
Reo Connectors and Components
as Tagged Signal Models

Marjan Sirjani1,2 , Fatemeh Ghassemi3(B), and Bahman Pourvatan2,4

1 School of Innovation, Design and Engineering, Mälardalen University,
Väster̊as, Sweden

marjan.sirjani@mdh.se
2 School of Computer Science, Reykjavik University, Reykjavik, Iceland

bahman@ru.is
3 School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

fghassemi@ut.ac.ir
4 LIACS, Leiden University, Leiden, The Netherlands

Abstract. Tagged Signal Model (TSM) is a denotational framework
and a meta-model to study certain properties of models of computation.
To study the behavior of Reo connectors in a closed system, we propose
two denotational semantics for Reo using TSM. TSM is very similar to
the coalgebraic model of Timed Data Streams (TDS), the first formal
semantics and the basis for most of the other formal semantics of Reo.
There is a direct mapping between the time – data pairs of TDS, and
tag – value of TSM. This work shows how treating tags to be either
totally or partially ordered has a direct consequence on the results. We
looked into five primitive connectors of Reo in both these settings and
discuss the determinacy of systems.

Foreword

Tagged Signal Model (TSM) and Timed Data Streams (TDS) are very simi-
lar mathematical models. We observed the extreme similarity and started this
research with the goal to use the rich set of theorems and techniques built around
the TSM framework for reasoning about different properties of Reo circuits. But
the path we went through was not at all what we have expected. We have aimed
for a discussion on determinacy of Reo connectors. We considered the five prim-
itive Reo connectors as processes in TSM. We close the model, by adding source
and sink processes to produce input for, and consume the output of each connec-
tor. The determinacy of such compositions as closed models depend on the source
and sink processes. Moreover, we could not find any theorem on determinacy of
models for the Rendezvous model of computation.

As we know Farhad’s love of Persian poetry we would like to cite the first
Ghazal of Hafez here:

Ho! O Saki, pass around and offer the bowl:
For love appeared easy at first, but hardships have occurred.

We hope that Hafez forgives us for making an analogy between love and research.
c© Springer International Publishing AG, part of Springer Nature 2018
F. de Boer et al. (Eds.): Arbab Festschrift, LNCS 10865, pp. 160–173, 2018.
https://doi.org/10.1007/978-3-319-90089-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90089-6_11&domain=pdf
http://orcid.org/0000-0001-5478-0987

Reo Connectors and Components as Tagged Signal Models 161

1 Introduction

Development of concurrent systems has many challenges due to the well-known
problems such as race conditions, synchronization of events, etc. Component-
based development paradigm brings up a revolution in the software development.
A system is made by composing off-the-self previously developed components.
The glue code, by composing the components together, plays the important role
of orchestration and defines how the components are coordinated to remedy
the concurrency problems. Coordination languages have emerged for building
the interaction protocols among the components in a system independent of
the behavior of components. Reo was introduced as an exogenous coordination
language to specify the glue code in a compositional way [1]. By composing ready-
to-use components and Reo connectors, a system can be constructed. One of the
challenges in the composition of Reo connectors is the interpretation of feedback
loops. Feedback is a useful control mechanism, present in many coordination
patterns, which may lead to non-deterministic behavior that it is not appealing.

Several behavioral semantics based on different formal classes have been
appeared for Reo, namely, based on coalgebraic models, operational models [3],
and graph-coloring [4]. The coalgebraic model of timed data streams (TDS) was
the first model used to give semantics to Reo connectors [2]. It defines which
and when data items flow through each node of a connector. To provide tools to
support implementations or analysis of Reo connectors with formal techniques
other semantics were developed. The TDS semantics define the behavior of con-
nectors independent of interacting components (processes). In an ideal environ-
ment, there is an assumption that all the source and sink components (processes)
are always willing to generate and consume data (and willing to Rendezvous).
However such an assumption is not valid for all off-the-shelf components and
hence, their composition may lead to unexpected behaviors. Here, we study the
behavior of connectors and processes together as a composition.

