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Abstract— One of the recent and major challenges in cloud 

computing is to enhance the energy efficiency in cloud data 

centers. Such enhancements can be done by improving the 

resource allocation and management algorithms. In this 

paper, a model that identifies common patterns for the jobs 

submitted to the cloud is proposed. This model is able to 

predict the type of the job submitted, and accordingly, the set 

of users’ jobs is classified into four subsets. Each subset 

contains jobs that have similar requirements. In addition to 

the jobs’ common pattern and requirements, the users’ 

history is considered in the jobs’ type prediction model. The 

goal of job classification is to find a way to propose useful 

strategy that helps improve energy efficiency. Following the 

process of jobs’ classification, the best fit virtual machine is 

allocated to each job. Then, the virtual machines are placed to 

the physical machines according to a novel strategy called 

Mixed Type Placement strategy. The core idea of the proposed 

strategy is to place virtual machines of the jobs of different 

types in the same physical machine whenever possible, based 

on Knapsack Problem. This is because different types of jobs 

do not intensively use the same compute or storage resources 

in the physical machine. This strategy reduces the number of 

active physical machines which leads to major reduction in 

the total energy consumption in the data center. A simulation 

of the results shows that the presented strategy outperforms 

both Genetic Algorithm and Round Robin from an energy 

efficiency perspective. 

Keywords- Cloud Computing; Data Center; Virtualization 

Management; Energy Efficiency. 

I. INTRODUCTION 

Reducing energy consumption in data centers has 

become essential nowadays. Such reduction should be 

based on power delivered to computing resources and 

resources utilization. In [1] and [2] dynamic voltage and 

frequency scaling (DVFS) is used. In [3], dynamically 

adjusting the number of CPUs in a cluster enabled energy 

saving when utilization is low. In [4] and [5] switching 

physical machines (PMs) off was used to save energy. In 

[6] and [7], energy minimization was based on statistically 

analyzed the workload. The studies in [8], [9] and [10] 

optimize consumed power, service cost, and overall 

performance. The authors in [11] represent service requests 

as a function to minimize energy consumption. In [12] 

tasks on heterogeneous machines are scheduled according 

to their energy cost to maximize profit. In [13], customer 

utilization patterns are proposed in a dynamic resource 

provision mechanism. The proposed patterns place 

additional Virtual Machines (VMs) on the PMs of cloud 

data centers where possible. The impact on the trade-off 

between energy efficiency and SLA requirements was 

analyzed. In [14], an energy-efficient job scheduling and 

allocation scheme is presented which is claimed to reduce 

the number of active PMs. In [15] the IaaS cloud service 

model is used as a computing infrastructure by provisioning 

VMs on-demand. In [16] distributed dynamic consolidation 

of VMs in virtualized cloud data centers is presented which 

is based on the bin packing algorithm. 

 The rapid growth in cloud computing model has 

emphasized the need for improving the existing resource 

allocation and management algorithms in cloud data 

centers as well as proposing new ones. In this paper, a new 

model is suggested to predict the job type in the workload 

based on its common behaviors and patterns. User history, 

when available, is also used in predicting the job type. 

According to the job type, the best fit VM is allocated to 

job. Then VMs are placed to the PMs using the Knapsack 

Problem (KP) such that no VMs having the same type of 

jobs will consolidate on the same PM. High Performance 

Computing (HPC) jobs can be effectively combined with 

Data Intensive (DI) jobs on the same PM. HPC jobs mostly 

request compute resources, whereas DI jobs request storage 

and network bandwidth resources. This leads to the 

reduction in the number of active PMs. VM placement is 

done by using KP. Other methods, such as bin packing 

algorithm [16] are available. In this paper, Multi Choice 

Knapsack Problem (MCKP) is used since selection is done 

from different sets [17]. In this paper, reducing energy 

consumption is done also by minimizing the CPU 

frequency the VM’s of the DI jobs using DVFS. This is 

only applied when VM’s of DI jobs exist in space shared 

policy. This is to prevent any effect on the other VMs on 
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the PM as well as not violating the DI job’s Quality of 

Service (QoS). In this paper, one VM is assumed to be 

allocated to each job. Jobs are assumed to be organized as 

Bag-of-Tasks (BoT), independent, executable in any order.  

