
Efficient Response-Time Analysis for Tasks with Offsets

Jukka Mäki-Turja Mikael Nolin
Mälardalen Real-Time Research Centre (MRTC)

Västerås, Sweden

E-mail:jukka.maki-turja@mdh.se

Abstract
We present a method that enables an efficient implemen-

tation of the approximative response-time analysis (RTA)
for tasks with offsets presented by Tindell [13] and Palencia
Gutierrez et al. [8].

The method allows for significantly faster implementa-
tions of schedulability tools using RTA. Furthermore, re-
ducing computation time, from tens of milliseconds to just a
fraction of a millisecond, as we will show, is a step towards
on-line RTA in for example admission control systems.

We formally prove that our reformulation of earlier pre-
sented equations is correct and allow us to statically repre-
sent parts of the equation, reducing the calculations during
fix-point iteration. We show by simulations that the speed-
up when using our method is substantial. When task sets
grow beyond a trivial number of tasks and/or transactions
a speed-up of more than 100 times (10 transactions and 10
tasks/transaction) compared to the original analysis can be
obtained.

1 Introduction

c©IEEE Computer Society Press, Published in RTAS, May 2004.

A powerful and well established schedulability analysis
technique is theResponse-Time Analysis(RTA) [1]. RTA is
applicable to systems where tasks are scheduled in strict pri-
ority order which is the predominant scheduling technique
used in real-time operating systems today. In this paper, we
present a method that enables an efficient implementation
of the approximative RTA for tasks with offsets presented
by Tindell [13] and Palencia Gutierrezet al. [8].

RTA is a method to calculate worst-case response-times
for tasks in hard real-time systems. In essence RTA is
used to perform a shedulability test, i.e., checking wheter
or not tasks in the system will satisfy their deadlines. Tradi-
tionally, industrial use of schedulability tests has been lim-
ited. However, with recent advancements in software de-
velopment and synthesis tools, such as UML-based tools
[2, 10, 12], schedulability tests can be integrated in the nor-
mal workflow and tool-chains used by real-time engineers.

This kind of tools can be used, for instance, to perform
automatic allocation of tasks to nodes in a distributed real-
time system or to automatically derive task priorities (pri-
ority assignment) so that task deadlines are guaranteed to
be met. To be able perform such allocation and/or assign-
ment tasks, tools need to be able to perform schedulabil-
ity tests. Typically, such automatic allocation/assignment
methods are based on optimisation or search techniques,
during which numerous possible configurations are evalu-
ated. (There can easily be tens or hundreds of thousands
of possible configurations even for small systems.) For
each configuration a schedulability test is performed in or-
der to evaluate different solutions. Hence, schedulability
tests must be fast in order to be suitable for such systems.

Dynamic real-time systems, with on-line admission con-
trol of real-time tasks, needs to be able to quickly evalu-
ate whether a dynamically arriving task can be admitted to
the system. In these cases the tolerance for delays in the
scheduling analysis is even less than in the case of software
engineering tools.

Accounting for offsets between tasks gives significantly
tighter analysis results than using the traditional notionof a
critical instant where all tasks in the system are considered
to be released simultaneously [4]. Hence, tools for auto-
matic configuration (as well as on-line schedulability tests)
would benefit from using this extension; it becomes eas-
ier to find feasible configurations. In fact, many systems
that will be deemed infeasible by RTA without offsets will
be feasible when taking offsets into account. However, the
price of taking offsets into account is increased execution
time of the analysis. Existing methods for RTA with offsets
have all been focused on modelling capabilities while ignor-
ing issues of computational complexity, e.g., [8, 9, 11, 13].

The first RTA for tasks with offsets was presented by
Tindell [13]. He provided an exact algorithm for calculat-
ing response time for tasks with offsets. However, this al-
gorithm becomes computationally intractable for anything
but small task sets due to its exponential time complexity.
In order to deal with this problem, Tindell also provided an
approximation algorithm, polynomial in time, which gives

pessimistic but safe (worst case response time is never un-
derestimated) results. Later, Palencia Gutierrezet al. [8]
formalised, generalised and improved Tindell’s work.

In this paper we present a method that enables an effi-
cient implementation of the approximative offset analysis
given by Tindell [13] and Palencia Gutierrezet al. [8]. The
correctness of our method is formally proven by demon-
strating algebraic equivalence with the original methods.
The method significantly speeds up the calculation of re-
sponse times, as we will show by simulations.

Paper Outline: In Sect. 2 we revisit and restate the orig-
inal offset RTA [8, 13]. In Sect. 3 we present our new
method. Section 4 presents evaluations of our method, and
finally, Sect. 5 concludes the paper and outlines future work.

2 Existing offset RTA

This section revisits the existing response-time analysis
for tasks with offsets [8, 13] and illustrates the intuitionbe-
hind the analysis and the formulas.

2.1 System model

The system model used is as follows: The system,Γ,
consists of a set ofk transactionsΓ1, . . . , Γk. Each transac-
tion Γi is activated by a (periodic) sequence of events with
periodTi (for non-periodic eventsTi denotes the minimum
interarrival time between two consecutive events). The ac-
tivating events are mutually independent, i.e., phasing be-
tween them is arbitrary. A transaction,Γi, contains|Γi|
tasks, and each task is activated (released for execution)
when a time,offset, has elapsed after the arrival of the ex-
ternal event.