The intuitive way of thinking about flows through a Reo connector resem-
bles the way the behavior of processes is defined by tagged signal models (TSM)
[6]. The denotational formalism of tagged signal model is a meta-model to study
certain properties of models of computation in a unified framework. In this frame-
work, a system is modeled by the composition of a set of processes. Each process
is defined as a relation/function between signals which can be partitioned into
input/output signals. Composition is treated as combining the output signals
of one process to the inputs of some processes. Each signal is a set of tag-value
pairs. By restricting processes to functions in TSM, feedback makes such systems
self-referential. Mathematically, the notion of self-reference is tackled as a fixed
point problem, as illustrated by the simple system in Fig. 1 in which the input
and output signals are the same due to the feedback connection. Such a system
has a well-defined behavior if F has a fixed point. This imposes constraints on
the functions that are used to model systems. There are a set of well-defined the-
orems in the TSM framework to show when a model with feedback has behavior.

TSM defines precisely processes, signals, and events, and gives a frame-
work for identifying the essential properties of discrete-event systems, dataflow,

162 M. Sirjani et al.

F
s F (s)

Fig. 1. A functional process in a feedback

rendezvous-based systems, Petri nets, and process networks. TSM is a meta-
model, and TDS can be defined as a specific model, based on TSM, where TDS
timestamps are a totally ordered set of tags in TSM. Furthermore, TSM provides
sufficient means to describe connectors and interacting processes in a unified way
as intended by Reo. In our approach, the effects of nodes are explicitly modeled
by constraints in TSM. We use TSM framework to reason about the determinacy
of a system composed of Reo connectors (and components). We will show that
in the TSM for Reo, we can use the same totally ordered tag system as in the
TDS, but most Reo circuits will be nondeterministic. We will also show the first
steps towards a TSM for Reo with partially ordered set of tags, and how this
model may be closer to the Rendezvous model of Reo.

In Sect. 2, we explain Reo and its Timed Data Stream semantics. We also
explain the Tagged Signal Model, the possible structures of tag systems, and
the determinacy of a system in this framework. In Sect. 3, we briefly point out
to different semantics of Reo, and also to different places that TSM is used
as the semantic framework for different models of computations. In Sect. 4, we
show how to model Reo in the TSM framework with two different tag systems.
Section 5 includes discussions and conclusions.

2 Preliminary Concepts

We first provide an overview of the syntax and semantics of the coordination
language Reo, and then the meta-model of tagged signal framework.

2.1 Reo

Reo is a model for building component connectors in a compositional manner [1].
Each connector in Reo is, in turn, constructed compositionally out of simpler
connectors, which are ultimately composed out of primitive channels.

A channel is a primitive communication medium with exactly two ends, each
with its own unique identity. There are two types of channel ends: source end
through which data enter and sink end through which data leave a channel. A
channel must support a certain set of primitive operations, such as I/O, on its
ends; beyond that, Reo places no restriction on the behavior of a channel.

A set of primitive Reo channels (together with their Timed Data Stream
semantics) are shown in Table 1. Channels are connected to make a circuit.
Connecting (or joining) channels is putting channel ends together in nodes. Thus,
a set of channel ends is associated with a node. The semantics of a node depends

Reo Connectors and Components as Tagged Signal Models 163

on its type. Based on the types of its coincident channel ends, a node can have one
of three types. If all channel ends coincident on a node are exclusively source
(or sink) channel ends, the node is called a source (respectively, sink) node.
Otherwise, it is called a mixed node.

A component can write data items to a source node that it is connected
to. The write operation succeeds only if all (source) channel ends coincident on
the node accept the data item, in which case the data item is transparently
written to every source end coincident on the node. A source node, thus, acts as
a replicator. A component can obtain data items, by an input operation, from a
sink node that it is connected to. A take operation succeeds only if at least one
of the (sink) channel ends coincident on the node offers a suitable data item; if
more than one coincident channel end offers suitable data items, one is selected
nondeterministically. A sink node, thus, acts as a nondeterministic merger. A
mixed node nondeterministically selects and takes a suitable data item offered
by one of its coincident sink channel ends and replicates it into all of its coincident
source channel ends.

Reo offers an open ended set of channels, but a set of primitive channels,
shown in Fig. 1, are commonly used in Reo circuits. The behavior of every con-
nector in Reo imposes a specific coordination pattern on the entities that perform
normal (blocking) I/O operations through that connector, which itself is oblivi-
ous of those entities. This makes Reo a powerful glue language for compositional
construction of connectors to combine component instances and Web services
into a software system and exogenously orchestrate their mutual interactions.

