Efficient Response-Time Analysis for Tasks with Offsets

Jukka Maki-Turja Mikael Nolin
Méalardalen Real-Time Research Centre (MRTC)
Vasteras, Sweden

E-mail:j ukka. maki -t urj a@muh. se

Abstract This kind of tools can be used, for instance, to perform

We present a method that enables an efficient implemen_automatic allocation of tasks to nodes in a distributed-real

tation of the approximative response-time analysis (RTA) time system or to automatically derive task priorities {pri

for tasks with offsets presented by Tindell [13] and Palanci °'lty assignment) so that task deadlines are guaranteed to
Gutierrez et al. [8]. be met. To be able perform such allocation and/or assign-

ment tasks, tools need to be able to perform schedulabil-
ity tests. Typically, such automatic allocation/assignine
methods are based on optimisation or search techniques,
during which numerous possible configurations are evalu-
ated. (There can easily be tens or hundreds of thousands
of possible configurations even for small systems.) For
each configuration a schedulability test is performed in or-
der to evaluate different solutions. Hence, schedulgbilit

. o . . . tests must be fast in order to be suitable for such systems.
fix-point iteration. We show by simulations that the speed- o

X . : Dynamic real-time systems, with on-line admission con-
up when using our method is substantial. When task SetstroI of real-time tasks, needs to be able to quickly evalu-
grow beyond a trivial number of tasks and/or transactions ate whether a d nami,call arriving task can ge adr>1/1itted o
a speed-up of more than 100 times (10 transactions and 10 y y 9

tasks/transaction) compared to the original analysis can b the syst_em. In th(_as_e cases the toler_ance for delays in the
obtained. scheduling analysis is even less than in the case of software

engineering tools.

Accounting for offsets between tasks gives significantly
tighter analysis results than using the traditional notiba
critical instant where all tasks in the system are consitlere

A powerful and well established schedulability analysis to be released simultaneously [4]. Hence, tools for auto-
technique is th&Response-Time AnalygRTA) [1]. RTA is matic configuration (as well as on-line schedulability $gst
applicable to systems where tasks are scheduled in stiict pr would benefit from using this extension; it becomes eas-
ority order which is the predominant scheduling technique ier to find feasible configurations. In fact, many systems
used in real-time operating systems today. In this paper, wethat will be deemed infeasible by RTA without offsets will
present a method that enables an efficient implementatiorbe feasible when taking offsets into account. However, the
of the approximative RTA for tasks with offsets presented price of taking offsets into account is increased execution
by Tindell [13] and Palencia Gutierrez al. [8]. time of the analysis. Existing methods for RTA with offsets

RTA is a method to calculate worst-case response-timeshave all been focused on modelling capabilities while ignor
for tasks in hard real-time systems. In essence RTA ising issues of computational complexity, e.g., [8, 9, 11, 13]
used to perform a shedulability test, i.e., checking wheter The first RTA for tasks with offsets was presented by
or not tasks in the system will satisfy their deadlines. Frad Tindell [13]. He provided an exact algorithm for calculat-
tionally, industrial use of schedulability tests has béen | ing response time for tasks with offsets. However, this al-
ited. However, with recent advancements in software de-gorithm becomes computationally intractable for anything
velopment and synthesis tools, such as UML-based toolsbut small task sets due to its exponential time complexity.
[2, 10, 12], schedulability tests can be integrated in the no In order to deal with this problem, Tindell also provided an
mal workflow and tool-chains used by real-time engineers. approximation algorithm, polynomial in time, which gives

The method allows for significantly faster implementa-
tions of schedulability tools using RTA. Furthermore, re-
ducing computation time, from tens of milliseconds to just a
fraction of a millisecond, as we will show, is a step towards
on-line RTA in for example admission control systems.

We formally prove that our reformulation of earlier pre-
sented equations is correct and allow us to statically repre
sent parts of the equation, reducing the calculations dyrin

1 Introduction

(©IEEE Computer Society Press, Published in RTAS, May 2004.

pessimistic but safe (worst case response time is never un- 0,5 =8 =1
derestimated) results. Later, Palencia Gutiegtal. [3] 0,=2 ’ /
formalised, generalised and improved Tindell's work. &« <

In this paper we present a method that enables an effi-
cient implementation of the approximative offset analysis
given by Tindell [13] and Palencia Gutierreral. [8]. The
correctness of our method is formally proven by demon-
strating algebraic equivalence with the original methods. Figure 1. An example transaction T
The method significantly speeds up the calculation of re-
sponse times, as we will show by simulations.

Paper Outline: In Sect. 2 we revisit and restate the orig- 2.2 Response-time analysis
inal offset RTA [8, 13]. In Sect. 3 we present our new
method. Section 4 presents evaluations of our method, and The goal of RTA is to facilitate a schedulability test for
finally, Sect. 5 concludes the paper and outlines future work each task in the system by calculating an upper bound on its

worst case response-time. We ugg (taska, belonging to
) Existing offset RTA transactionl’,) to denote the¢ask under analysjs.e., the
task who's response time we are currently calculating.

