
* PhD candidate at the Department of Mathematics & Computer Science, Beirut Arab University, Beirut, Lebanon. Email: a.aldulaimy@student.bau.edu.lb

** On leave from the Department of Mathematics & Computer Science, Faculty of Science, Alexandria University, Alexandria, Egypt. Email: ahmed.zekri@alexu.edu.eg

Job Classification in Cloud Computing: The Classification Effects on
Energy Efficiency

Auday Al-Dulaimy * Rached Zantout Ahmed Zekri ** Wassim Itani

Department of Mathematics &

Computer Science,

Beirut Arab University,

Beirut, Lebanon

auday.aldulaimy@gmail.com

Department of Electrical &

Computer Engineering,

Rafic Hariri University,

Beirut, Lebanon

zantoutrn@rhu.edu.lb

Department of Mathematics &

Computer Science,

Beirut Arab University,

Beirut, Lebanon

a.zekri@bau.edu.lb

Department of Electrical &

Computer Engineering,

Beirut Arab University,

Beirut, Lebanon

w.itani@bau.edu.lb

Abstract— One of the recent and major challenges in cloud

computing is to enhance the energy efficiency in cloud data

centers. Such enhancements can be done by improving the

resource allocation and management algorithms. In this

paper, a model that identifies common patterns for the jobs

submitted to the cloud is proposed. This model is able to

predict the type of the job submitted, and accordingly, the set

of users’ jobs is classified into four subsets. Each subset

contains jobs that have similar requirements. In addition to

the jobs’ common pattern and requirements, the users’

history is considered in the jobs’ type prediction model. The

goal of job classification is to find a way to propose useful

strategy that helps improve energy efficiency. Following the

process of jobs’ classification, the best fit virtual machine is

allocated to each job. Then, the virtual machines are placed to

the physical machines according to a novel strategy called

Mixed Type Placement strategy. The core idea of the proposed

strategy is to place virtual machines of the jobs of different

types in the same physical machine whenever possible, based

on Knapsack Problem. This is because different types of jobs

do not intensively use the same compute or storage resources

in the physical machine. This strategy reduces the number of

active physical machines which leads to major reduction in

the total energy consumption in the data center. A simulation

of the results shows that the presented strategy outperforms

both Genetic Algorithm and Round Robin from an energy

efficiency perspective.

Keywords- Cloud Computing; Data Center; Virtualization

Management; Energy Efficiency.

I. INTRODUCTION

Reducing energy consumption in data centers has

become essential nowadays. Such reduction should be

based on power delivered to computing resources and

resources utilization. In [1] and [2] dynamic voltage and

frequency scaling (DVFS) is used. In [3], dynamically

adjusting the number of CPUs in a cluster enabled energy

saving when utilization is low. In [4] and [5] switching

physical machines (PMs) off was used to save energy. In

[6] and [7], energy minimization was based on statistically

analyzed the workload. The studies in [8], [9] and [10]

optimize consumed power, service cost, and overall

performance. The authors in [11] represent service requests

as a function to minimize energy consumption. In [12]

tasks on heterogeneous machines are scheduled according

to their energy cost to maximize profit. In [13], customer

utilization patterns are proposed in a dynamic resource

provision mechanism. The proposed patterns place

additional Virtual Machines (VMs) on the PMs of cloud

data centers where possible. The impact on the trade-off

between energy efficiency and SLA requirements was

analyzed. In [14], an energy-efficient job scheduling and

allocation scheme is presented which is claimed to reduce

the number of active PMs. In [15] the IaaS cloud service

model is used as a computing infrastructure by provisioning

VMs on-demand. In [16] distributed dynamic consolidation

of VMs in virtualized cloud data centers is presented which

is based on the bin packing algorithm.

 The rapid growth in cloud computing model has

emphasized the need for improving the existing resource

allocation and management algorithms in cloud data

centers as well as proposing new ones. In this paper, a new

model is suggested to predict the job type in the workload

based on its common behaviors and patterns. User history,

when available, is also used in predicting the job type.