In section 2 the components of the system model 

which submit users' jobs to the cloud are presented. Jobs 

classification is also detailed. In section 3 the model is 

described along with the new MTP strategy. Experimental 

results are discussed and analyzed in section 4. Finally, 

conclusions and future works are listed in section 5.  

II. SYSTEM COMPONENTS 

The system is based on the cloud computing 

environment paradigm, whereby users request services 

from a Cloud provider to execute jobs. The system consists 

of two main components: User and Provider, as shown in 

Figure 1. The cloud user submits the job (or set of jobs) to 

the cloud provider to be executed, typically with an implied 

QoS requirement. The submission model is shown below: 

𝑗𝑜𝑏𝑖(𝑄𝑜𝑆) 

QoS includes the deadline (DLi) and budget (Bi) for the 

user jobs.  A Provider receives the users' jobs, executes 

them at a specific data center, then sends the results back to 

the users. 

The Provider component includes two models: Global 

Scheduler and Data Center(s). The global scheduler acts as 

an interface between users and cloud infrastructure. It 

profiles and analyzes the service requirements of the 

submitted jobs and decides whether to accept or reject them 

based on the availability of resources. Then, it selects the 

data center that should execute the jobs so that energy 

consumption can be reduced, while meeting QoS 

requirements. The global scheduler model operates in three 

main phases: Prediction Phase, Service Level Agreement 

(SLA) Phase, and Mapping Phase. In the prediction phase 

job types are decided. A job is classified as high 

performance computing (HPC), data intensive (DI), high 

performance computing and data intensive (HPC-DI), or 

Normal (N). 

 

Figure 1.  System Components. 

Job profiling creates the following infrastructure 

requirements: 
(𝑃𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑈𝑠𝑒𝑟 , 𝑇𝑖𝑚𝑒𝑈𝑠𝑒𝑟 , 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑈𝑠𝑒𝑟 , 𝑅𝐴𝑀𝑈𝑠𝑒𝑟 , 𝐵𝑊𝑈𝑠𝑒𝑟) 

where: 

 𝑃𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑈𝑠𝑒𝑟 ∶  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (𝑃𝐸𝑠)  
 𝑛𝑒𝑒𝑑𝑒d by 𝑗𝑜𝑏𝑖 , 𝑎𝑙𝑠𝑜 𝑘𝑛𝑜𝑤𝑛 𝑎𝑠 𝑐𝑜𝑟𝑒𝑠. 

 𝑇𝑖𝑚𝑒𝑈𝑠𝑒𝑟 ∶  𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑗𝑜𝑏𝑖  𝑤ℎ𝑒𝑛  
 𝑢𝑠𝑖𝑛𝑔 𝑃𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑈𝑠𝑒𝑟 .  

 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑈𝑠𝑒𝑟 ∶ Size of the storage needed by 𝑗𝑜𝑏𝑖   

 𝑅𝐴𝑀𝑈𝑠𝑒𝑟 ∶  𝑅𝐴𝑀 𝑠𝑖𝑧𝑒 𝑛𝑒𝑒𝑑𝑒𝑑 𝑏𝑦 𝑗𝑜𝑏𝑖   

 𝐵𝑊𝑈𝑠𝑒𝑟 ∶  𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑛𝑒𝑒𝑑𝑒𝑑 𝑏𝑦 𝑗𝑜𝑏𝑖 

Execution time is estimated in [8] and [18] as a known 

quantity or given by the User. Code analysis is used in [19], 

while Analytic benchmarking/code profiling is used in [20]. 

Historical/Statistical prediction is used in [21] while 

Empirical analysis is used in [22]. Cycle Per Instruction 

(CPI) was used in [23], while Memory Access Per 

Instruction (MPI) was used in [24], and estimated 

bandwidth was used in [25]. After profiling, this phase 

utilizes a mix of statistical information and some input 

features for the jobs to predict the job type. This is done in 

two ways. The first is the User Id check (UIC) A Log File 

(LF) is maintained for each user which is used in profiling 

Users as well as jobs. LF is considered as a list of recordsof 

the form: 

Job (JobID, JobType, Date, UserID) 

The second way is the Job Features Check (JFC). Profiling 

the job by examining the following features: total execution 

time of the job, Cycle Per Instruction (CPI), Memory 

Access Per Instruction (MPI), Size of the job, and 

Bandwidth. 