In the classical RTA (without offsets) theitical instant
for 7,4 is when it is released at the same time as all higher
(or equal) priority tasks [3, 4]. In a task model with off-
sets this assumption yields pessimistic response-times si
some tasks can not be released simultaneously due to off-
set relations. Therefore, Tindell [13] relaxed the notidn o
critical instant to be:

o —
=
N
w
£
(&3]
(o2}
~
oo}
©
)

This section revisits the existing response-time analysis
for tasks with offsets [8, 13] and illustrates the intuitioe-
hind the analysis and the formulas.

2.1 System model

The system model used is as follows: The systémn,

consists of a set df transaction$'y, . .., I'x. Each transac- At least one task in every transaction is to be re-
tion T'; is activated by a (periodic) sequence of events with leased at the critical instant. (Only tasks with pri-
periodT; (for non-periodic event8; denotes the minimum ority higher or equal to,, are considered.)

interarrival time between two consecutive events). The ac-
tivating events are mutually independent, i.e., phasing be
tween them is arbitrary. A transactioR;, contains|T;]|

Since it is not known which task that coincides with (is
released at) the critical instant, every task in a transacti

tasks, and each task is activated (released for executionjust be treated as@ndidateto coincide with the critical

when a timeoffset has elapsed after the arrival of the ex- nstant. _ _ L
ternal event. Tindell’s exact RTA tries every possible combination of

We user;; to denote a task. The first subscript denotes candidates among all transactiops in the system. Thi_s, how-
which transaction the task belongs to, and the second sub€Ver, becomes computationally intractable for anything bu
script denotes the number of the task within the transaction STall task sets (the number of possible combinations of can-
A'task, 7, is defined by a worst case execution tir;), didates isn™ for a ;ystem withn tran;actlons an_d with,
an offset (;;), a deadline D;;), maximum jitter (;;), task; per transaction). _Thgrefore Tindell provided an ap-
maximum blocking from lower priority tasks;,), and a proximative RTA that still gives good results but uses one

priority (P,;). The system model is formally expressed as single approximation function for each transaction. Palen
cia Gutierrezt al. [8] formalised and generalised Tindells

follows: A :
work. We will in this paper use the more general formalism
I:={Ty,...,Tx} of Palencia Gutierreet al,, although our proposed method
Ly =7, ey 1 1) is equally applicable to Tindell’s original algorithm.

7ij :=(Cig> Oy Dijy Jig> Big, Poy) 2.3 Interference function

There are no restrictions placed on offset, deadline or
jitter, i.e., they are allowed to be both smaller or gredtant Central to RTA is to capture the interference a higher or
the period. Parameters for an example transactignwith equal priority task €;;) imposes on the task under analysis
two tasks ¢;4, 7ip) is visualised in Fig. 1. The offset denotes (r.,) during an interval of time. Since a task can interfere
the earliest release time of a task relative to the startsof it with 7, multiple times during¢ we have to consider in-
transaction and jitter denotes the variability in the reteaf terference from possibly seveiiaktances The interfering
the task. (In Fig. 1 the jitter is not graphically visualiged instances of;; can be classified into two sets:

Setl Activations that occur before or at the critical instant ®,.=5
and that can be delayed by jitter so that they coincide ®,, =2
with the critical instant. Wia Va
. T
Set2 Activations that occur after the critical instant | I i | I T L I I I i e
When studying the interference from an entire transac- o 1 2 3 4 5 6 7 8 9 10

tionI';, we will consider each task;. € I';, as acandidate (@) Tic = Tia
for coinciding with the critical instant.

RTA of tasks with offsets is based on two fundamental
theorems [8, 13]: P =6

Dy =9

T, N

1. The worst case interference a tagkimposes orr,, %b T
is whenSet1 activations are delayed by an amount of | | | | | | ! |
jitter such that they all occur at the critical instant and oz 4b ° o e e
the activations irSet2 have zero jitter. (b) 7ie = Tiv

2. The task ofl"; that coincide with the critical instant
(denotedr;.), will do so after experiencing its worst
case jitter delay.

Figure 2. ®-s for the two candidates in T';

. N . These are defined as follows:
The phasing between a task;, and a critical instant candi-

date, 7., becomes (slightly reformulated compared to [8], jset1 _ Vij + @iij Co I592(1) = P - (I)ijc—‘ C.
17 - i 1) - 1]

ijc

see Appendix A): e T; T;
2)
®ije = (04 = (Oie + Jic)) mod T @) The interference transactidh poses orr,,, during a time
From the second theorem we get thatwill coincide intervalt, when candidate;. coincides with the critical in-
with the critical instant after having experienced its wors stant, is:
case jitter delay (i.e., the critical instant will occur(&t;. +
Jic) mod T;, relative to the start of;). This implies that Wie(Tuart) = > (I3 +1521) 3)

the first instance of a task; in Set2 will be released ab; ;. Vj€hpi(Tua)
time units after the critical instant, and subsequent sglsa
will occur periodically everyr’;.