According to the job type, the best fit VM is allocated to

job. Then VMs are placed to the PMs using the Knapsack

Problem (KP) such that no VMs having the same type of

jobs will consolidate on the same PM. High Performance

Computing (HPC) jobs can be effectively combined with

Data Intensive (DI) jobs on the same PM. HPC jobs mostly

request compute resources, whereas DI jobs request storage

and network bandwidth resources. This leads to the

reduction in the number of active PMs. VM placement is

done by using KP. Other methods, such as bin packing

algorithm [16] are available. In this paper, Multi Choice

Knapsack Problem (MCKP) is used since selection is done

from different sets [17]. In this paper, reducing energy

consumption is done also by minimizing the CPU

frequency the VM’s of the DI jobs using DVFS. This is

only applied when VM’s of DI jobs exist in space shared

policy. This is to prevent any effect on the other VMs on

2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing

978-0-7695-5697-0/15 $31.00 © 2015 IEEE

DOI 10.1109/UCC.2015.97

547

mailto:ahmed.zekri@alexu.edu.eg

the PM as well as not violating the DI job’s Quality of

Service (QoS). In this paper, one VM is assumed to be

allocated to each job. Jobs are assumed to be organized as

Bag-of-Tasks (BoT), independent, executable in any order.

In section 2 the components of the system model

which submit users' jobs to the cloud are presented. Jobs

classification is also detailed. In section 3 the model is

described along with the new MTP strategy. Experimental

results are discussed and analyzed in section 4. Finally,

conclusions and future works are listed in section 5.

II. SYSTEM COMPONENTS

The system is based on the cloud computing

environment paradigm, whereby users request services

from a Cloud provider to execute jobs. The system consists

of two main components: User and Provider, as shown in

Figure 1. The cloud user submits the job (or set of jobs) to

the cloud provider to be executed, typically with an implied

QoS requirement. The submission model is shown below:

𝑗𝑜𝑏𝑖(𝑄𝑜𝑆)

QoS includes the deadline (DLi) and budget (Bi) for the

user jobs. A Provider receives the users' jobs, executes

them at a specific data center, then sends the results back to

the users.

The Provider component includes two models: Global

Scheduler and Data Center(s). The global scheduler acts as

an interface between users and cloud infrastructure. It

profiles and analyzes the service requirements of the

submitted jobs and decides whether to accept or reject them

based on the availability of resources. Then, it selects the

data center that should execute the jobs so that energy

consumption can be reduced, while meeting QoS

requirements. The global scheduler model operates in three

main phases: Prediction Phase, Service Level Agreement

(SLA) Phase, and Mapping Phase. In the prediction phase

job types are decided. A job is classified as high

performance computing (HPC), data intensive (DI), high

performance computing and data intensive (HPC-DI), or

Normal (N).

Figure 1. System Components.

Job profiling creates the following infrastructure

requirements:
(𝑃𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑈𝑠𝑒𝑟 , 𝑇𝑖𝑚𝑒𝑈𝑠𝑒𝑟 , 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑈𝑠𝑒𝑟 , 𝑅𝐴𝑀𝑈𝑠𝑒𝑟 , 𝐵𝑊𝑈𝑠𝑒𝑟)

where:

 𝑃𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑈𝑠𝑒𝑟 ∶ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (𝑃𝐸𝑠)
 𝑛𝑒𝑒𝑑𝑒d by 𝑗𝑜𝑏𝑖 , 𝑎𝑙𝑠𝑜 𝑘𝑛𝑜𝑤𝑛 𝑎𝑠 𝑐𝑜𝑟𝑒𝑠.

 𝑇𝑖𝑚𝑒𝑈𝑠𝑒𝑟 ∶ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑗𝑜𝑏𝑖 𝑤ℎ𝑒𝑛
 𝑢𝑠𝑖𝑛𝑔 𝑃𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑈𝑠𝑒𝑟 .