A new algorithm, User Type Predictor (UTP), is used 

to predict the users type based on their history. The 

prediction is based on the type of the last number of jobs 

submitted or the type of jobs submitted within a past period 

of time, or both.  

Algorithm: User Type Predictor 

Input: LF , nJOB, nDAY 

Output: User type 

1 JobCounter=0; 

2 StartDate = Current Date 

3 EndDate = StartDate – nDAY 

4 while ( JobCounter < nJOB ) or ( LE has more jobs ) 

5  If (Job.Date ≤ StartDate & Job.Date ≥ EndDate ) 

6  switch (Job.JobType) 

7  Case HPC: CounterHPC ++ 

8  Case DI: CounterDI ++ 

9  Case HPC-DI: CounterHPC-DI ++ 

10  Case Normal: CounterNormal ++ 

11  end switch 
12  JobCounter ++ 

13  end if 

14 end while 

15 return (Type of the max counter) 
 

Algorithm 1: User Type Predictor Algorithm 
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In algorithm 1, nJOB (which represents n jobs 

submitted by a specific user) and nDAY (which represents 

n days of jobs’ submission by a specific user) may vary 

over time according to the user's identity and the types of 

job submitted by this user.  

 Equations (1) to (4) calculate the total values 

requested for time execution, memory, storage, and 

bandwidth respectively, which are required to execute jobs 

for a specific user. 

                            𝑅𝑒𝑞𝑇𝑖𝑚𝑒𝑢𝑠𝑒𝑟 =  ∑ 𝑇𝑖𝑚𝑒𝑖

𝑁𝑜𝑂𝑓𝐽𝑜𝑏𝑠

𝑖=1

                         (1) 

                         𝑅𝑒𝑞𝑀𝑒𝑚𝑜𝑟𝑦𝑢𝑠𝑒𝑟 =  ∑ 𝑅𝐴𝑀𝑖

𝑁𝑜𝑂𝑓𝐽𝑜𝑏𝑠

𝑖=1

                       (2) 

                      𝑅𝑒𝑞𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑢𝑠𝑒𝑟 =  ∑ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑖

𝑁𝑜𝑂𝑓𝐽𝑜𝑏𝑠

𝑖=1

                   (3) 

                                𝑅𝑒𝑞𝐵𝑊𝑢𝑠𝑒𝑟 =  ∑ 𝐵𝑤𝑖

𝑁𝑜𝑂𝑓𝐽𝑜𝑏𝑠

𝑖=1

                             (4) 

Equations (5) to (8) are used to specify the type of the user. 

          𝐻𝑃𝐶 = (𝐿𝐹𝐻𝑃𝐶 ∗ 𝑤1)

+ (( (𝑗𝑜𝑏𝑖
𝐸𝑇 ≥ 𝐸𝑥𝑒𝑐𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐶𝑃𝐼

≥ 𝐶𝑝𝑖𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖
𝑀𝑃𝐼 ≥ 𝑀𝑝𝑖𝑇ℎ) ) ∗ 𝑤2)

+ (( (𝑗𝑜𝑏𝑖
𝑠𝑖𝑧𝑒 < 𝑆𝑖𝑧𝑒𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐵𝑊

< 𝐵𝑤𝑇ℎ) ) ∗ 𝑤3)                                             (5) 

          𝐷𝐼 =  (𝐿𝐹𝐷𝐼 ∗ 𝑤1)                                                                      

+ (( (𝑗𝑜𝑏𝑖
𝐸𝑇 < 𝐸𝑥𝑒𝑐𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐶𝑃𝐼

< 𝐶𝑝𝑖𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖
𝑀𝑃𝐼 < 𝑀𝑝𝑖𝑇ℎ) ) ∗ 𝑤2)

+ (( (𝑗𝑜𝑏𝑖
𝑠𝑖𝑧𝑒 ≥ 𝑆𝑖𝑧𝑒𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐵𝑊

≥ 𝐵𝑤𝑇ℎ) ) ∗ 𝑤3)                                             (6) 