Figure 2 illustrates the four differeft;;.-s that are pos-
sible for our example transaction in Fig. 1. The upward ar- 2.4 Approximation function
rows denote task releases (the height of the corresponding™

arrow denotes amount of execution released, {’g,,and Si beforehand t k hich task i h
C;, respectively). Figure 2(a) depicts the situation whgn Ince we betorenand cannot know which task In €ac
transaction coincides with the critical instant, the exact

acts as the candidate critical instant. Shown is the phas- vsis tri iol binati 3 131 H
ing betweenr;, (2) andr;;, (5) for this situation. Further- analysis tries every possible combination [8, 13]. How-

more, Fig. 2(a) also shows activations for each task in the EVer: since this Is computationqlly ir_]tractable for anygi
transaction. Task instances belongingste1l are released .bUt small task sets the.approxmatlve analysls, presented
at time 0, and the first instance belonging &¢2 is also n [8, 13], d_efmes one single, upward approximated, func-
depicted (subsequent activation occur periodically). - Fig tion for the interference caused by transactign

ure 2(b) shows the corresponding situation;if happens Wi (Tua,t) = max Wie(Tua,t) (4)

to coincide with the critical instant. Ve€hpi(Tua)

Given the two sets of task instanceSefl and Set2)
and the corresponding phase relative to the critical instan
(®sc), the interference imposed by task can be divided
into two parts:

Wherehp;(r..,) denotes tasks belonging to transactign
with priority higher or equal to the priority of,,.

That is, W} (744, t) simply takes the maximum of each in-
terferance function (for each candidatg).

As an example consider again transaciigrdepicted in
Fig. 1. Figure 3 shows the interference function for the two

1. the part imposed by instancesdat1 (which is inde- ~ candidateslt’i, andWy), and it shows howV;" is derived
pendent of the time), Igiﬂ' and from tﬁhem by taking the maximum of the two functions at
everyt.
2. the partimposed by instancesint2 (which is a func- Given the interferencel{;) each transaction imposes

tion of the considered time intervg), 12 (¢). on the task under analysis,(), during a time interval of

1 "ijc

W, + W, We redefine Eg. 4 using our new notation as:
6T 6T e
4 :: I__ _— —! ________ 4 :: E --------------- WZ* (Tua7 t) == J,L”Ld(Tua) + j—jnd(Tuay t) (5)
—+ | P
21+--! 2 This partitioning of W;*(7,,,t) is visualised in Fig. 4.
T L L by Ji"d(r,,) is the maximum starting value of each of the
1T T T 17T T 17T 17T T°17 T 17T T 17 17T 17T 17T T 17 . .
012345678910 012345678910 Wie(Tua, t) functions (i.e. max oi.(7uq,0), see Eq. 3)
W, & W, AW which is calculated by:
6T e 6T
T FTTTTTYTTLOT ind _ Set1
T I_____! ¢ __4’—/—,7 JZ (Tua) o VCGI;{;)?(}iuQ) . Z IZ‘]C (6)
t - Vjehpi(rua)
2+--! 2+
—t —+>t

o
- -
N
w -
~ -
o -
o -
~
©
©
S
o
R
N o
w -
N~ -
o -
o -
~ -
o -

Figure 3. W;.(Tua,t) @and W (7,4, t) functions

lengtht, its response timeH,,) can be calculated. Ap-
pendix A shows how to perform these response-time calcu-
lations.

3 East offset RTA Figure 4. Wi (Tua,t), JI"(Tua), and Ti" (1, t)
The time induced parf;"¢(r,,, t), represents the max-

When calculating response times, the function jmum interference, during from tasks activated after the

Wi (Tua,t) (equation 4 on the preceding page) will critical instant. Algebraicallffi"%(r,,, t) is defined as:

be evaluated repeatedly. For each task and transaction

pair (r,, andT;) many different time-valuest, will be T} (Tua,t) = max Wik(7ya, 1) (7)

used during the fix-point calculations. However, since Ve€hpi(Tua)

Wi (Tua,t) has a pattern that is repeated evé&hytime

] o . . where
units (see theorem 2 in this section), a lot of computational

effort. could _be saved by .representlng t_he mterferepce Wi (Tua,t) = Z (If}iﬂ +I£2t2(t)) — (1)
function statically, and during response-time calculatio ViEhpr(rus)

use a simple lookup function to obtain its value. This o ®)
section shows how the functidi’;* (.., ¢) changes using The correctness of our method requires that our new def-
such precomputed information and how to calculate andjyition of W (7ua, t) in Eq. 5 is functionally equivalent to
store that information. the definition in Eq. 4.