We useτij to denote a task. The first subscript denotes
which transaction the task belongs to, and the second sub-
script denotes the number of the task within the transaction.
A task,τij , is defined by a worst case execution time (Cij),
an offset (Oij), a deadline (Dij), maximum jitter (Jij),
maximum blocking from lower priority tasks (Bij), and a
priority (Pij). The system model is formally expressed as
follows:

Γ :={Γ1, . . . , Γk}

Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉

τij :=〈Cij , Oij , Dij , Jij , Bij , Pij〉

There are no restrictions placed on offset, deadline or
jitter, i.e., they are allowed to be both smaller or greater than
the period. Parameters for an example transaction (Γi) with
two tasks (τia, τib) is visualised in Fig. 1. The offset denotes
the earliest release time of a task relative to the start of its
transaction and jitter denotes the variability in the release of
the task. (In Fig. 1 the jitter is not graphically visualised.)

1 2 3 4 5 6 7 8 9 100

Oia=2

Cia=2

Oib=5

Ti=10

Jib=1

Cib=1

Jia=8

Time

Figure 1. An example transaction Γi

2.2 Response-time analysis

The goal of RTA is to facilitate a schedulability test for
each task in the system by calculating an upper bound on its
worst case response-time. We useτua (taska, belonging to
transactionΓu) to denote thetask under analysis, i.e., the
task who’s response time we are currently calculating.

In the classical RTA (without offsets) thecritical instant
for τua is when it is released at the same time as all higher
(or equal) priority tasks [3, 4]. In a task model with off-
sets this assumption yields pessimistic response-times since
some tasks can not be released simultaneously due to off-
set relations. Therefore, Tindell [13] relaxed the notion of
critical instant to be:

At least one task in every transaction is to be re-
leased at the critical instant. (Only tasks with pri-
ority higher or equal toτua are considered.)

Since it is not known which task that coincides with (is
released at) the critical instant, every task in a transaction
must be treated as acandidateto coincide with the critical
instant.

Tindell’s exact RTA tries every possible combination of
candidates among all transactions in the system. This, how-
ever, becomes computationally intractable for anything but
small task sets (the number of possible combinations of can-
didates ismn for a system withn transactions and withm
tasks per transaction). Therefore Tindell provided an ap-
proximative RTA that still gives good results but uses one
single approximation function for each transaction. Palen-
cia Gutierrezet al. [8] formalised and generalised Tindells
work. We will in this paper use the more general formalism
of Palencia Gutierrezet al., although our proposed method
is equally applicable to Tindell’s original algorithm.

2.3 Interference function

Central to RTA is to capture the interference a higher or
equal priority task (τij) imposes on the task under analysis
(τua) during an interval of timet. Since a task can interfere
with τua multiple times duringt we have to consider in-
terference from possibly severalinstances. The interfering
instances ofτij can be classified into two sets:

Set1 Activations that occur before or at the critical instant
and that can be delayed by jitter so that they coincide
with the critical instant.

Set2 Activations that occur after the critical instant

When studying the interference from an entire transac-
tion Γi, we will consider each task,τic ∈ Γi, as acandidate
for coinciding with the critical instant.

RTA of tasks with offsets is based on two fundamental
theorems [8, 13]:

1. The worst case interference a taskτij imposes onτua

is whenSet1 activations are delayed by an amount of
jitter such that they all occur at the critical instant and
the activations inSet2 have zero jitter.

2. The task ofΓi that coincide with the critical instant
(denotedτic), will do so after experiencing its worst
case jitter delay.

The phasing between a task,τij , and a critical instant candi-
date,τic, becomes (slightly reformulated compared to [8],
see Appendix A):

Φijc = (Oij − (Oic + Jic)) mod Ti (1)

From the second theorem we get thatτic will coincide
with the critical instant after having experienced its worst
case jitter delay (i.e., the critical instant will occur at(Oic +
Jic) mod Ti, relative to the start ofΓi). This implies that
the first instance of a taskτij in Set2 will be released atΦijc

time units after the critical instant, and subsequent releases
will occur periodically everyTi.

Figure 2 illustrates the four differentΦijc-s that are pos-
sible for our example transaction in Fig. 1. The upward ar-
rows denote task releases (the height of the corresponding
arrow denotes amount of execution released, i.e.,Cia and
Cib respectively). Figure 2(a) depicts the situation whenτia

acts as the candidate critical instant. Shown is the phas-
ing betweenτia (2) andτib (5) for this situation. Further-
more, Fig. 2(a) also shows activations for each task in the
transaction. Task instances belonging toSet1 are released
at time0, and the first instance belonging toSet2 is also
depicted (subsequent activation occur periodically). Fig-
ure 2(b) shows the corresponding situation ifτib happens
to coincide with the critical instant.

Given the two sets of task instances (Set1 and Set2)
and the corresponding phase relative to the critical instant
(Φijc), the interference imposed by taskτij can be divided
into two parts:

1. the part imposed by instances inSet1 (which is inde-
pendent of the timet), ISet1

ijc , and

2. the part imposed by instances inSet2 (which is a func-
tion of the considered time intervalt), ISet2

ijc (t).