2.2 Timed Data Stream

In [2], Arbab and Rutten introduce Timed Data Stream (TDS) models as the
first formalization of the semantics of Reo connectors. Informally, a TDS model
of a connector describes for each of its nodes which and when–in dense time–data
items flow through this node. It does so by associating each node with a timed
data stream. A timed data stream (α, a) consists of a data stream α ∈ Dataω

and a monotonically increasing time stream a ∈ Rω
≥ consisting of increasing

positive real numbers including zero. The time stream a indicates for each data
item αn the moment an at which it is being input or output. By associating
each node of a connector with its own TDS in a TDS tuple, a single execution
of the connector is defined. To describe all possible executions of a connector, it
has to be associated with a set of TDS tuples; we call such a set the TDS model
of the connector. Usually, such a TDS model is defined as a predicate on TDSs
that induces the set of admissible TDS tuples of a connector. (Enumerating
all admissible TDS tuples of a connector becomes impossible because, not only
each stream in a TDS itself is infinite, the set of admissible TDS tuples usually
contains infinitely many elements.)

The Sync channel inputs the data elements in the stream α at time a, and
outputs the date stream β at time b. All data elements that come in, come
out in the same order, i.e., α = β, and at the exact same time a = b. For a
FIFO1 channel what comes in, comes out (α = β), but at a later time (a < b).

164 M. Sirjani et al.

Moreover, at any moment the next data item can only be input after the present
data item has been output (b < a′) which means b(n) < a(n + 1), for all n ≥ 0.
The connector Merger is a ternary relation with two input ends and one output
end. This connector merges the two input data streams into a data stream on its
end. Merger handles the data element on one of its input ends first which comes
out on its output end. The LossySync channel passes a data element on its input
end instantaneously on as an output element, and continues with the remainder
of the streams as before. If the output end is not ready for the rendezvous then
the input element is discarded. The SyncDrain channel has two input ends, and
the data elements in the stream α and β enter the two input ends of this channel
simultaneously, i.e., a = b. There is no constraint on the data streams, the data
elements enter and disappear.

Constraint automata can be viewed as acceptors for tuples of timed data
streams that are observed at certain input/output ports A1, . . . , An of compo-
nents. The rough idea is that such an automaton observes the data occurring at
A1, . . . , An and either changes its state according to the observed data or rejects
it if there is no corresponding transition in the automaton.

Table 1. Primitive connectors and their corresponding semantics as Timed Data
Stream

Reo Connectors and Components as Tagged Signal Models 165

2.3 Tagged Signal Model

Let T and V denote the set of tags and values, ranged over by t and v respectively.
An event e is a pair of a tag and a value, where its tag may denote the time
that the event has occurred while its value may represent the operand/result of
a computation. A signal s is a set of events, and the set of all signals S is defined
by the powerset ℘(T × V). A tuple s of N signals written by s = (s1, . . . , sN),
is used to model the behavior of a process; and a process which is a unit of
computation is a set of behaviors. We use the position i in the tuple to denote
the signal si. The set of all such tuples is denoted by SN . The empty signal is
denoted by λ ∈ S while the tuple of empty signals by Λ ∈ SN .

In this framework, a system is modeled by a composition of a set of processes.
A process P is described in its general term as a subset of SN , called its sort. A
particular s ∈ SN is called a behavior of P if s ∈ P . For N ≥ 2, a process can
also be interpreted as a relation/function between the N signals in s which can
be partitioned into input/output signals.

A composition of processes is simply defined by the intersection of the behav-
iors of the processes. In order to be able to compose processes, all processes have
to be modeled using the same sort. This is one of the more subtle aspects of
TSM. This means that the set of behaviors of a process includes signals that are
neither inputs nor outputs to the process, that the process has nothing to do
with. Every possible valuation of such signals can be found in the behaviors of
the process. When composing processes by intersection, a process has no effect
on signals that are irrelevant to it because all possible valuations of those sig-
nals are legitimate behaviors of the process, and when we form set intersection,
these irrelevant signals are not constrained by the process in any way. So, for
composition, processes are defined as a subset of the same sort by augmenting
their tuples using cross product.