3.1 Approximation function with lookup Theorem 1 W(rue,f) as defined in Eq. 4 and

_ _ _ W (Tua,t) as defined in Eq. 5 are equivalent.
The key to make a static representatioiof (7,4, t) is

to recognise that it contains two parts:) _))
Proof The theorem is proved by algebraic equivalence in

e Ajitterinduced part, denoted"¢(r,,). This partcor- ~ Appendix B.
responds to the task instances belongingdtl. Note _ _
that the amount of interference of these instances does Further, in order to be able to make a static representa-

not depend on. tion of W (744, t), we need to ensure that we store enough
information to correctly reprodud&’;*(r,,, t) for arbitrary
e Atime induced part, denoteéfi"¢(r,,, t). This corre- large values oft. SinceT;"¢(r,4,t) is the only part of

sponds to task instances Fet2. The time induced W;(7..,t) that is dependent oty the following theorem
part has a cyclic pattern that repeats itself ev€ry gives that it is enough to store information for the first
units of time (as we will prove below). time units:

Theorem 2 Assume = k = T; + t' (wherek € N and
0 <t <T;),then

T;nd(Tuav t) = k * T;nd(Tua; E) + T;nd(Tua’ tl)

Proof The theorem is proved by algebraic equivalence in Figure 5. Visual representation of p;. sets

Appendix B.
ues. The following equations define the argay.
We represent"¢(r,,, t) for the firstT; time units using

the concave corners of the functidi™¢(r,,,t) (marked pic[l].z =0

with crosses in Fig. 4). The representation uses two ar- pic[l].y = Z If}i“ — " (74)
raysT¢ andT}. Tf¢[x] represents the maximum amount Vi€hpi(Tua)

of time induced interferenck; will pose on a lower prior-

ity task during interval lengths up t6¢[z] (z € 1...|T¢|). ke2... |l {pic[k]'x = Dike

Using these two arrays we redefifg?(r,,,) as follows: piclkl.y = piclk — 1].y + Ci

ind S . Eachp;. set represents how the time induced interfer-
T (Tuas t) =k * TE|TY|] + T[] ence grows, for critical instant candidatg, during one pe-
k =t div T; 9 riod (T}). For our example transaction of Fig. 1, we get the
t' =t remT; ©) following two p,.-s (corresponding to the black and white

v =min{y : ¢ < T'[y]} circles in Fig. 5):
pia = [(0,—1),(2,1),(5,2)] black circles
For our example transaction, the time induced interfer- pis = [(0, 0),(6,2),(9,3)] white circles

ence (represented in Fig. 4 by crosses) is stored in the ar-

raysT* andT! as follows: Now, we have the information generated by all

Wiﬁ(rua,t)—functions, stored in the;.-sets. These step-
wise functions are represented by one point per step. In
order to get a representation @"¢(r,,,t) in Eq. 7,

we extract the points that represents the maximum of all

W,;(Tua, t)-s. Thus, we will obtain the convex corners of

Using Eq. 5 and Eq. 9 instead of Eq. 4 to compute Tind(r, 1)

W (Tua, t) Will significantly reduce the time to computere- ¢ . .
sponse times as we will show in Sect. 4. Next,. we calculate the set of poings, as the union of
all Dic-S:
bi = U Dic

Tic€EL

In order to determine what points jn that corresponds

To computely andT} we will first calculate the pattern the the convex corners af/"?(r,,,t), we define the re-
for eachW;! (7.4, t) from which we will later extract the lation subsumeshat says: A poinp;[a] subsumes a point
maximum. Hence, we have to consider each taskn I'; p;[b] (denotedp;[a] > p;[b]) if the presence ofi;[a] implies
as a candidate to coincide with the critical instant. Foheac that p;[b] is not a convex corner. Figure 6 illustrates the
candidate tasks;., we define a set of poinis.. Each point subsumes relation graphically, and the formal definition is
pic[k] has anr and ay coordinate, describing how the time .
induced interference grows over time if the corresponding ~ Pilal = pi[bl iff pilal.y > pilbl.y A pilal.x < pilb].x

Te =[0, 1, 2, 3
T: =[2, 5 9, 10]

3.2 PrecomputingZf and T}

Tic Coincides with the critical instant. The pointsip. cor- Given the subsumes relation the convex corner are found
responds to the convex cornersf’ (4, t) of Eq. 8. W} by removing all subsumed points:

andW;;, for our example transaction, are depicted in Fig. 5

and the corresponding, andp;,, are illustrated by black Fromp; removep;[b] if Ja # b : p;la] = ps[b] (10)

and white circles respectively.) . Now, p; contains the convex corners of the function
To calculate the set;., we (without loss of generality) Tind(7,..t). For our example transaction we now have:
assume that tasks are enumerated according to their first ac-* e

tivation after the critical instant, i.e., according®g;. val- pi = [(0,0),(2,1),(5,2),(9,3)]

Yyt ° s o e p[a]
© x x o Not subsumed
° x X x Subsumed

Figure 6. Removing points from p;

All we have to do now is to find the concave corners
(illustrated by crosses in Fig. 5) and store them in the array

T¢ andT}. This is done by the following algorithm:

for k := 1 to |p;| do
Telk] = pilk]y
if k < |p;| then

Tf k?] .= pi[k;—i—l].x
el se

done

For our example transaction this gives the followifig
andT} (corresponding to crosses in Fig. 5):

r =] 0
2

ot
©o

In the special case that some tagk has ®;;c = 0,
the first element off may not be zero. However, since
Ti"4(0) = 0, we need to have at least one elementjn
that is zero. In such cases we prepend both the affflys
andT} with a zero (stating that there will be 0 time induced
interference for any time interval of length up to 0).