1 2 3 4 5 6 7 8 90 10

ibτiaτiaτ
2=Φiaa

5=Φiba

(a) τic = τia

1 2 3 4 5 6 7 8 90 10

6=Φiab

9=Φ ibb

iaτ
ibτ ibτiaτ

(b) τic = τib

Figure 2. Φ-s for the two candidates in Γi

These are defined as follows:

ISet1
ijc =

⌊
Jij + Φijc

Ti

⌋

Cij ISet2
ijc (t) =

⌈
t − Φijc

Ti

⌉

Cij

(2)

The interference transactionΓi poses onτua, during a time
intervalt, when candidateτic coincides with the critical in-
stant, is:

Wic(τua, t) =
∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)

(3)

Wherehpi(τua) denotes tasks belonging to transactionΓi,
with priority higher or equal to the priority ofτua.

2.4 Approximation function

Since we beforehand cannot know which task in each
transaction coincides with the critical instant, the exact
analysis tries every possible combination [8, 13]. How-
ever, since this is computationally intractable for anything
but small task sets the approximative analysis, presented
in [8, 13], defines one single, upward approximated, func-
tion for the interference caused by transactionΓi:

W ∗
i (τua, t) = max

∀c∈hpi(τua)
Wic(τua, t) (4)

That is,W ∗
i (τua, t) simply takes the maximum of each in-

terferance function (for each candidateτic).
As an example consider again transactionΓi depicted in

Fig. 1. Figure 3 shows the interference function for the two
candidates (Wia andWib), and it shows howW ∗

i is derived
from them by taking the maximum of the two functions at
everyt.

Given the interference (W ∗
i) each transaction imposes

on the task under analysis (τua), during a time interval of

1 2 3 4 5 6 7 8 90

2

4

6

10 1 2 3 4 5 6 7 8 90

2

4

6

10

1 2 3 4 5 6 7 8 90

2

4

6

10 1 2 3 4 5 6 7 8 90

2

4

6

10

*
iW

iaW

ibia WW &

ibW

t t

tt

Figure 3. Wic(τua, t) and W ∗
i (τua, t) functions

length t, its response time (Rua) can be calculated. Ap-
pendix A shows how to perform these response-time calcu-
lations.

3 Fast offset RTA

When calculating response times, the function
W ∗

i (τua, t) (equation 4 on the preceding page) will
be evaluated repeatedly. For each task and transaction
pair (τua and Γi) many different time-values,t, will be
used during the fix-point calculations. However, since
W ∗

i (τua, t) has a pattern that is repeated everyTi time
units (see theorem 2 in this section), a lot of computational
effort could be saved by representing the interference
function statically, and during response-time calculation
use a simple lookup function to obtain its value. This
section shows how the functionW ∗

i (τua, t) changes using
such precomputed information and how to calculate and
store that information.

3.1 Approximation function with lookup

The key to make a static representation ofW ∗
i (τua, t) is

to recognise that it contains two parts:

• A jitter induced part, denotedJ ind
i (τua). This part cor-

responds to the task instances belonging toSet1. Note
that the amount of interference of these instances does
not depend ont.

• A time induced part, denotedT ind
i (τua, t). This corre-

sponds to task instances inSet2. The time induced
part has a cyclic pattern that repeats itself everyTi

units of time (as we will prove below).

We redefine Eq. 4 using our new notation as:

W ∗
i (τua, t) = J ind

i (τua) + T ind
i (τua, t) (5)

This partitioning ofW ∗
i (τua, t) is visualised in Fig. 4.

J ind
i (τua) is the maximum starting value of each of the

Wic(τua, t) functions (i.e. max ofWic(τua, 0), see Eq. 3)
which is calculated by:

J ind
i (τua) = max

∀c∈hpi(τua)

∑

∀j∈hpi(τua)

ISet1
ijc (6)

1 2 3 4 5 6 7 8 90

2

4

6

10

ind
iT

t

J
ind

i

*
iW

Figure 4. W ∗
i (τua, t), J ind

i (τua), and T ind
i (τua, t)

The time induced part,T ind
i (τua, t), represents the max-

imum interference, duringt, from tasks activated after the
critical instant. AlgebraicallyT ind

i (τua, t) is defined as:

T ind
i (τua, t) = max

∀c∈hpi(τua)
W+

ic (τua, t) (7)

where

W+
ic (τua, t) =

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)
− J ind

i (τua)

(8)
The correctness of our method requires that our new def-

inition of W ∗
i (τua, t) in Eq. 5 is functionally equivalent to

the definition in Eq. 4.

Theorem 1 W ∗
i (τua, t) as defined in Eq. 4 and

W ∗
i (τua, t) as defined in Eq. 5 are equivalent.

Proof The theorem is proved by algebraic equivalence in
Appendix B.

Further, in order to be able to make a static representa-
tion of W ∗

i (τua, t), we need to ensure that we store enough
information to correctly reproduceW ∗

i (τua, t) for arbitrary
large values oft. SinceT ind

i (τua, t) is the only part of
W ∗

i (τua, t) that is dependent ont, the following theorem
gives that it is enough to store information for the firstTi

time units:

Theorem 2 Assumet = k ∗ Ti + t′ (wherek ∈ N and
0 ≤ t′ < Ti), then

T ind
i (τua, t) = k ∗ T ind

i (τua, Ti) + T ind
i (τua, t′)

Proof The theorem is proved by algebraic equivalence in
Appendix B.