 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑈𝑠𝑒𝑟 ∶ Size of the storage needed by 𝑗𝑜𝑏𝑖

 𝑅𝐴𝑀𝑈𝑠𝑒𝑟 ∶ 𝑅𝐴𝑀 𝑠𝑖𝑧𝑒 𝑛𝑒𝑒𝑑𝑒𝑑 𝑏𝑦 𝑗𝑜𝑏𝑖

 𝐵𝑊𝑈𝑠𝑒𝑟 ∶ 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑛𝑒𝑒𝑑𝑒𝑑 𝑏𝑦 𝑗𝑜𝑏𝑖

Execution time is estimated in [8] and [18] as a known

quantity or given by the User. Code analysis is used in [19],

while Analytic benchmarking/code profiling is used in [20].

Historical/Statistical prediction is used in [21] while

Empirical analysis is used in [22]. Cycle Per Instruction

(CPI) was used in [23], while Memory Access Per

Instruction (MPI) was used in [24], and estimated

bandwidth was used in [25]. After profiling, this phase

utilizes a mix of statistical information and some input

features for the jobs to predict the job type. This is done in

two ways. The first is the User Id check (UIC) A Log File

(LF) is maintained for each user which is used in profiling

Users as well as jobs. LF is considered as a list of recordsof

the form:

Job (JobID, JobType, Date, UserID)

The second way is the Job Features Check (JFC). Profiling

the job by examining the following features: total execution

time of the job, Cycle Per Instruction (CPI), Memory

Access Per Instruction (MPI), Size of the job, and

Bandwidth.

A new algorithm, User Type Predictor (UTP), is used

to predict the users type based on their history. The

prediction is based on the type of the last number of jobs

submitted or the type of jobs submitted within a past period

of time, or both.

Algorithm: User Type Predictor

Input: LF , nJOB, nDAY

Output: User type

1 JobCounter=0;

2 StartDate = Current Date

3 EndDate = StartDate – nDAY

4 while (JobCounter < nJOB) or (LE has more jobs)

5 If (Job.Date ≤ StartDate & Job.Date ≥ EndDate)

6 switch (Job.JobType)

7 Case HPC: CounterHPC ++

8 Case DI: CounterDI ++

9 Case HPC-DI: CounterHPC-DI ++

10 Case Normal: CounterNormal ++

11 end switch
12 JobCounter ++

13 end if

14 end while

15 return (Type of the max counter)

Algorithm 1: User Type Predictor Algorithm

548

In algorithm 1, nJOB (which represents n jobs

submitted by a specific user) and nDAY (which represents

n days of jobs’ submission by a specific user) may vary

over time according to the user's identity and the types of

job submitted by this user.

 Equations (1) to (4) calculate the total values

requested for time execution, memory, storage, and

bandwidth respectively, which are required to execute jobs

for a specific user.

 𝑅𝑒𝑞𝑇𝑖𝑚𝑒𝑢𝑠𝑒𝑟 = ∑ 𝑇𝑖𝑚𝑒𝑖

𝑁𝑜𝑂𝑓𝐽𝑜𝑏𝑠

𝑖=1

 (1)

 𝑅𝑒𝑞𝑀𝑒𝑚𝑜𝑟𝑦𝑢𝑠𝑒𝑟 = ∑ 𝑅𝐴𝑀𝑖

𝑁𝑜𝑂𝑓𝐽𝑜𝑏𝑠

𝑖=1

 (2)

 𝑅𝑒𝑞𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑢𝑠𝑒𝑟 = ∑ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑖

𝑁𝑜𝑂𝑓𝐽𝑜𝑏𝑠

𝑖=1

 (3)

 𝑅𝑒𝑞𝐵𝑊𝑢𝑠𝑒𝑟 = ∑ 𝐵𝑤𝑖

𝑁𝑜𝑂𝑓𝐽𝑜𝑏𝑠

𝑖=1

 (4)

Equations (5) to (8) are used to specify the type of the user.