3.3 Space and Time Complexity
The number of points to calculatg;] is quadratic with

respect to the number of tasks in the transacfior(|T;|
points for each candidate task). Thus, storiffgand 7}

results in a quadratic space complexity since, in the worst-

case, no points from; will be removed.

The method presented in this paper divides the calcula- o

tion of IW* into a pre-calculation and a fix-point iteration

phase. A naive implementation of the removal procedure in
Eqg. 10 requires comparison of each pair of points; result- o

ing in cubic time-complexity@(|T;|?)) for pre-calculating
T¢ and T} During the fix-point iteration phase, a bi-

(Eq. 9), resulting irO(log |T';]?) time complexity for calcu-
lating W;* according to Eq. 5. The original complexity for
calculatingi;* according to Eq. 4 i©(|T;|?).

In a complete comparison of complexity, the calcula-
tion of W (7uq,t) must be placed in its proper context
(see the response time formulas in appendix A). Assume
X denotes number of fix-point iterations needed, then the
overall complexity for the original approach (Eq. 4) is
(O(X|1;]?)), whereas our method (Eq. 5 & Eq. 9) yields
(O(|T4]* + X log [T [?)).

4 Evaluation

In order to evaluate the effectiveness of our method
we have implemented the response-time equations in ap-
pendix A, using both the original defintion &¥; from
Sect. 2 (Old RTA) and our faster versionlét* from Sect. 3
(Fast RTA). Using these implementations and a synthetic
task-generator we have performed an evaluation, by simu-
lations, of both approaches by calculatig the responsestime
for all tasks in the system.

4.1 Description of Simulation

In our simulator we generate task sets that are used as
input to the different RTA implementations. The task-set
generator takes the following parameters as input:

e Total system load (in % of total CPU utilisation),
e the number of transactions to generate, and
e the number of tasks per transaction to generate.

Using these parameters a task set with the following prop-

erties is generated:

e The total system load is proportionally distributed over
all transactions in the system.

e Transaction periodsl{) are randomly distributed in the
range 1.000 to 1.000.000 (uniform distribution).

e Each offset Q;;) is randomly distributed within the
transaction period (uniform distribution).

e The execution timed{;;) are chosen as a fraction of the

time between two consecutive offsets in the transaction.

The fraction is the same throughout one transaction. The

fraction is selected so that the the transaction load (as

defined by the first property) is obtained.

The jitter (J;;) is randomly distributed between zero and

1.2 times the transaction period. (1.27;, uniform dis-

tribution).

Blocking (B;;) is set to zero.

e The priorities are assigned in rate monotonic order [4].

We have measured execution times for performing RTA (for

nary search through a quadratically sized array is perfdrme 5| tasks in the system) using both methods (Old RTA and

in Sect. 4 we use a@(|T';|2logN) implementation based on sorting
the points and making a single pass through the sorted set.

Fast RTA). The execution times are obtained from a lap-
top with a Pentium Il CPU. For Fast RTA the execution

times include the time to calculaf&® and 7. The results

in Sect. 4.2 have been obtained by taking the mean values
of 50 simulated task-sets for each point in each graph. The
95% confidence intervals are shown for all execution times

(although difficult to see due to their small size).

Seconds

4.2 Simulation Results

Figure 7(a) shows the execution times for Fast RTA and
Old RTA when the number of tasks/transaction is varied
from 1 to 10 (while keeping the system load at 9/10 (90%)
and the number of transactions at 10). When the number of
tasks/transaction is 10, the execution time is less thah 0.4
seconds for Fast RTA, and about 20 seconds for Old RTA.
This amounts to a speedup of 50 times. Similar execution
times are obtained both when varying the number of trans-
actions between 1 and 10 and when varying load between
1/10 (10%) and 9/10.

In Fig. 7(b) the complexity of Fast RTA is shown, and by
comparison with Fig. 7(a) it can be seen that Fast RTA has
a less steep curve than does Old RTA. Also, in Fig. 7(b) the
amount of time spent pre-calculating the arrdysand 7"
is plotted, and it is apparent that the overhead is negégibl
For the larger task sets, about 0.3% of the total time of Fast
RTA, is spent on precomputirig® and 7.

Figure 7(c) shows the execution-time of the pre-
calculation only. Since we use N? log N) implementa-
tion of the pre-calculation the slope is slightly less thdratv
could be expected from a naive implementation /3)).

In Fig. 8 we show the relative execution time of Fast RTA
compared to Old RTA, calculated b5t /to1d, Where
trast IS the execution time for Fast RTA arig;y for Old
RTA. The first plot (+) shows how the relative execution
time changes when the number of tasks/transaction is var-
ied from 3 to 10. When the number of tasks/transaction is
1 the relative execution time is 0.58 and it rapidly decrsase
to the values visible in the graph.

The second plotX) in Fig. 8 illustrates when the number
of transactions is varied between 2 and 10. When the num-
ber of transactions is 1, the relative execution time is 1.01
which means that Fast RTA #owerthan Old RTA. When
performing RTA for a single transaction, the overhead of
precomputingl’¢ and 7! outweighs the benefits obtained
during the RTA (the pre-computéd;* is never used). How-
ever, as seen in the plot, when the number of transactions is«
higher than 1, the overhead is well justified since the total
RTA is significantly faster.