Interaction is defined by the particularly simple process C ⊂ SN , called
connection, where two (or more) of the signals in the N -tuple are constrained to
be identical. Connections are useful to couple the behaviors of other processes.
For example, the connection Ci,j = {s ∈ SN | si = sj}, intuitively models
that the signals si and sj are connected together. To hide some signals, the
projection operator πI(s) is used which maps s = (s1, . . . , sN) to (si1 , . . . , sim)
where I = {i1, . . . , im} is an ordered set of indexes in the range 1 ≤ i ≤ N . For
instance the composite process in the right-side of Fig. 3 is defined by π1,4((P1 ×
S2) ∩ (S2 × P2) ∩ C2,3) which can be simply denoted by π1,4((P1 × P2) ∩ C2,3).

A process P is functional with respect to the index sets I and O for m
and n input and output signals respectively, if for every s ∈ P and s′ ∈ P ,
πI(s) = πI(s′) implies πO(s) = πO(s′). Therefore, for the functional process P
with respect to (I,O), a single-valued mapping F : Sm → Sn can be defined such
that for all s ∈ P , πO(s) = F (πI(s)). Note that a process may be functional with
respect to more than one pair of index set (I,O). This property is preserved by
the composition of functional processes as long as no feedback loop is involved.

166 M. Sirjani et al.

Tag Systems. Intuitively tags are used to model time, precedence relations,
synchronizations points, etc. The central role of a tag system is to establish
ordering among events. The structure of a tag system distinguishes various con-
current models of computation, classified into timed and untimed. The former
characterizes systems in which the order of events is deterministically defined
relative to some physical or logical clock. Therefore, timed models of computa-
tion are characterized by a totally ordered set of tags while untimed ones by a
partially ordered set of tags. In a timed model, the order of all events is clear
and all tags are comparable, while in an untimed model, a subset of events can
be ordered.

Determinacy. Many processes (not necessarily functional) have the notion of
inputs which characterize events or signals that are defined outside the process.
Formally, an input to the process P ⊆ SN is an externally imposed constraint
A ⊆ SN such that A ∩ P is the total set of acceptable behaviors. The behavior
of a process for a set of possible inputs, denoted by B ⊆ ℘(SN), can be defined
by (P,B).

A process (P,B) is called closed if B = {SN}, a set with only one element,
A = SN . Since A∩P = P , no input constraints are imposed on a closed process.
A process and its possible inputs is open if it is not closed.

A process is called deterministic “if for any input A ∈ B it has exactly one
behavior or exactly no behavior; i.e. |A ∩ P | = 1 or |A ∩ P | = 0, where |X| is
the size of the set X.” Otherwise, it is called nondeterministic. Consequently, a
closed process P is deterministic if |P | = 1 or |P | = 0 (because B = {SN} and
|SN ∩ P | = 1 or |SN ∩ P | = 0).

A functional process with respect to (I,O) is obviously deterministic if I and
O together contain all the indexes in 1 ≤ i ≤ N .

3 Related Work

In recent years, many formalisms for describing the behavior of Reo connectors
have emerged. Jongmans and Arbab provided an overview of thirty different
semantic formalisms for Reo in [4]. These models include coalgebraic models,
operational models, and models based on graph-coloring. In [4], the authors also
investigate in more detail the expressiveness of constraint automata and coloring
models. We encourage the interested reader to [4] for more detailed information.

The first formal semantics proposed for Reo is Timed Data Streams proposed
in [2]. In [2], like in most other semantics proposed for Reo, the focus is on the
set of connectors and their composition, and the behavior of components is
abstracted away and substituted by (sometimes implicit) assumptions. Tagged
Signal Model is introduced in [6] as a denotational framework for comparing
models of computation. It is a generalization of the Signals and Systems approach
to system modeling and specification [7]. Using Tagged Signal Model, one can
give structure to the sets of signals, give structure to the functional processes, and
develop static analysis techniques. Moreover, we can compare certain properties

Reo Connectors and Components as Tagged Signal Models 167

of the models of computation, such as their notion of synchrony, and define
formal relations among signals and process behaviors.