 𝐻𝑃𝐶 = (𝐿𝐹𝐻𝑃𝐶 ∗ 𝑤1)

+ (((𝑗𝑜𝑏𝑖
𝐸𝑇 ≥ 𝐸𝑥𝑒𝑐𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐶𝑃𝐼

≥ 𝐶𝑝𝑖𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖
𝑀𝑃𝐼 ≥ 𝑀𝑝𝑖𝑇ℎ)) ∗ 𝑤2)

+ (((𝑗𝑜𝑏𝑖
𝑠𝑖𝑧𝑒 < 𝑆𝑖𝑧𝑒𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐵𝑊

< 𝐵𝑤𝑇ℎ)) ∗ 𝑤3) (5)

 𝐷𝐼 = (𝐿𝐹𝐷𝐼 ∗ 𝑤1)

+ (((𝑗𝑜𝑏𝑖
𝐸𝑇 < 𝐸𝑥𝑒𝑐𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐶𝑃𝐼

< 𝐶𝑝𝑖𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖
𝑀𝑃𝐼 < 𝑀𝑝𝑖𝑇ℎ)) ∗ 𝑤2)

+ (((𝑗𝑜𝑏𝑖
𝑠𝑖𝑧𝑒 ≥ 𝑆𝑖𝑧𝑒𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐵𝑊

≥ 𝐵𝑤𝑇ℎ)) ∗ 𝑤3) (6)

 𝐻𝑃𝐶 − 𝐷𝐼 = (𝐿𝐸𝐵𝑂𝑇𝐻 ∗ 𝑤1)

+ (((𝑗𝑜𝑏𝑖
𝐸𝑇 ≥ 𝐸𝑥𝑒𝑐𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐶𝑃𝐼

≥ 𝐶𝑝𝑖𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖
𝑀𝑃𝐼 ≥ 𝑀𝑝𝑖𝑇ℎ)) ∗ 𝑤2)

+ (((𝑗𝑜𝑏𝑖
𝑠𝑖𝑧𝑒 ≥ 𝑆𝑖𝑧𝑒𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐵𝑊

≥ 𝐵𝑤𝑇ℎ)) ∗ 𝑤3) (7)

 𝑁𝑂𝑅𝑀𝐴𝐿 = (𝐿𝐸𝑁𝑂𝑅𝑀𝐴𝐿 ∗ 𝑤1)

+ (((𝑗𝑜𝑏𝑖
𝐸𝑇 ≤ 𝐸𝑥𝑒𝑐𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐶𝑃𝐼

≤ 𝐶𝑝𝑖𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖
𝑀𝑃𝐼 ≤ 𝑀𝑝𝑖𝑇ℎ)) ∗ 𝑤2)

+ (((𝑗𝑜𝑏𝑖
𝑠𝑖𝑧𝑒 ≤ 𝑆𝑖𝑧𝑒𝑇ℎ) 𝑜𝑟 (𝑗𝑜𝑏𝑖

𝐵𝑊

≤ 𝐵𝑤𝑇ℎ)) ∗ 𝑤3) (8)

where:

𝐿𝐹𝐻𝑃𝐶 = {
1 𝑖𝑓 𝑡ℎ𝑒 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑠𝑒𝑟 𝑖𝑛 𝐿𝐹 𝑖𝑠 𝐻𝑃𝐶
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐿𝐹𝐷𝐼 = {
1 𝑖𝑓 𝑡ℎ𝑒 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑠𝑒𝑟 𝑖𝑛 𝐿𝐹 𝑖𝑠 𝐷𝐼
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐿𝐹𝐵𝑂𝑇𝐻 = {
1 𝑖𝑓 𝐿𝐹𝐻𝑃𝐶 = 𝐿𝐹𝐷𝐼 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐿𝐹𝑁𝑂𝑅𝑀𝐴𝐿 = {
1 𝑖𝑓 𝐿𝐹𝐻𝑃𝐶 = 𝐿𝐹𝐷𝐼 = 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐸𝑥𝑒𝑐𝑇ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
𝐶𝑝𝑖𝑇ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝐶𝑃𝐼 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏

𝑀𝑝𝑖𝑇ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑀𝑃𝐼 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏

𝑆𝑖𝑧𝑒𝑇ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑠𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑇ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑗𝑜𝑏

𝑤1,𝑤2, and 𝑤3 are weight values satisfying

𝑤1 + 𝑤2 + 𝑤3 = 1 ,

The cloud provider assigns the weight values. 𝑤1 is related

to the User history (if any). 𝑤2 is related to total execution

time, CPI, and MPI, values which high in HPC jobs. 𝑤3 is

related job size and bandwidth which are high for DI jobs.