          𝐻𝑃𝐶 − 𝐷𝐼 = (𝐿𝐸𝐵𝑂𝑇𝐻 ∗ 𝑤1)

+ (( (𝑗𝑜𝑏𝑖
𝐸𝑇 ≥ 𝐸𝑥𝑒𝑐𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐶𝑃𝐼

≥ 𝐶𝑝𝑖𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖
𝑀𝑃𝐼 ≥ 𝑀𝑝𝑖𝑇ℎ) ) ∗ 𝑤2)

+ (( (𝑗𝑜𝑏𝑖
𝑠𝑖𝑧𝑒 ≥ 𝑆𝑖𝑧𝑒𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐵𝑊

≥ 𝐵𝑤𝑇ℎ) ) ∗ 𝑤3)                                             (7) 

          𝑁𝑂𝑅𝑀𝐴𝐿 = (𝐿𝐸𝑁𝑂𝑅𝑀𝐴𝐿 ∗ 𝑤1)

+ (( (𝑗𝑜𝑏𝑖
𝐸𝑇 ≤ 𝐸𝑥𝑒𝑐𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐶𝑃𝐼

≤ 𝐶𝑝𝑖𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖
𝑀𝑃𝐼 ≤ 𝑀𝑝𝑖𝑇ℎ) ) ∗ 𝑤2)

+ (( (𝑗𝑜𝑏𝑖
𝑠𝑖𝑧𝑒 ≤ 𝑆𝑖𝑧𝑒𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐵𝑊

≤ 𝐵𝑤𝑇ℎ) ) ∗ 𝑤3)                                             (8) 

where: 

𝐿𝐹𝐻𝑃𝐶 = {
1   𝑖𝑓 𝑡ℎ𝑒 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑠𝑒𝑟 𝑖𝑛 𝐿𝐹 𝑖𝑠 𝐻𝑃𝐶
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                         

 

𝐿𝐹𝐷𝐼 = {
1   𝑖𝑓 𝑡ℎ𝑒 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑠𝑒𝑟 𝑖𝑛 𝐿𝐹 𝑖𝑠 𝐷𝐼
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                    

 

𝐿𝐹𝐵𝑂𝑇𝐻 = {
1   𝑖𝑓 𝐿𝐹𝐻𝑃𝐶 = 𝐿𝐹𝐷𝐼 = 1        
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

 

𝐿𝐹𝑁𝑂𝑅𝑀𝐴𝐿 = {
1   𝑖𝑓 𝐿𝐹𝐻𝑃𝐶 = 𝐿𝐹𝐷𝐼 = 0        
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

 

𝐸𝑥𝑒𝑐𝑇ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒   
𝐶𝑝𝑖𝑇ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝐶𝑃𝐼 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 

𝑀𝑝𝑖𝑇ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑀𝑃𝐼 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 

𝑆𝑖𝑧𝑒𝑇ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑠𝑖𝑧𝑒 

𝐶𝑜𝑚𝑝𝑇ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑗𝑜𝑏 

𝑤1,𝑤2, and 𝑤3 are weight values satisfying  

𝑤1 + 𝑤2 + 𝑤3 = 1 ,  

The cloud provider assigns the weight values. 𝑤1 is related 

to the User history (if any). 𝑤2 is related to total execution 

time, CPI, and MPI, values which high in HPC jobs. 𝑤3 is 

related job size and bandwidth which are high for DI jobs. 

 Thresholds are selected by examining real workload 

trace. A histogram (e.g. Figure 2 for CPI threshold) is 

sketched and the average and median are used to calculate 

the threshold.  

The job type is selected according to the maximum 

value of resulted from (1) to (4). If two or more values are 

equal (ambiguity state), the type in the LF should be the 

dominant one. If there is no information about the user in 

the LF, w1 is zero.  

 

In the SLA phase, an agreement about the offered 

services between the user and cloud provider is achieved to 

ensure that the QoS requirements of the users are met [26]. 

The global scheduler decides whether or not the provider 

can execute the user’s job if the provider is not able to 

execute the job with the required QoS, the user will be 

informed in this phase. Otherwise, the job will be passed on 

to the mapping phase. 