The third plot &) in Fig. 8 illustrates when the load is
varied between 1/10 (10%) and 9/10 (90%). In this plot we
see that the relative execution time is not highly dependent
on the system load, only a small decrease in relative execu-
tion time is obtained as the system load grows.

In order to compare Old RTA and Fast RTA, in the con-

Seconds

Seconds

action

(a) Comparison Fast RTA and Old RTA

Fast RTA ——
Old RTA

15+

10

1 2 3 4 5 6 7 8 9 10
Tasks/Transaction

(b) The overhead for pre-calculation
0.4

Fast RTA ——
0.35 Pre-Calculation--—---
03r
0.25
0.2
0.15
0.1
0.05
0 " " " “ " n
1 2 3 4 5 6 7 8 9 10
Tasks/Transaction
(c) Complexity of pre-calculation
0.0014 T T T — T
Pre-Calculation--—---
0.0012 A
0.001 - ”]
0.0008 o
0.0006 | o
0.0004 | o
0.0002f , '

1 2 3 4 5 6 7 8 9 10
Tasks/Transaction

Figure 7. Execution time

0.12 | H Transakts.=10, Load=9/10——+

Tasks/Trans.=10, Load=9/10---
01 X Transakts.=10, Tasks/Trans.=10- |
0.08
0.06
0.04
002 7

1 2 3 4 5 6 7 8 9 10
Tasks/Trans., Transactions, Load

Figure 8. Relative execution time

text of on-line admission control, we generated task sets(1) Engineering tools (such as those for task allocation and
with 9/10 load, 10 transactions with 10 tasks/transaction priority assignment) can feasible rely on RTA and use the
and performed the RTA for a single task (corresponding to task model with offsets, and (2) on-line scheduling algo-
a dynamically arriving task to the system) at lowest prjorit rithms, e.g. those performing admission control, can use
We generated 100 different tasks sets using execution timesccurate on-line schedulability tests based on RTA.
for the single task between 1000 and 6000. The result was We have earlier provided a tighter version of the RTA for
that the average execution time for Fast RTA was 0.33mstasks with offsets [7]. Our next step is to extend our method
and 44ms for Old RTA. The speedup for admission control of static representation of task interference to our tighte
is about 130 times, which is noticeable greater than in the RTA, yielding a RTA that is both significantly faster and
previous simulations. The reason is that the new task is theprovides less pessimistic response times than previohs tec
only task in its transaction, which means thef is used niques. Further, we are currently starting a project where
for all interference computations afid;. is never used (see RTA for tasks with offsets will be used in software engineer-
Appendix A) and hence our improvementitg* is isolated. ing tools. The RTA will be used both to perform schedula-
In fact, in the preliminary work for this paper [5] a speedup bility tests and for automatic allocation of software to aed
of over 600 times was observed for a simplified task-model in a distributed system.
where fix-point iteration only requireld’* to be computed.

Our conclusions from this simulation study are that: (1) References
Fast RTA performs significantly better than Old RTA. For
anything but trivially small task sets the speedup is attleas Fixed Priority Pre-Emptive Scheduling: An Historical Per
n t.he O.rder of a magnitude, (2.) Fast RTA brings down exe- spective.Real-Time System8(2/3):129-154, 1995.
cution times for whole scenarios from the order of seconds [2] |-Logix. ~ Rhapsody. http://www.ilogix.com/products/
to fractions of seconds, and (3) Fast RTA brings down exe- rhapsody.
cution times for single tasks from the order of some 100ms [3] M. Joseph and P. Pandya. Finding Response Times in a Real-
to the microsecond range. This decrease is important in or- |, Time System.The Computer Journa29(5):390-395, 1986.

- . . ; C. Liuand J. Layland. Scheduling Algorithms for Multgsr
der to make RTA a feasible technique to include in, e.g., gramming in a Hard-Real-Time Environmedburnal of the

[1] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellisg

on-line scheduling algorithms performing RTA on-line (ad- ACM, 20(1);:46-61, 1973. _
mission control being an example) and optimizing alloca- [5] J. Maki-Turja and M. Nolin. Faster Response Time Analy-
tion or configuration tools. sis of Tasks With Offsets. 184" |IEEE Real-Time Systems

Symposium (RTSS) Work In Progress Rrbecember 2003.
[6] J. Maki-Turja and M. Nolin. Speeding Up the Response-

5 Conclusions and Future Work Time Analysis of Tasks with Offsets. Technical Report ISSN
1404-3041 ISRN MDH-MRTC-154/2004-1-SE, MRTC Re-

In this paper we have presented a novel method that al- port, Mélardalen Real-Time Research Centre, Méalardalen

.. Universi_tly, February 2004.
lows for an (_aff|0|ent |mplementat|on of the gpproxmatlve [7] J. Maki-Turja and M. Sjédin. Improved Analysis for Real-
Response-Time Analysis (RTA) for tasks with offsets pre- Time Tasks With Offsets — Advanced Model. Technical Re-
sented by Tindell [13] and Palencia Gutieretzl. [8]. port MRTC no. 101, Mélardalen Real-Time Research Centre
The main effort in performing RTA for tasks with offsets SMRTC), May 2003.
] J. Palencia Gutierrez and M. Gonzalez Harbour. Schedula

is to calculate how higher (or equal) priority tasks intesfe

with a task under analysis. The essence of our method is bility Analysis for Tasks with Static and Dynamic Offsets.