We representT ind
i (τua, t) for the firstTi time units using

the concave corners of the functionT ind
i (τua, t) (marked

with crosses in Fig. 4). The representation uses two ar-
rays T c

i and T t
i . T c

i [x] represents the maximum amount
of time induced interferenceΓi will pose on a lower prior-
ity task during interval lengths up toT t

i [x] (x ∈ 1 . . . |T c
i |).

Using these two arrays we redefineT ind
i (τua, t) as follows:

T ind
i (τua, t) =k ∗ T c

i [|T c
i |] + T c

i [x]

k =t div Ti

t′ =t remTi

x = min{y : t′ ≤ T t
i [y]}

(9)

For our example transaction, the time induced interfer-
ence (represented in Fig. 4 by crosses) is stored in the ar-
raysT c

i andT t
i as follows:

T c
i = [0, 1, 2, 3]

T t
i = [2, 5, 9, 10]

Using Eq. 5 and Eq. 9 instead of Eq. 4 to compute
W ∗

i (τua, t) will significantly reduce the time to compute re-
sponse times as we will show in Sect. 4.

3.2 PrecomputingT c
i and T t

i

To computeT c
i andT t

i we will first calculate the pattern
for eachW+

ic (τua, t) from which we will later extract the
maximum. Hence, we have to consider each taskτic in Γi

as a candidate to coincide with the critical instant. For each
candidate task,τic, we define a set of pointspic. Each point
pic[k] has anx and ay coordinate, describing how the time
induced interference grows over time if the corresponding
τic coincides with the critical instant. The points inpic cor-
responds to the convex corners ofW+

ic (τua, t) of Eq. 8.W+
ia

andW+
ib , for our example transaction, are depicted in Fig. 5

and the correspondingpia andpib are illustrated by black
and white circles respectively.

To calculate the setpic, we (without loss of generality)
assume that tasks are enumerated according to their first ac-
tivation after the critical instant, i.e., according toΦijc val-

1

3

10

+
ibW

t
5

+
iaW

2

Figure 5. Visual representation of pic sets

ues. The following equations define the arraypic:

pic[1].x =0

pic[1].y =
∑

∀j∈hpi(τua)

ISet1
ijc − J ind

i (τua)

k ∈ 2 . . . |Γi|

{

pic[k].x = Φikc

pic[k].y = pic[k − 1].y + Cik

Eachpic set represents how the time induced interfer-
ence grows, for critical instant candidateτic, during one pe-
riod (Ti). For our example transaction of Fig. 1, we get the
following two pic-s (corresponding to the black and white
circles in Fig. 5):

pia = [〈0,−1〉, 〈2, 1〉, 〈5, 2〉] black circles
pib = [〈0, 0〉, 〈6, 2〉, 〈9, 3〉] white circles

Now, we have the information generated by all
W+

ic (τua, t)-functions, stored in thepic-sets. These step-
wise functions are represented by one point per step. In
order to get a representation ofT ind

i (τua, t) in Eq. 7,
we extract the points that represents the maximum of all
W+

ic (τua, t)-s. Thus, we will obtain the convex corners of
T ind

i (τua, t).
Next, we calculate the set of points,pi, as the union of

all pic-s:
pi =

⋃

τic∈Γi

pic

In order to determine what points inpi that corresponds
the the convex corners ofT ind

i (τua, t), we define the re-
lation subsumesthat says: A pointpi[a] subsumes a point
pi[b] (denotedpi[a] � pi[b]) if the presence ofpi[a] implies
that pi[b] is not a convex corner. Figure 6 illustrates the
subsumes relation graphically, and the formal definition is:

pi[a] � pi[b] iff pi[a].y ≥ pi[b].y ∧ pi[a].x ≤ pi[b].x

Given the subsumes relation the convex corner are found
by removing all subsumed points:

Frompi removepi[b] if ∃a 6= b : pi[a] � pi[b] (10)

Now, pi contains the convex corners of the function
T ind

i (τua, t). For our example transaction we now have:

pi = [〈0, 0〉, 〈2, 1〉, 〈5, 2〉, 〈9, 3〉]

x

y pi[a]

Subsumed

Not subsumed

Figure 6. Removing points from pi

All we have to do now is to find the concave corners
(illustrated by crosses in Fig. 5) and store them in the arrays
T c

i andT t
i . This is done by the following algorithm:

for k := 1 to |pi| do
T c

i [k] := pi[k].y
if k < |pi| then

T t
i [k] := pi[k + 1].x

else
T t

i [k] := Ti

done

For our example transaction this gives the followingT c
i

andT t
i (corresponding to crosses in Fig. 5):

T c
i = [0, 1, 2, 3]

T t
i = [2, 5, 9, 10]

In the special case that some taskτij hasΦijc = 0,
the first element ofT c

i may not be zero. However, since
T ind

i (0) = 0, we need to have at least one element inT c
i

that is zero. In such cases we prepend both the arraysT c
i

andT t
i with a zero (stating that there will be 0 time induced

interference for any time interval of length up to 0).

3.3 Space and Time Complexity

The number of points to calculate (pi) is quadratic with
respect to the number of tasks in the transactionΓi (|Γi|
points for each candidate task). Thus, storingT c

i andT t
i

results in a quadratic space complexity since, in the worst-
case, no points frompi will be removed.

The method presented in this paper divides the calcula-
tion of W ∗

i into a pre-calculation and a fix-point iteration
phase. A naive implementation of the removal procedure in
Eq. 10 requires comparison of each pair of points; result-
ing in cubic time-complexity (O(|Γi|

3)) for pre-calculating
T c

i and T t
i .1 During the fix-point iteration phase, a bi-

nary search through a quadratically sized array is performed

1In Sect. 4 we use anO(|Γi|2logN) implementation based on sorting
the points and making a single pass through the sorted set.