In the mapping phase, mapping jobs to data centers is 

performed to minimize the total amount of energy 

consumption. This is done by interacting with the local 

schedulers of each data center [16] to determine CPU 

availability, free time slots, available, and expected amount 

of consumed energy when executing the jobs on the 

available resources of the data center. The mapping process 

makes sure not to violate the SLA constraints. The local 

scheduler performs the actual jobs scheduling. 

Figure 2.  Selecting CPI threshold for a Set of Jobs 
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The data center model (presented in Figure 3) consists 

of 𝑛  heterogeneous 𝑃𝑀𝑠 . Each 𝑃𝑀𝑖  contains multicore 

processors and is characterized by the configuration shown 

below: 
𝑃𝑀𝑖(𝑃𝐸𝑃𝑀, 𝑆𝑝𝑒𝑒𝑑𝑃𝑀 , 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃𝑀 , 𝑅𝐴𝑀𝑃𝑀, 𝐵𝑊𝑃𝑀) 

where: 

 𝑃𝐸𝑃𝑀 ∶ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝐸𝑠 𝑖𝑛 𝑃𝑀𝑖 

 𝑆𝑝𝑒𝑒𝑑𝑃𝑀 ∶  𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑃𝐸 𝑖𝑛 𝑃𝑀𝑖 

 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃𝑀 ∶  𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑖𝑛 𝑃𝑀𝑖 

 𝑅𝐴𝑀𝑃𝑀 ∶  𝑅𝐴𝑀 𝑠𝑖𝑧𝑒 𝑖𝑛 𝑃𝑀𝑖 

 𝐵𝑊𝑃𝑀 ∶  𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑖𝑛 𝑃𝑀𝑖 

Each 𝑃𝑀  can have one or more 𝑉𝑀𝑠 assigned. Each 

𝑉𝑀 configuration is characterized as shown below: 

𝑉𝑀𝑖(𝑝𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑉𝑀, 𝑆𝑝𝑒𝑒𝑑𝑉𝑀 , 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑉𝑀, 𝑅𝐴𝑀𝑉𝑀, 𝐵𝑊𝑉𝑀) 

where: 

 𝑝𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑉𝑀 ∶  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝐸𝑠 𝑖𝑛 𝑉𝑀𝑖  

 𝑆𝑝𝑒𝑒𝑑𝑉𝑀 ∶  𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑃𝐸 𝑖𝑛 𝑉𝑀𝑖 

 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑉𝑀 ∶  𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑖𝑛 𝑉𝑀𝑖 

 𝑅𝐴𝑀𝑉𝑀 ∶  𝑅𝐴𝑀 𝑠𝑖𝑧𝑒 𝑖𝑛 𝑉𝑀𝑖 

 𝐵𝑊𝑉𝑀 ∶  𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑖𝑛 𝑉𝑀𝑖 

III. THE MODEL 

In cloud computing, the problem of allocating 

resources is NP-hard [10]. This is because jobs are to be 

effectively scheduled in distributed, heterogeneous, and 

virtualized environments. The system, 𝑆 , is modeled as a 

four-tuple (𝐷, 𝑃𝑀, 𝑉𝑀, 𝐽). D is a set of data centers; each 

element 𝐷𝑑 𝐷  represents a single data center in the 

system. 𝑃𝑀 is a set of physical machines in the data center; 

each element 𝑃𝑀𝑝𝑚,𝑑 𝑃𝑀  represents a single 𝑃𝑀𝑝𝑚  in 

𝐷𝑑 . 𝑉𝑀  is a set of virtual machines associated with 

physical machines in the data center; each element 

𝑉𝑀𝑣𝑚,𝑝𝑚,𝑑 𝑉𝑀  represents a single 𝑉𝑀𝑣𝑚  on single  

𝑃𝑀𝑝𝑚  in data center 𝐷𝑑 . 𝐽 is a set of jobs; each element 

𝑗𝑜𝑏𝑗 𝐽 represents a single job. 

 

 

Figure 3.  The Data Center Model. 