In Proc. 19" IEEE Real-Time Systems Symposium (RTSS)

to calculate and store this information statically and ngri December 1998.

response time calculations (fix-point iteration), use a-sim [9] J. Palencia Gutierrez and M. Gonzalez Harbour. Exploit-
ple table lookup. We have formally proved that the RTA- ing Precedence Relations in the Schedulability Analysis of
equations can be reformulated to allow such static repre- Distributed Real-Time Systems. Rroc. 20" IEEE Real-
sentation of task interference. Time Systems Symposium (RTB&jes 328-339, December

We have, by S|mulat|ons,_ shawn thfit the spee_dgp for[lo] é%%%nal. Rational Rose RealTime. http://www.ratibn
our method compared to [8] is subst_antlal. For reaill_stycall com/products/rosert.
sized task sets (100 tasks), performing schedulabilitj-ana [11] O. Redell.Response time analysis for implementation of dis-
ysis gives a speedup of about 50 times. And from our eval- tributed control systemsPhD thesis, KTH, Department of
uation we can conjecture that the relative improvement will Machine Design, 2003. Series: TRITA-MMK 2003:17.

be even higher for larger task sets. In an on-line RTA con- [12] T?;Ztcc)?slft}au Telelogic tau. http:/lwww.telelogic.cém

text, e.g., on-line admission control systems, our method[13] K. Tindell. Using Offset Information to Analyse StafRri-
outperforms previous methods by at over a factor of 100 ority Pre-emptively Scheduled Task Sets. Technical Report
and reducing the actual time to the micro second range. YCS-182, Dept. of Computer Science, University of York,

Faster RTA have several positive practical implications: England, 1992.

A Complete RTA formulas

In this appendix we provide the complete set of formulas to ca
culate the worst case response tifg,, for a task under analysis,
Tua, @S presented in Palencia Gutieregal. [8].

The interference transactidh poses on a lower priority task,
Tua, If Tic coOiNcides with the critical instant, is defined by (see

Eq. 3 in this paper):
Jij + Pije t— P By
([P e [==]) e

Vj€hp; (Tua)

(26 in[8])
where the phase between taskand the candidate critical instant
taskr;. is defined as (see Eq. 1 in this paper):

‘I)z’jc =T; — (Oic + Jic — Oij) mod T;

The approximation function for transactidh which considers
all candidater;.-s simultaneously, is defined by (see Eq. 4 in this

paper):
Wi* (TUCH w) =

Wic (Tucu t) -

(17 in [8])

(27 in[8])

max
Veehp;(Tua)

Wic(Tuay ’LU)

The length of a busy period, fot,,, assumingr,. is the can-
didate critical instant, is defined as (Note that the appnation
function is not used foF',,):

Lyac =Bua + (p — Po,uac + 1)Cua+

Wuc(Tuay Luac) + Z Wi* (Tucu Luac)
Vitu

(30in[8])

wherepo, ... denotes the first, anlr ... the last, task instance,
of 7.4, activated within the busy period. They are defined as:

Jua Duac .
Po,uac = — \\ ; _J +1 (29 n [8])
and
Luac 7 (buac .
PL,uac = ’V T, _—‘ (31 In [8])

In order to get the worst case response timerfQr, we need to
check the response time for every instante, po,vac - - - PL,uac,
in the busy period. Completion time of tip&h instance is given
by:

wuac(p) :Bua + (p — Po,uac + 1)Cua

+ Wuc(Tua7 wuac(p) + Z Wz* (Tua7 wuac(p))
ViZu
28in[8))

The corresponding response time (for instapicis then:

Ruac(p) = Wuac(p) — Puac — (P — 1)Tu + Oua (321in[8))

To obtain the worst case response tirRe,,, for 7., we need
to consider every candidate critical instant., (including 7., it-
self), and for each such candidate every possible instancs,

Tua-

Rua =

max max
Ve€hpy (Tua)Ja P=P0,uacs-PL,uac

(Ruae(P))] (33in18])

B Proofs of Theorems

In this appendix we provide proofs of theorems 1 and 2. We will
perform all proofs by algebraic manipulation and use brdoes
highlight the expression that is manipulated in each stepeg W
also annotate braces with the equations, properties, lemara
assumptions referred to when performing some manipulgtion
These proofs are also available in [6].

When performing the manipulations we will, e.g., rely on the
following properties:

(max) — Themax, operator allows terms that are constant with
respect to the maximisation variable) o be moved out-
side the maximisation operation:

max(X, +Y) = max(X,) + Y.

(sum) — Summation over a set of terms can be divided into two
separate summations:

Z(XU +YU) - ZXU +ZYU

v

(ceil) — When taking the ceiling[(]) of a set of terms, terms
that are known to be integers can be moved outside of the
ceiling expression:

XeEN=[X+Y]=X+][Y]

Theorem 1 W/ (7ua,t) as defined in Eq. 4 ant/;*(uq, t) as
defined in Eq. 5 are equivalent.