(Eq. 9), resulting inO(log |Γi|
2) time complexity for calcu-

lating W ∗
i according to Eq. 5. The original complexity for

calculatingW ∗
i according to Eq. 4 isO(|Γi|

2).
In a complete comparison of complexity, the calcula-

tion of W ∗
i (τua, t) must be placed in its proper context

(see the response time formulas in appendix A). Assume
X denotes number of fix-point iterations needed, then the
overall complexity for the original approach (Eq. 4) is
(O(X |Γi|

2)), whereas our method (Eq. 5 & Eq. 9) yields
(O(|Γi|

3 + X log |Γi|
2)).

4 Evaluation

In order to evaluate the effectiveness of our method
we have implemented the response-time equations in ap-
pendix A, using both the original defintion ofW ∗

i from
Sect. 2 (Old RTA) and our faster version ofW ∗

i from Sect. 3
(Fast RTA). Using these implementations and a synthetic
task-generator we have performed an evaluation, by simu-
lations, of both approaches by calculatig the response times
for all tasks in the system.

4.1 Description of Simulation

In our simulator we generate task sets that are used as
input to the different RTA implementations. The task-set
generator takes the following parameters as input:

• Total system load (in % of total CPU utilisation),
• the number of transactions to generate, and
• the number of tasks per transaction to generate.

Using these parameters a task set with the following prop-
erties is generated:

• The total system load is proportionally distributed over
all transactions in the system.

• Transaction periods (Ti) are randomly distributed in the
range 1.000 to 1.000.000 (uniform distribution).

• Each offset (Oij) is randomly distributed within the
transaction period (uniform distribution).

• The execution times (Cij) are chosen as a fraction of the
time between two consecutive offsets in the transaction.
The fraction is the same throughout one transaction. The
fraction is selected so that the the transaction load (as
defined by the first property) is obtained.

• The jitter (Jij) is randomly distributed between zero and
1.2 times the transaction period (0..1.2Ti, uniform dis-
tribution).

• Blocking (Bij) is set to zero.
• The priorities are assigned in rate monotonic order [4].

We have measured execution times for performing RTA (for
all tasks in the system) using both methods (Old RTA and
Fast RTA). The execution times are obtained from a lap-
top with a Pentium III CPU. For Fast RTA the execution

times include the time to calculateT c
i andT t

i . The results
in Sect. 4.2 have been obtained by taking the mean values
of 50 simulated task-sets for each point in each graph. The
95% confidence intervals are shown for all execution times
(although difficult to see due to their small size).

4.2 Simulation Results

Figure 7(a) shows the execution times for Fast RTA and
Old RTA when the number of tasks/transaction is varied
from 1 to 10 (while keeping the system load at 9/10 (90%)
and the number of transactions at 10). When the number of
tasks/transaction is 10, the execution time is less than 0.40
seconds for Fast RTA, and about 20 seconds for Old RTA.
This amounts to a speedup of 50 times. Similar execution
times are obtained both when varying the number of trans-
actions between 1 and 10 and when varying load between
1/10 (10%) and 9/10.

In Fig. 7(b) the complexity of Fast RTA is shown, and by
comparison with Fig. 7(a) it can be seen that Fast RTA has
a less steep curve than does Old RTA. Also, in Fig. 7(b) the
amount of time spent pre-calculating the arraysT c

i andT t
i

is plotted, and it is apparent that the overhead is negligible.
For the larger task sets, about 0.3% of the total time of Fast
RTA, is spent on precomputingT c

i andT t
i .

Figure 7(c) shows the execution-time of the pre-
calculation only. Since we use aO(N2 log N) implementa-
tion of the pre-calculation the slope is slightly less than what
could be expected from a naive implementation (O(N3)).

In Fig. 8 we show the relative execution time of Fast RTA
compared to Old RTA, calculated bytFast/tOld, where
tFast is the execution time for Fast RTA andtOld for Old
RTA. The first plot (+) shows how the relative execution
time changes when the number of tasks/transaction is var-
ied from 3 to 10. When the number of tasks/transaction is
1 the relative execution time is 0.58 and it rapidly decreases
to the values visible in the graph.

The second plot (×) in Fig. 8 illustrates when the number
of transactions is varied between 2 and 10. When the num-
ber of transactions is 1, the relative execution time is 1.01,
which means that Fast RTA isslowerthan Old RTA. When
performing RTA for a single transaction, the overhead of
precomputingT c

i andT t
i outweighs the benefits obtained

during the RTA (the pre-computedW ∗
i is never used). How-

ever, as seen in the plot, when the number of transactions is
higher than 1, the overhead is well justified since the total
RTA is significantly faster.

The third plot (∗) in Fig. 8 illustrates when the load is
varied between 1/10 (10%) and 9/10 (90%). In this plot we
see that the relative execution time is not highly dependent
on the system load, only a small decrease in relative execu-
tion time is obtained as the system load grows.