 Thresholds are selected by examining real workload

trace. A histogram (e.g. Figure 2 for CPI threshold) is

sketched and the average and median are used to calculate

the threshold.

The job type is selected according to the maximum

value of resulted from (1) to (4). If two or more values are

equal (ambiguity state), the type in the LF should be the

dominant one. If there is no information about the user in

the LF, w1 is zero.

In the SLA phase, an agreement about the offered

services between the user and cloud provider is achieved to

ensure that the QoS requirements of the users are met [26].

The global scheduler decides whether or not the provider

can execute the user’s job if the provider is not able to

execute the job with the required QoS, the user will be

informed in this phase. Otherwise, the job will be passed on

to the mapping phase.

In the mapping phase, mapping jobs to data centers is

performed to minimize the total amount of energy

consumption. This is done by interacting with the local

schedulers of each data center [16] to determine CPU

availability, free time slots, available, and expected amount

of consumed energy when executing the jobs on the

available resources of the data center. The mapping process

makes sure not to violate the SLA constraints. The local

scheduler performs the actual jobs scheduling.

Figure 2. Selecting CPI threshold for a Set of Jobs

0

5

10

15

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

CPI Threshold

CPI Value Mean Median

549

The data center model (presented in Figure 3) consists

of 𝑛 heterogeneous 𝑃𝑀𝑠 . Each 𝑃𝑀𝑖 contains multicore

processors and is characterized by the configuration shown

below:
𝑃𝑀𝑖(𝑃𝐸𝑃𝑀, 𝑆𝑝𝑒𝑒𝑑𝑃𝑀 , 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃𝑀 , 𝑅𝐴𝑀𝑃𝑀, 𝐵𝑊𝑃𝑀)

where:

 𝑃𝐸𝑃𝑀 ∶ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝐸𝑠 𝑖𝑛 𝑃𝑀𝑖

 𝑆𝑝𝑒𝑒𝑑𝑃𝑀 ∶ 𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑃𝐸 𝑖𝑛 𝑃𝑀𝑖

 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃𝑀 ∶ 𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑖𝑛 𝑃𝑀𝑖

 𝑅𝐴𝑀𝑃𝑀 ∶ 𝑅𝐴𝑀 𝑠𝑖𝑧𝑒 𝑖𝑛 𝑃𝑀𝑖

 𝐵𝑊𝑃𝑀 ∶ 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑖𝑛 𝑃𝑀𝑖

Each 𝑃𝑀 can have one or more 𝑉𝑀𝑠 assigned. Each

𝑉𝑀 configuration is characterized as shown below:

𝑉𝑀𝑖(𝑝𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑉𝑀, 𝑆𝑝𝑒𝑒𝑑𝑉𝑀 , 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑉𝑀, 𝑅𝐴𝑀𝑉𝑀, 𝐵𝑊𝑉𝑀)

where:

 𝑝𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑉𝑀 ∶ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝐸𝑠 𝑖𝑛 𝑉𝑀𝑖

 𝑆𝑝𝑒𝑒𝑑𝑉𝑀 ∶ 𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑃𝐸 𝑖𝑛 𝑉𝑀𝑖

 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑉𝑀 ∶ 𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑖𝑛 𝑉𝑀𝑖