Minimizing energy consumption is done by a multi-

objective optimization scheduling algorithm. The energy 

consumed by PMs in data centers usually determined by 

the CPU, disk storage, memory, and network interfaces 

[27]. Among these components, the CPU consumes the 

most amount of energy. Hence, in this work, only the 

energy consumed by CPU using Equation (9). 

                         𝑃𝑀𝑖
𝑝

=  𝑃𝐶𝑃𝑈 +  𝑃𝑀𝑒𝑚𝑜𝑟𝑦+𝑃𝑆𝑡𝑜𝑟𝑎𝑔𝑒                      (9) 

where (𝑃𝑀𝑖
𝑝

)is a specific 𝑃𝑀, 𝑃𝐶𝑃𝑈  is the power consumed 

by the CPU,  𝑃𝑀𝑒𝑚𝑜𝑟𝑦 is the power consumed by memory, 

and 𝑃𝑆𝑡𝑜𝑟𝑎𝑔𝑒  is the power consumed by storage disk. The 

power consumption model of CPU is the sum of both CPU 

static power ( 𝑃𝐶𝑃𝑈_𝑆𝑡𝑎𝑡𝑖𝑐)  and CPU dynamic power 

(𝑃𝐶𝑃𝑈_𝐷𝑦𝑛𝑎𝑚𝑖𝑐) . Equation (10) is used to compute the 

power consumed by CPU [28]:  
                        𝑃𝐶𝑃𝑈 =  𝑃𝐶𝑃𝑈_𝐷𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝐶𝑃𝑈_𝑆𝑡𝑎𝑡𝑖𝑐                     (10) 

where (𝑃𝐶𝑃𝑈_𝑆𝑡𝑎𝑡𝑖𝑐) is a constant, say ω, and 𝑃𝐶𝑃𝑈_𝐷𝑦𝑛𝑎𝑚𝑖𝑐is 

given in (11). 
                                𝑃𝐶𝑃𝑈_𝐷𝑦𝑛𝑎𝑚𝑖𝑐 =  𝐴𝐶𝑉2𝑓                                  (11) 

where 𝐴  is an activity factor that accounts for frequency 

gates switching, 𝐶  is the total capacitance at the gate 

outputs, 𝑉 is the voltage of the CPU, and 𝑓 is the operating 

frequency. Voltage V can be expressed as a linear function 

of frequency, 𝑉 = 𝛼𝑓, such that 𝛼 is constant. All constants 

(ω, 𝐴, and 𝐶) can be combined together in one constant 𝛽. 

Therefore, (10) can be rewritten as shown in (12): 
                                             𝑃𝐶𝑃𝑈 =  𝛽𝑓3                                          ( 12) 

When the processor has less work, it can be slowed 

down without affecting performance adversely by using 

DVFS.  

If n is the total number of jobs, the total energy 

consumption for executing these jobs in a data center (𝑇𝑃𝑑) 

can be measured using (13): 

                                   𝑇𝑃𝑑 =  ∑ 𝑥𝑖 ∗ 𝑃𝑀𝑖
𝑝

𝑛

𝑖=1
                                (13) 

where 𝑥𝑖 is equal to 0 if the machine 𝑃𝑀𝑖  is off, and equal 

to 1 if it is on. Thus, the objective of the proposed system is 

to minimize the values of 𝑇𝑃𝑑 , as in (14).  

                         𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑇𝑃𝑑 =  ∑ 𝑥𝑖 ∗ 𝑃𝑀𝑖
𝑝

𝑛

𝑖=1
                     (14) 

According to the job requirements, the provider performs 

the VM provisioning to user’s job (i.e. VM allocation). 

There are two main policies for VMs to jobs allocation in 

cloud computing environments [29] that can be used. 

Space-shared policy which results in a VM associated with 

one or more cores. Time-shared policy which results in a 

core that holds two or more VMs. Every job is allocated to 

a VM with a specific frequency. When DI jobs are 

allocated to VMs in a space shared policy, the core 

frequency is minimized. This leads to better energy 

efficiency due to the cubic relation between energy and 

frequency as illustrated in (12). After VM provisioning, the 
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provider performs the VM placement, which is the process 

of placing the VM on the proper PM, using MCKP model 

[17]. Two VMs which belong to the same type of jobs are 

placed on different PM’s. This leads to further reduction of 

the number of active PMs which is guaranteed by KP. 