In order to compare Old RTA and Fast RTA, in the con-

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

S
ec

on
ds

Tasks/Transaction

(a) Comparison Fast RTA and Old RTA

Fast RTA
Old RTA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7 8 9 10

S
ec

on
ds

Tasks/Transaction

(b) The overhead for pre-calculation

Fast RTA
Pre-Calculation

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 1 2 3 4 5 6 7 8 9 10

S
ec

on
ds

Tasks/Transaction

(c) Complexity of pre-calculation

Pre-Calculation

Figure 7. Execution time

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n

Tasks/Trans., Transactions, Load

Transakts.=10, Load=9/10
Tasks/Trans.=10, Load=9/10

Transakts.=10, Tasks/Trans.=10

Figure 8. Relative execution time

text of on-line admission control, we generated task sets
with 9/10 load, 10 transactions with 10 tasks/transaction
and performed the RTA for a single task (corresponding to
a dynamically arriving task to the system) at lowest priority.
We generated 100 different tasks sets using execution times
for the single task between 1000 and 6000. The result was
that the average execution time for Fast RTA was 0.33ms
and 44ms for Old RTA. The speedup for admission control
is about 130 times, which is noticeable greater than in the
previous simulations. The reason is that the new task is the
only task in its transaction, which means thatW ∗

i is used
for all interference computations andWic is never used (see
Appendix A) and hence our improvement toW ∗

i is isolated.
In fact, in the preliminary work for this paper [5] a speedup
of over 600 times was observed for a simplified task-model
where fix-point iteration only requiredW ∗

i to be computed.
Our conclusions from this simulation study are that: (1)

Fast RTA performs significantly better than Old RTA. For
anything but trivially small task sets the speedup is at least
in the order of a magnitude, (2) Fast RTA brings down exe-
cution times for whole scenarios from the order of seconds
to fractions of seconds, and (3) Fast RTA brings down exe-
cution times for single tasks from the order of some 100ms
to the microsecond range. This decrease is important in or-
der to make RTA a feasible technique to include in, e.g.,
on-line scheduling algorithms performing RTA on-line (ad-
mission control being an example) and optimizing alloca-
tion or configuration tools.

5 Conclusions and Future Work

In this paper we have presented a novel method that al-
lows for an efficient implementation of the approximative
Response-Time Analysis (RTA) for tasks with offsets pre-
sented by Tindell [13] and Palencia Gutierrezet al. [8].

The main effort in performing RTA for tasks with offsets
is to calculate how higher (or equal) priority tasks interfere
with a task under analysis. The essence of our method is
to calculate and store this information statically and during
response time calculations (fix-point iteration), use a sim-
ple table lookup. We have formally proved that the RTA-
equations can be reformulated to allow such static repre-
sentation of task interference.

We have, by simulations, shown that the speedup for
our method compared to [8] is substantial. For realistically
sized task sets (100 tasks), performing schedulability anal-
ysis gives a speedup of about 50 times. And from our eval-
uation we can conjecture that the relative improvement will
be even higher for larger task sets. In an on-line RTA con-
text, e.g., on-line admission control systems, our method
outperforms previous methods by at over a factor of 100
and reducing the actual time to the micro second range.

Faster RTA have several positive practical implications:

(1) Engineering tools (such as those for task allocation and
priority assignment) can feasible rely on RTA and use the
task model with offsets, and (2) on-line scheduling algo-
rithms, e.g. those performing admission control, can use
accurate on-line schedulability tests based on RTA.

We have earlier provided a tighter version of the RTA for
tasks with offsets [7]. Our next step is to extend our method
of static representation of task interference to our tighter
RTA, yielding a RTA that is both significantly faster and
provides less pessimistic response times than previous tech-
niques. Further, we are currently starting a project where
RTA for tasks with offsets will be used in software engineer-
ing tools. The RTA will be used both to perform schedula-
bility tests and for automatic allocation of software to nodes
in a distributed system.

References

[1] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings.
Fixed Priority Pre-Emptive Scheduling: An Historical Per-
spective.Real-Time Systems, 8(2/3):129–154, 1995.

[2] I-Logix. Rhapsody. http://www.ilogix.com/products/-
rhapsody.

[3] M. Joseph and P. Pandya. Finding Response Times in a Real-
Time System.The Computer Journal, 29(5):390–395, 1986.

[4] C. Liu and J. Layland. Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment.Journal of the
ACM, 20(1):46–61, 1973.

[5] J. Mäki-Turja and M. Nolin. Faster Response Time Analy-
sis of Tasks With Offsets. In24th IEEE Real-Time Systems
Symposium (RTSS) Work In Progress Proc., December 2003.

[6] J. Mäki-Turja and M. Nolin. Speeding Up the Response-
Time Analysis of Tasks with Offsets. Technical Report ISSN
1404-3041 ISRN MDH-MRTC-154/2004-1-SE, MRTC Re-
port, Mälardalen Real-Time Research Centre, Mälardalen
University, February 2004.

[7] J. Mäki-Turja and M. Sjödin. Improved Analysis for Real-
Time Tasks With Offsets – Advanced Model. Technical Re-
port MRTC no. 101, Mälardalen Real-Time Research Centre
(MRTC), May 2003.

[8] J. Palencia Gutierrez and M. Gonzalez Harbour. Schedula-
bility Analysis for Tasks with Static and Dynamic Offsets.
In Proc. 19th IEEE Real-Time Systems Symposium (RTSS),
December 1998.