 𝑅𝐴𝑀𝑉𝑀 ∶ 𝑅𝐴𝑀 𝑠𝑖𝑧𝑒 𝑖𝑛 𝑉𝑀𝑖

 𝐵𝑊𝑉𝑀 ∶ 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑖𝑛 𝑉𝑀𝑖

III. THE MODEL

In cloud computing, the problem of allocating

resources is NP-hard [10]. This is because jobs are to be

effectively scheduled in distributed, heterogeneous, and

virtualized environments. The system, 𝑆 , is modeled as a

four-tuple (𝐷, 𝑃𝑀, 𝑉𝑀, 𝐽). D is a set of data centers; each

element 𝐷𝑑 𝐷 represents a single data center in the

system. 𝑃𝑀 is a set of physical machines in the data center;

each element 𝑃𝑀𝑝𝑚,𝑑 𝑃𝑀 represents a single 𝑃𝑀𝑝𝑚 in

𝐷𝑑 . 𝑉𝑀 is a set of virtual machines associated with

physical machines in the data center; each element

𝑉𝑀𝑣𝑚,𝑝𝑚,𝑑 𝑉𝑀 represents a single 𝑉𝑀𝑣𝑚 on single

𝑃𝑀𝑝𝑚 in data center 𝐷𝑑 . 𝐽 is a set of jobs; each element

𝑗𝑜𝑏𝑗 𝐽 represents a single job.

Figure 3. The Data Center Model.

Minimizing energy consumption is done by a multi-

objective optimization scheduling algorithm. The energy

consumed by PMs in data centers usually determined by

the CPU, disk storage, memory, and network interfaces

[27]. Among these components, the CPU consumes the

most amount of energy. Hence, in this work, only the

energy consumed by CPU using Equation (9).

 𝑃𝑀𝑖
𝑝

= 𝑃𝐶𝑃𝑈 + 𝑃𝑀𝑒𝑚𝑜𝑟𝑦+𝑃𝑆𝑡𝑜𝑟𝑎𝑔𝑒 (9)

where (𝑃𝑀𝑖
𝑝

)is a specific 𝑃𝑀, 𝑃𝐶𝑃𝑈 is the power consumed

by the CPU, 𝑃𝑀𝑒𝑚𝑜𝑟𝑦 is the power consumed by memory,

and 𝑃𝑆𝑡𝑜𝑟𝑎𝑔𝑒 is the power consumed by storage disk. The

power consumption model of CPU is the sum of both CPU

static power (𝑃𝐶𝑃𝑈_𝑆𝑡𝑎𝑡𝑖𝑐) and CPU dynamic power

(𝑃𝐶𝑃𝑈_𝐷𝑦𝑛𝑎𝑚𝑖𝑐) . Equation (10) is used to compute the

power consumed by CPU [28]:
 𝑃𝐶𝑃𝑈 = 𝑃𝐶𝑃𝑈_𝐷𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝐶𝑃𝑈_𝑆𝑡𝑎𝑡𝑖𝑐 (10)

where (𝑃𝐶𝑃𝑈_𝑆𝑡𝑎𝑡𝑖𝑐) is a constant, say ω, and 𝑃𝐶𝑃𝑈_𝐷𝑦𝑛𝑎𝑚𝑖𝑐is

given in (11).
 𝑃𝐶𝑃𝑈_𝐷𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐴𝐶𝑉2𝑓 (11)

where 𝐴 is an activity factor that accounts for frequency

gates switching, 𝐶 is the total capacitance at the gate

outputs, 𝑉 is the voltage of the CPU, and 𝑓 is the operating

frequency. Voltage V can be expressed as a linear function

of frequency, 𝑉 = 𝛼𝑓, such that 𝛼 is constant. All constants

(ω, 𝐴, and 𝐶) can be combined together in one constant 𝛽.

Therefore, (10) can be rewritten as shown in (12):
 𝑃𝐶𝑃𝑈 = 𝛽𝑓3 (12)

When the processor has less work, it can be slowed

down without affecting performance adversely by using

DVFS.

If n is the total number of jobs, the total energy

consumption for executing these jobs in a data center (𝑇𝑃𝑑)

can be measured using (13):

 𝑇𝑃𝑑 = ∑ 𝑥𝑖 ∗ 𝑃𝑀𝑖
𝑝

𝑛

𝑖=1
 (13)

where 𝑥𝑖 is equal to 0 if the machine 𝑃𝑀𝑖 is off, and equal

to 1 if it is on. Thus, the objective of the proposed system is

to minimize the values of 𝑇𝑃𝑑 , as in (14).