The similarities between tagged signals and timed data streams motivated
us to look into Reo semantics using TSM framework. The goal is to use the
established theory around Tagged Signal Model for reasoning about different
properties of Reo circuits. This paper is the first attempt in moving towards
this goal. Although TSM and TDS are very similar in their structure, our work
in this paper shows subtle problems that need to be solved to be able to use
the fixed point theorems established for TSM in the context of Reo connectors.
TSM is mainly used to reason about Kahn Process Networks and Discrete Event
model of computation. Reo is using a Rendezvous model of computation, and
there is no TSM proposed for such models. Comparing to the TDS model, the
TSM framework will add the ability to also model processes rather than just
connectors. We will show that in the TSM for Reo, we can use the same totally
ordered tag system as in the TDS, but most Reo circuits will be nondeterministic.
We will also show the first steps towards a TSM for Reo with partially ordered
set of tags, and how this model may be closer to the Rendezvous model of Reo.

4 Reo Connectors as Tagged Signal Models

To study the notions of concurrency, determinacy and synchronization of Reo
connectors, we define how these properties can be captured within the tagged
signal model. We provide a denotational semantics for Reo depending on how
the tag system is structured.

In the first setting, the tag system is considered to be totally ordered and is
the set of non-negative real numbers. This structure is inspired from the seman-
tics of Reo as Timed Data Streams in [2]. As there is a global view of time
among the components, it can be considered that all components and connec-
tors are local. This setting can be extended to provide a suitable model for a
discrete-event simulator of Reo connectors.

In the second setting, the tag system is considered to be partially ordered.
In this setting, the components interacting with connectors and the nodes of the
connectors are considered to be distributed, and hence such a tag system reflects
the inherent problem in having a consistent time view in the implementation of
distributed systems. In this setting, we may receive signals with incomparable
tags at each channel end of a primitive connector (primitive channels or the
merger). So, keeping the Reo node behavior similar to the first setting, our
proposed TSM in the second setting comes short in defining semantics for all
the primitive connectors.

The model of computation in Reo nodes is rendezvous, and Reo nodes take
care of signals received from different (sink) channel ends with (possibly) incom-
parable partially ordered tags and dispatch them accordingly to the (source)
channel ends. This way, we assume comparable tags for input and output signals
of each primitive connector (similar to [2]). To be able to capture the semantics
of Reo properly, in our future work we intend to adopt a partially ordered tag

168 M. Sirjani et al.

system, keep the semantics of each primitive connector aligned with their TDS
definitions in [2], and add a more elaborated semantics for Reo nodes as spe-
cial TSM connectors which compose channel ends and enforce the rendezvous
model. Such an adoption may make it possible to use the well-established the-
orems around Network Process [5] to reason about the determinacy systems
composed of Reo connector with feedback loops. Establishing all the details of
this third model is left as our future work, and in this paper we show how we
moved towards this semantics.

In all the models, each Reo channel can be viewed as a process, and its
input/output streams of data in to and out of channel ends are viewed as signals.

4.1 A Totally Ordered Tag Model

When the tag set is totally ordered, for any two distinct tags t, t′ ∈ T , either
t < t′ or t′ < t. We consider T to be the set of non-negative real numbers. We
say e1 < e2 when e1 = (t1, v) and e2 = (t2, v) for some v ∈ V where t1 < t2. Let
T (e) denote the tag of the event e, and let T (s) denotes the set of tags of all
events of the signal s.

We express the semantics of the five basic connectors as shown in Table 2.
We assume that signals s1 and s2 are totally ordered:

s1 = {ei, i ∈ N}, ∀ i, j · i < j ⇒ T (ei) < T (ej)
s2 = {e′

i, i ∈ N}, ∀ i, j · i < j ⇒ T (e′
i) < T (e′

j)

In this setting, the process of Sync is functional which can be defined by the
identity function. However, the FIFO1 connector is not a functional process. The
asynchronous behavior of FIFO1 makes it non-deterministic as for any (t, v) ∈ s1,
it can be delivered to s2 at any time t′ > t.

Here, Merger can be seen as a partial function process. The constraint T (s1)∩
T (s2) = ∅ expresses that its behavior is not defined when the tags of two events
at its input signals are equal. The semantics of LossySync is defined by a relation
due to its non-deterministic behavior in loosing events. The process of SyncDrain
is defined as a partial function.

Two connectors can be composed through a node which contains the channel
ends of the both connectors. Such a node imposes constraints on the signals
representing the channel ends being contained by the node. For instance, the
behavior of the mixed node in Fig. 2 is defined by the constraint C ′

1,{2,...,n}
which faithfully models the effect of nodes in Reo:

C′
1,{2,...,n} = {(s1, . . . , sn) | ∀2 < j ≤ n · (s2 = sj) ∧ ∀ei ∈ s1, e

′
i ∈ s2 · (T (ei) ≤ T (e′

i))}.