Proof 1
Wi (Tua, t) = Jf"d(Tua) + Timd(Tua,t) =
N — N —

Eq.5 Eq.7

Jiind(‘rua) + m Wit(‘ruayt) -
Ve€hp; (Tua) S— !
. Eq.8
T (Taa)+
max IS 4 ISS2(4)) — T (e) =
Veehpi(Tua) We};T)(! e ®) (Tue)
(max)
n Se Se
s s (5w e0)-
PilTua Vj€Ehp; (Tua)
S (rua) =
Se Se
Veehp (rua) Z (15 + 1522 (1)) =
© PilTua Vj€hp; (Tua)
Eq.3
max Wic(Tua, t) = W, (Tua, t) O
Ve€hp;(Tua)

Eq.4

In prooving theorem 2 we will use some lemmas. Theorem 2 Assume = k * T; + t' (wherek € Nand0 <
t' < T;), then

Lemmal Regardless of candidate critical instantc:)))

[ZS](ZQ(TZ) = C»;j Tiznd(Tum t) =k=* Tilnd(Tuay Tz) + Tiznd(Tum t/)

Proof of Lemma 1

1542(T;) = ’7Ti }‘I)ijc—‘ Ciy = Cy; . Proof 2
N—— i ind +
i — — T, Tua,t) = Wi (Tua,t) =
o (T, t) = WiE (T,)

Eq.7
Setl Set2 ind
Lemma 2 Assume = kxT;+t’ (wherek € Nand0 < ¢’ < Tj), vferhr;%uw Z (L \Iﬂ,(_t)/) — S () =
thenI e (t) = k * I522(Th) + 1562 () vichpi <’w;) emz o
t t t
max Y (15 + b I5CH(T) +15% () -
Proof of Lemma 2 e e e ——
Lem.1
ind _
JSet2 t— D¢ kTt — Pije — F rwe) =
ije (t) = 7T' Ci]' = # Cij =
N e i ? .
oz N max Z (Iisjitl + kCi; + Igitg()) — and(Tua) =
Assumption VLG}LPL(T\?JHG)IW (Tua)
k«T; t —®; t— ®y
’V 1 4 J—‘ C’” — (k;+ ’77”6—‘> C’” — (sum)
T; T; T; max
Veehp; (Tua)
(Ceﬂ)t/;k G(; (Z k'Cz] + Z [gitl IisjitQ(t/)) - Jiind(Tua)) =
k Cij + { 5 ”ﬂ Cij = b+ IJ¢2(T) + I52°(¢) O ViERDi (Tua) Vi€hDi (Tua)
Lem.1 \+/ S e S
t1 2 ind
Fa2 Z kCij T eciax >Z (Lije " + L3a7() = I (Tua) =
' Viehp; (Tua) DN e hp; (tua)
Lemma 3 Tiznd(Tuay Tz) = Z CW
Viehpi(Tua) 3 5
e kD Oyt max D (Tl +1580) -
Vji€hp; (Tua) ¢ \?Jaelwl(ﬂ'ua)
Proof of Lemma 3 ——
i i Lem.3 .
,Tim (Tua, Ti), - we%?()f-uabwic (Tua, Ti) = Jimd(Tua) =
Eq.7 Eq.8
) ind
omax (S0 (IS EEHT) T () = Ba T e T+ s, e nd
i uaV]Ehp7 (rua) v %/na/(x)Z (Izyi Iz]i (t)) - Jzzn (Tua) =
ceh Tua
. Pi Vi€hp; (Tua)

Setl Set2 znd
max (E I, +E I57(J; (Tua)>:) Ea8

Yeek d + /

o€ lpl(rua)Jehpq (Tua) Vi€hp; (Tuag) ¥ k x Tizn (Tua7 Ti) + max Wic (Tumt) =

Lem.1 Veehp; (Tua)
Setl d

o (TG + 30 0 = 1 w) -

c np; (T . . -

s Vi€hpi(rua) Vi€hpi(Tua) k * Tiznd (Tucu Tz) + Tilnd (Tucu t,) D
(max)

Setl ind
E C»;j + max E L]c Jz (Tua) =
. Veehp;(Tya)
Vi€Ehp;(Tua) Vi€hp; (Tua)

Eq.6

D Cyt I (Tua) = S (Tua) = Y Ciy O

Vi€Ehp;(Tua) Vji€hp; (Tua)

	Efficient Response-Time Analysis for Tasks with Offsets
	1 Introduction
	2 Existing offset RTA
	2.1 System model
	2.2 Responsetime
	2.3 Interference function
	2.4 Approximation function

	3 Fast offset RTA
	3.1 Approximation function with lookup
	3.2 Precomputing Tc and Tt
	3.3 Space and Time Complexity

	4 Evaluation
	4.1 Description of Simulation
	4.2 Simulation Results

	5 Conclusions and Future Work
	A Complete RTA formulas
	B Proofs of Theorems