[9] J. Palencia Gutierrez and M. Gonzalez Harbour. Exploit-
ing Precedence Relations in the Schedulability Analysis of
Distributed Real-Time Systems. InProc. 20th IEEE Real-
Time Systems Symposium (RTSS), pages 328–339, December
1999.

[10] Rational. Rational Rose RealTime. http://www.rational.-
com/products/rosert.

[11] O. Redell.Response time analysis for implementation of dis-
tributed control systems. PhD thesis, KTH, Department of
Machine Design, 2003. Series: TRITA-MMK 2003:17.

[12] TeleLogic. Telelogic tau. http://www.telelogic.com/-
products/tau.

[13] K. Tindell. Using Offset Information to Analyse StaticPri-
ority Pre-emptively Scheduled Task Sets. Technical Report
YCS-182, Dept. of Computer Science, University of York,
England, 1992.

A Complete RTA formulas

In this appendix we provide the complete set of formulas to cal-
culate the worst case response time,Rua, for a task under analysis,
τua, as presented in Palencia Gutierrezet al. [8].

The interference transactionΓi poses on a lower priority task,
τua, if τic coincides with the critical instant, is defined by (see
Eq. 3 in this paper):

Wic(τua, t) =
∑

∀j∈hpi(τua)

(⌊
Jij + Φijc

Ti

⌋

+

⌈
t − Φijc

Ti

⌉)

∗ Cij

(26 in [8])

where the phase between taskτij and the candidate critical instant
taskτic is defined as (see Eq. 1 in this paper):

Φijc = Ti − (Oic + Jic − Oij) mod Ti (17 in [8])

The approximation function for transactionΓi which considers
all candidateτic-s simultaneously, is defined by (see Eq. 4 in this
paper):

W
∗
i (τua, w) = max

∀c∈hpi(τua)
Wic(τua, w) (27 in [8])

The length of a busy period, forτua, assumingτuc is the can-
didate critical instant, is defined as (Note that the approximation
function is not used forΓu):

Luac =Bua + (p − p0,uac + 1)Cua+

Wuc(τua, Luac) +
∑

∀i6=u

W
∗
i (τua, Luac) (30 in [8])

wherep0,uac denotes the first, andpL,uac the last, task instance,
of τua, activated within the busy period. They are defined as:

p0,uac = −

⌊
Jua + Φuac

Tu

⌋

+ 1 (29 in [8])

and

pL,uac =

⌈
Luac − Φuac

Tu

⌉

(31 in [8])

In order to get the worst case response time forτua, we need to
check the response time for every instance,p ∈ p0,uac . . . pL,uac,
in the busy period. Completion time of thep’th instance is given
by:

wuac(p) =Bua + (p − p0,uac + 1)Cua

+ Wuc(τua, wuac(p) +
∑

∀i6=u

W
∗
i (τua, wuac(p))

(28 in [8])

The corresponding response time (for instancep) is then:

Ruac(p) = wuac(p) − Φuac − (p − 1)Tu + Oua (32 in [8])

To obtain the worst case response time,Rua, for τua, we need
to consider every candidate critical instant ,τuc (including τua it-
self), and for each such candidate every possible instance,p, of
τua:

Rua = max
∀c∈hpu(τua)∪a

[max
p=p0,uac,...,pL,uac

(Ruac(p))] (33 in [8])

B Proofs of Theorems

In this appendix we provide proofs of theorems 1 and 2. We will
perform all proofs by algebraic manipulation and use bracesto
highlight the expression that is manipulated in each step. We
also annotate braces with the equations, properties, lemmas, or
assumptions referred to when performing some manipulations.
These proofs are also available in [6].

When performing the manipulations we will, e.g., rely on the
following properties:

(max) — Themaxv operator allows terms that are constant with
respect to the maximisation variable (v) to be moved out-
side the maximisation operation:

max
v

(Xv + Y) = max
v

(Xv) + Y.

(sum) — Summation over a set of terms can be divided into two
separate summations:

∑

v

(Xv + Yv) =
∑

v

Xv +
∑

v

Yv

(ceil) — When taking the ceiling (d e) of a set of terms, terms
that are known to be integers can be moved outside of the
ceiling expression:

X ∈ N ⇒ dX + Y e = X + dY e

Theorem 1 W ∗
i (τua, t) as defined in Eq. 4 andW ∗

i (τua, t) as
defined in Eq. 5 are equivalent.

Proof 1

W
∗
i (τua, t)

︸ ︷︷ ︸

Eq.5

= J ind
i (τua) + T

ind
i (τua, t)

︸ ︷︷ ︸

Eq.7

=

J
ind
i (τua) + max

∀c∈hpi(τua)
W

+
ic (τua, t)

︸ ︷︷ ︸

Eq.8

=

J
ind
i (τua)+

max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

(
I

Set1
ijc + I

Set2
ijc (t)

)
− J

ind
i (τua)

)

︸ ︷︷ ︸

(max)

=

J
ind
i (τua)

︸ ︷︷ ︸
+ max

∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

(
I

Set1
ijc + I

Set2
ijc (t)

))

−

J
ind
i (τua)

︸ ︷︷ ︸
=

max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
I

Set1
ijc + I

Set2
ijc (t)

)

︸ ︷︷ ︸

Eq.3

=

max
∀c∈hpi(τua)

Wic(τua, t)

︸ ︷︷ ︸

Eq.4

= W
∗
i (τua, t) �

In prooving theorem 2 we will use some lemmas.