The semantics of a system is derived by the intersection of the behaviors of
it’s constituent processes.

Example 1. Consider a connector composed of two Sync channels connected in
sequence, as shown in Fig. 3. The behavior of the composite connector is defined

Reo Connectors and Components as Tagged Signal Models 169

Table 2. The primitive connectors Sync, FIFO1, Merger, LossySync, and SyncDrain and
their corresponding semantics with a totally ordered tag model. Note that s1 = {ei, i ∈
N} where ∀ i, j · i < j ⇒ T (ei) < T (ej), and s2 = {e′

i, i ∈ N} where ∀ i, j · i < j ⇒
T (e′

i) < T (e′
j), and we say e1 < e2 when e1 = (t1, v) and e2 = (t2, v) for some v ∈ V

where t1 < t2.

...
s1

s2 s3

sn−1sn

Fig. 2. A mixed node in Reo, including one source channel end (related to s1), and
multiple sink channel ends (related to s2 to sn)

s1

s2 s3
s4

P1 P2

s2 s3
s4s1 C2,3

Fig. 3. Two Sync channel in sequence and its corresponding composite process

170 M. Sirjani et al.

by the intersection of two functional processes P1 and P2 and the connection C2,3.
Therefore, Their composition is functional, and hence, since their composition
is acyclic, it is deterministic. This can be validated by computing the behavior
of the connector:

π1,4((P1 × P2) ∩ C2,3) = {(s1, s4) | s1 = s4}.

Example 2. Consider a system composed of a Merger connector and three com-
ponents C1, C2, and C3, as shown in Fig. 4. Assume that C1 and C2 are always
willing to generate data while C3 is always willing to consume data, defined by
processes P1, P2, and P3, respectively:

Pi = {(s1, s2, s3, s4, s5, s6) | T (si) = Rω
≥}, i ∈ {1, 2, 3}.

The behavior of the composite closed system is defined by the intersection of
all processes, the corresponding process of Merger, modeled by M and the con-
straints C ′

1,{4}, C ′
2,{5}, and C ′

6,{3}. The behavior of the composite system is:

P1 ∩ P2 ∩ P3 ∩ M ∩ C ′
1,{4} ∩ C ′

2,{5} ∩ C ′
6,{3}

where M is the augmented behavior of Merger:

M = {(s1, s2, s3, s4, s5, s6) | s6 = s4 ∪ s5 ∧ T (s4) ∩ T (s5) = ∅}.

The composition yields an uncountably infinite set and hence, defines a non-
deterministic system regarding the definition of determinacy in Sect. 2.3. Replac-
ing C1 and C2 by components with only one behavior will make the system
deterministic.

C1

C2

C3

s1 s4

s2 s5

s3s6
P1

P2

P3

s1 s4

s2 s5

s6 s3C'1,{4}

C'2,{5}

C'6,{3}
M

Fig. 4. A closed system composed of a Merger

Example 3. We change the system of Example 2 by connecting the inputs of
the merger to a SyncDrain channel, as shown in Fig. 5. We assume again that
C1(similarly C2) and C3 are always willing to generate and consume data respec-
tively. The behavior of the composite system is:

P1 ∩ P2 ∩ P3 ∩ D ∩ M ∩ C ′
1,{4,7} ∩ C ′

2,{5,8} ∩ C ′
6,{3}

Reo Connectors and Components as Tagged Signal Models 171

where M and D are the augmented behaviors of the Merger and SyncDrain
channels, respectively:

M = {(s1, s2, s3, s4, s5, s6, s7, s8) | s6 = s4 ∪ s5 ∧ T (s4) ∩ T (s5) = ∅}
D = {(s1, s2, s3, s4, s5, s6, s7, s8) | T (s7) = T (s8)}.

The composition yields an empty set and hence, results in a deterministic system.

