe that the three methods produce comparable results across
the different values of κ, considering both active and passive coverage (Figure 11).
Slight differences in average are noted, and as κ increases the method with the willing-
ness has a slight improvement compared to the other two. These trends are consistent
when weighing τ(κ)j,e(%) by the interest level of target o j (Figure 12). Comparing active
and passive coverage, it is possible to see that the latter achieves a slight improvement,
circa 7% for κ = 2 (Figure 11).

Regarding the average agents per target, the three methods remain comparable
across the different values of κ, considering both active and passive coverage (Fig-
ure 13). There are slight differences in average, more notable in the passive case. Fur-
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Fig. 12: Average coverage time for active and passive coverage and κ ∈
{2,3,4,5,6,7,8}, weighed by interest level.

thermore, it is possible to observe that when considering passive coverage as well, the
average number of agents per target remains quite close to 3 for all the values of κ
under study. This result gives an indication of the physical limit with respect to how
many agents can cover a target, given a particular setting, in terms of area size, number
of agents, and targets, there is Whereas, in the active case the metric increases with the
increase of the value of κ.

6 Generalization of the Approach

In this paper, a collaborative approach based on the willingness to interact has been
adopted in order to solve the κ-coverage problem for a multi-robot system. The de-
scribed framework, composed of the agent behaviour, willingness to interact, combined
with the interaction protocols can be applied in other problems as well. Regarding the
agent behaviour, the state machine presented in Section 4.2 can be generalised by con-
sidering the following abstract states: idle, interact, idle & execute, and interact &
execute adapted from [11]. Such states can be specialised depending on the desired
behaviours robots should display when tackling different problems, e.g. moving by
randomly changing direction and inspecting the space for new targets can be used to
instantiate the idle state into the inspect state as done in this paper for solving the κ-
coverage problem. Whereas the execute state can be instantiated into either the inspect
& follow or evaluate & follow, by adding the target following behaviour to the agents.

The willingness to interact formalism can be easily modified to account for ad-
ditional relevant factors in a given application domain. Additionally, it is possible to
differentiate between different types of factors, such as necessary and optional, as well
as giving a specific weight to each factor. In this paper we have considered factors such
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Fig. 13: Average agents per target for active and passive coverage and κ ∈
{2,3,4,5,6,7,8}.

as the battery level and the level of activity of an agents, which correspond to the nec-
essary and optional factors respectively. Weights are determined in a simple way, i.e. if
no necessary factor is under the the minimum threshold, then factors are weighted the
same, otherwise the necessary factors will override the optional ones, thus determining
the final value of the willingness.

Finally, the interaction protocol is independent of the application and problem to
be solved, apart for the κ parameter which can be adjusted depending on the desired
size of coalitions for provisioning targets, and the triggers that agents use to initiate the
interaction. In the current application domain agents are tasked with discovering and
tracking targets in their environment. Therefore, the triggers for executing the interac-
tion protocol are application dependent such as (i) spotting a new target in the visibility
range, (ii) detecting that a target is moving away and might soon be outside of the visi-
bility range, and (iii) extending an existing coalition in order to reach κ-coverage. The
fourth trigger captures the moment when an agent decides that it needs to ask for help,
which is based on the willingness to interact. This trigger is not application dependent.

7 Conclusion and Future Work

This paper presented a novel, distributed, agent-centric coalition formation approach,
based on the willingness to interact for adaptive cooperative behaviour. We showed that
we can use this novel approach to solve the κ-coverage problem for a group of targets.
The performance of this approach is evaluated in two sets of experiments, and is com-
pared with six methods previously proposed in the literature. The purpose of the first set
of experiments is to investigate scenarios with static and and mobile targets, while also
considering a different number of such targets. For static targets, the analysed metrics
are the average time to get one target covered with κ agents, and the average minimum
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time to κ-cover all objects are considered. Whereas, for mobile targets, we considered
the average coverage time and average number of agents per target. Results show that
our approach either performs comparably good in the case of static targets with respect
to the BC-NN method (the best performing among the ones considered in the paper),
followed by RA-NN, and that it performs better than the other methods in terms of
achieving a higher level of coverage when it comes to moving targets. The purpose of
the second set of experiments was to further compare the proposed approach with the
best performing methods, across several values of κ for mobile targets. Additionally,
the performance of the methods was evaluated in scenarios where targets would ap-
pear/disappear with a given probability. Results from these experiments show that the
three methods are comparable to one another.

There are two main lines of inquiry for future work. First, it is of interest to investi-
gate different rates of appearance and disappearance for targets, in order to understand
which method makes for a better coping mechanism in a dynamic environment. Fur-
thermore, issues related to how the studied models scale up in terms of, e.g. bandwidth
capacity and latency, can also be considered in the analysis. Second, security aspects
can be introduced, by considering the trustworthiness of agents. Such information can
be included in the calculation of the willingness to interact, in order to facilitate the
cooperation between agents that are more trustworthy, e.g. open systems where new
agents may be introduced or removed, similarly to recent approaches [3, 5].
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