However, when there is no available PM for combining 

VMs of different types of jobs, classical KP algorithm is 

used to place the VMs.  

IV. PERFORMANCE ANALYSIS 

The CloudSim simulator [30] was used to simulate a 

real workload trace in a cloud computing environment. The 

Google workload traces [31], collected from large cloud 

systems (about 12,500 compute nodes over 29 days) are 

used in the simulation. The traces consist of different types 

of jobs [32]. Three parameters were used in the 

simulations: number of PMs, number of VMs, number of 

jobs in the workload. The PMs and VMs configurations are 

as those provided by Amazon cloud data centers [33]. 

Table 1 summarizes the VMs instance types, called M3 

types, used in the simulations. The evaluation uses the total 

consumed energy as a measurement. The simulations were 

repeatedly conducted for different numbers of PMs, VMs, 

and jobs. In this paper only results for 100 PMs and 400 

VMs are shown. The sets of jobs tested consist of 50, 200, 

400, 600, 800, and 1000 jobs. In order to evaluate the 

proposed MTP strategy, it was compared with Round 

Robin (RR) and Genetic Algorithm (GA) models. GA is a 

general purpose optimization technique inspired by the 

biological evolution. The initial population is randomly 

produced in the experiment. It evolves better approximate 

solutions from generation to generation iteratively based on 

specific fitness function (the consumed energy in the 

experiment). The individual VMs combine and cross by the 

genetic operators. Each new population represents a new 

solution of VMs to PMs placement. Similar work can be 

found in [34]. In RR, VMs are placed and distributed to 

PMs in the data center sequentially in a circular manner, 

(e.g. the one in Eucalyptus) which is open source software 

for building clouds [35]. The measurements comparison 

with GA and RR of the total consumed energy resulted 

from executing 1000 jobs are presented in Fig 4.  

Table 1: VM instance types in M3 family offered by Amazon 

VM Type CPU Clock vCPU Mem BW 

M3.meduim 

Intel Xeon 

E5-2670 v2 
Processors 

2500 1 3750 Moderate 

M3.large 

Intel Xeon 

E5-2670 v2 

Processors 

2500 2 7500 Moderate 

M3.xlarge 
Intel Xeon 
E5-2670 v2 

Processors 

2500 3 15000 High 

M3.2xlarge 

Intel Xeon 

E5-2670 v2 
Processors 

2500 4 30000 High 

Figure 4.  Consumed energy when executing different sets of jobs. 

The energy consumption of each set of jobs increased 

as the number of jobs increased. This is because the total 

execution time of a job increases as more jobs are 

submitted. Within the same set of jobs and from energy 

efficiency perspective, MTP outperforms both GA and RR 

as illustrated in Fig 4. This is due to the fact that the 

compute and storage resources of each PM are optimally 

utilized. Such utilization prevents the idle state for the 

resources (which is not guaranteed in GA and RR). The 

total number of switch on PMs needed to execute each set 

of jobs is reduced.  

V. CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper, a model that identifies common patterns 

for the jobs submitted to the cloud is presented. This model 

predicts the type of the job submitted; and accordingly, the 

set of users’ jobs is classified into four subsets. Each subset 

contains jobs that have similar requirements. The goal of 

job classification is to find a way to propose a useful 

strategy that helps improve energy efficiency. Following 

the process of jobs’ classification, a new placement strategy 

(MTP) is proposed. Its core concept is to place VMs of the 

jobs of different types in the same PM. The initial 

evaluation of MTP shows promising results with regard to 

the reduction of the total consumed energy of the data 

center. This is because the compute and storage resources 

of each PM are optimally utilized. Such utilization prevents 

the idle state for the resources. Consequently, the total 

number of PMs needed to execute the jobs is reduced. 

As a future work, a performance model to explore the 

trade-off between energy efficiency and QoS will be 

developed. The effects of the proposed strategy on some of 

QoS factors such as time and budget will be analyzed, 

Also, the VM management approaches, such as VM 

migration and consolidation, will be applied to the 

proposed model to make it more integral to work in cloud 

computing paradigm. 
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