C1

C2

C3

s1 s4

s2 s5

s3s6
P1

P2

P3

s1 s4

s2 s5

s6 s3

C'1,{4,7}

C'2,{5,8}

C'6,{3}
M

s7

s8
D

s7

s8

Fig. 5. A closed system composed of a Merger and a SyncDrain

4.2 A Partially Ordered Tag Model

As explained before, a partially ordered tag model seems more suitable in a
distributed setting for Reo connectors. Since different components have no con-
sistent view of time, only events generated by the same primitive connector
(component) at its sink channel ends (output ports of the component), and
events coming into the primitive connector from the same source channel end
(each input port of the component) are totally-ordered. When two sequences of
events (generated by different channels/components) arrive at the channel ends
of a Merger or SyncDrain, their tags cannot be compared. Therefore, the behav-
ior of Merger and SyncDrain cannot be defined in this setting without further
elaborations.

The semantics of Sync, FIFO1, and LossySync channels, provided in Table 3,
are similar to the ones given in the timed model of computation (totally ordered
tags). The Sync channel passes the events without manipulating their tags and
values. The behavior of FIFO1 ensures that the tag of each outgoing event is
greater then its corresponding incoming event but less then the next incoming
event. The behavior of LossySync channel shows that if an event passes through
the channel, its tag and value will not be changed, but passing an event is not
guaranteed. In contrast to the Sync channel, due to its nondeterministic behavior
in losing an event its process is not functional.

The behavior of a node is exactly modeled as in the totally ordered tags
setting. It should be noted that we assumed that a node and its constituent
ends are located at the same place, and hence their tags are comparable.

Providing a model for Merger, and SyncDrain channel needs more elaboration,
and we leave it to our future work.

172 M. Sirjani et al.

Table 3. The primitive connectors Sync, FIFO1, and LossySync channels and their
corresponding semantics with a partially ordered tag model. Note that s1 = {ei, i ∈ N}
where ∀ i, j · i < j ⇒ T (ei) < T (ej), and s2 = {e′

i, i ∈ N} where ∀ i, j · i < j ⇒ T (e′
i) <

T (e′
j), and we say e1 < e2 when e1 = (t1, v) and e2 = (t2, v) for some v ∈ V where

t1 < t2.

5 Discussion, Conclusion and Future Work

We observed the similarity between Tagged Signal Model presented in [6] and
Timed Data Stream presented in [2]. Different techniques are established based
on Tagged Signal Model to understand the behavior of a model of computation
better, and to reason about the determinacy of the composition of processes
at the syntactic level using fixed point theory. Our main motivation was to
discuss the possible nondeterministic behaviors of different Reo connectors spe-
cially when a feedback loop is formed in the composition, by exploiting TSM
framework and its results on systems with feedback loops. We provided two
denotational semantics for Reo connectors in the two timed and untimed models
of computation, based on totally and partially ordered sets of tags respectively.

Moving towards a partially ordered set of tags, we may stick to the way the
primitive connectors are modeled in [2], but we need to show how we compare
different tags coming from different sources where necessary, or show how and
where we can resolve this comparison. We need to consider the rendezvous that
is happening within Reo nodes to model the change of tags and propagation
of change of tags on the upstream signals coming in from other processes, and
downstream signals going to other processes. The details for this model is left
as the future work.

Acknowledgment. We would like to thank Professor Edward Lee for his very useful
comments and discussions.

Reo Connectors and Components as Tagged Signal Models 173

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

2. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In:
Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp.
34–55. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40020-2 2

3. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors
in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

4. Jongmans, T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci.
Ann. Comput. Sci. 22(1), 201–251 (2012)

5. Lee, E.A.: Concurrent Models of Computation - An Actor-Oriented Approach
(Draft) (2011)

6. Lee, E.A., Sangiovanni-Vincentelli, A.L.: A framework for comparing models of com-
putation. IEEE Trans. CAD Integr. Circuits Syst. 17(12), 1217–1229 (1998)

7. Liu, X.: Semantic foundation of the tagged signal model. Ph.D. thesis, EECS Depart-
ment, University of California, Berkeley (2005)

https://doi.org/10.1007/978-3-540-40020-2_2

	Reo Connectors and Components as Tagged Signal Models
	1 Introduction
	2 Preliminary Concepts
	2.1 Reo
	2.2 Timed Data Stream
	2.3 Tagged Signal Model

	3 Related Work
	4 Reo Connectors as Tagged Signal Models
	4.1 A Totally Ordered Tag Model
	4.2 A Partially Ordered Tag Model

	5 Discussion, Conclusion and Future Work
	References