Lemma 1 Regardless of candidate critical instantc:
ISet2

ijc (Ti) = Cij

Proof of Lemma 1

I
Set2
ijc (Ti)

︸ ︷︷ ︸

Eq.2

=

⌈
Ti − Φijc

Ti

⌉

︸ ︷︷ ︸

0 ≤ Φijc < Ti (Eq.1)

Cij = Cij �

Lemma 2 Assumet = k∗Ti+t′ (wherek ∈ N and0 ≤ t′ < Ti),
thenISet2

ijc (t) = k ∗ ISet2
ijc (Ti) + ISet2

ijc (t′)

Proof of Lemma 2

I
Set2
ijc (t)

︸ ︷︷ ︸

Eq.2

=

⌈
t − Φijc

Ti

⌉

︸ ︷︷ ︸

Assumption

Cij =

⌈
k ∗ Ti + t′ − Φijc

Ti

⌉

︸ ︷︷ ︸

Cij =

⌈
k ∗ Ti

Ti

+
t′ − Φijc

Ti

⌉

︸ ︷︷ ︸

(ceil)∧k ∈ N

Cij =

(

k +

⌈
t′ − Φijc

Ti

⌉)

Cij

︸ ︷︷ ︸

=

k Cij
︸︷︷︸

Lem.1

+

⌈
t′ − Φijc

Ti

⌉

Cij

︸ ︷︷ ︸

Eq.2

= k ∗ I
Set2
ijc (Ti) + I

Set2
ijc (t′) �

Lemma 3 T ind
i (τua, Ti) =

∑

∀j∈hpi(τua)

Cij

Proof of Lemma 3

T
ind
i (τua, Ti)

︸ ︷︷ ︸

Eq.7

= max
∀c∈hpi(τua)

W
+
ic (τua, Ti)

︸ ︷︷ ︸

Eq.8

=

max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

(
I

Set1
ijc + I

Set2
ijc (Ti)

)

︸ ︷︷ ︸

(sum)

−J
ind
i (τua)

)

=

max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

I
Set1
ijc +

∑

∀j∈hpi(τua)

I
Set2
ijc (Ti)

︸ ︷︷ ︸

Lem.1

−J
ind
i (τua)

)

=

max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

I
Set1
ijc +

∑

∀j∈hpi(τua)

Cij − J
ind
i (τua)

)

︸ ︷︷ ︸

(max)

=

∑

∀j∈hpi(τua)

Cij + max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

I
Set1
ijc

︸ ︷︷ ︸

Eq.6

−J
ind
i (τua) =

∑

∀j∈hpi(τua)

Cij + J
ind
i (τua) − J

ind
i (τua)

︸ ︷︷ ︸
=

∑

∀j∈hpi(τua)

Cij �

Theorem 2 Assumet = k ∗ Ti + t′ (wherek ∈ N and 0 ≤
t′ < Ti), then

T
ind
i (τua, t) = k ∗ T

ind
i (τua, Ti) + T

ind
i (τua, t

′)

Proof 2

T
ind
i (τua, t)

︸ ︷︷ ︸

Eq.7

= W
+
ic (τua, t)

︸ ︷︷ ︸

Eq.8

=

max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
I

Set1
ijc + I

Set2
ijc (t)

︸ ︷︷ ︸

Lem.2

)
− J

ind
i (τua) =

max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
I

Set1
ijc + k ∗ I

Set2
ijc (Ti)

︸ ︷︷ ︸

Lem.1

+I
Set2
ijc (t′)

)
−

J
ind
i (τua) =

max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
I

Set1
ijc + kCij + I

Set2
ijc (t′)

)
− J

ind
i (τua)

︸ ︷︷ ︸

(sum)

=

max
∀c∈hpi(τua)(∑

∀j∈hpi(τua)

kCij +
∑

∀j∈hpi(τua)

(
I

Set1
ijc + I

Set2
ijc (t′)

)
− J

ind
i (τua)

)

︸ ︷︷ ︸

(max)

=

∑

∀j∈hpi(τua)

kCij

︸ ︷︷ ︸

+ max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
I

Set1
ijc + I

Set2
ijc (t′)

)
− J

ind
i (τua) =

k ∗
∑

∀j∈hpi(τua)

Cij

︸ ︷︷ ︸

Lem.3

+ max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
I

Set1
ijc + I

Set2
ijc (t′)

)
−

J
ind
i (τua) =

k ∗ T
ind
i (τua, Ti)+

max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
I

Set1
ijc + I

Set2
ijc (t′)

)
− J

ind
i (τua)

︸ ︷︷ ︸

Eq.8

=

k ∗ T
ind
i (τua, Ti) + max

∀c∈hpi(τua)
W

+
ic (τua, t

′)

︸ ︷︷ ︸

Eq.7

=

k ∗ T
ind
i (τua, Ti) + T

ind
i (τua, t

′) �

	Efficient Response-Time Analysis for Tasks with Offsets
	1 Introduction
	2 Existing offset RTA
	2.1 System model
	2.2 Responsetime
	2.3 Interference function
	2.4 Approximation function

	3 Fast offset RTA
	3.1 Approximation function with lookup
	3.2 Precomputing Tc and Tt
	3.3 Space and Time Complexity

	4 Evaluation
	4.1 Description of Simulation
	4.2 Simulation Results

	5 Conclusions and Future Work
	A Complete RTA formulas
	B Proofs of Theorems