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝑃𝑑 = ∑ 𝑥𝑖 ∗ 𝑃𝑀𝑖
𝑝

𝑛

𝑖=1
 (14)

According to the job requirements, the provider performs

the VM provisioning to user’s job (i.e. VM allocation).

There are two main policies for VMs to jobs allocation in

cloud computing environments [29] that can be used.

Space-shared policy which results in a VM associated with

one or more cores. Time-shared policy which results in a

core that holds two or more VMs. Every job is allocated to

a VM with a specific frequency. When DI jobs are

allocated to VMs in a space shared policy, the core

frequency is minimized. This leads to better energy

efficiency due to the cubic relation between energy and

frequency as illustrated in (12). After VM provisioning, the

550

provider performs the VM placement, which is the process

of placing the VM on the proper PM, using MCKP model

[17]. Two VMs which belong to the same type of jobs are

placed on different PM’s. This leads to further reduction of

the number of active PMs which is guaranteed by KP.

However, when there is no available PM for combining

VMs of different types of jobs, classical KP algorithm is

used to place the VMs.

IV. PERFORMANCE ANALYSIS

The CloudSim simulator [30] was used to simulate a

real workload trace in a cloud computing environment. The

Google workload traces [31], collected from large cloud

systems (about 12,500 compute nodes over 29 days) are

used in the simulation. The traces consist of different types

of jobs [32]. Three parameters were used in the

simulations: number of PMs, number of VMs, number of

jobs in the workload. The PMs and VMs configurations are

as those provided by Amazon cloud data centers [33].

Table 1 summarizes the VMs instance types, called M3

types, used in the simulations. The evaluation uses the total

consumed energy as a measurement. The simulations were

repeatedly conducted for different numbers of PMs, VMs,

and jobs. In this paper only results for 100 PMs and 400

VMs are shown. The sets of jobs tested consist of 50, 200,

400, 600, 800, and 1000 jobs. In order to evaluate the

proposed MTP strategy, it was compared with Round

Robin (RR) and Genetic Algorithm (GA) models. GA is a

general purpose optimization technique inspired by the

biological evolution. The initial population is randomly

produced in the experiment. It evolves better approximate

solutions from generation to generation iteratively based on

specific fitness function (the consumed energy in the

experiment). The individual VMs combine and cross by the

genetic operators. Each new population represents a new

solution of VMs to PMs placement. Similar work can be

found in [34]. In RR, VMs are placed and distributed to

PMs in the data center sequentially in a circular manner,

(e.g. the one in Eucalyptus) which is open source software

for building clouds [35]. The measurements comparison

with GA and RR of the total consumed energy resulted

from executing 1000 jobs are presented in Fig 4.

Table 1: VM instance types in M3 family offered by Amazon

VM Type CPU Clock vCPU Mem BW

M3.meduim

Intel Xeon

E5-2670 v2
Processors

2500 1 3750 Moderate

M3.large

Intel Xeon

E5-2670 v2

Processors

2500 2 7500 Moderate

M3.xlarge
Intel Xeon
E5-2670 v2

Processors

2500 3 15000 High

M3.2xlarge

Intel Xeon

E5-2670 v2
Processors

2500 4 30000 High

Figure 4. Consumed energy when executing different sets of jobs.

The energy consumption of each set of jobs increased

as the number of jobs increased. This is because the total

execution time of a job increases as more jobs are

submitted. Within the same set of jobs and from energy

efficiency perspective, MTP outperforms both GA and RR

as illustrated in Fig 4. This is due to the fact that the

compute and storage resources of each PM are optimally

utilized. Such utilization prevents the idle state for the

resources (which is not guaranteed in GA and RR). The

total number of switch on PMs needed to execute each set

of jobs is reduced.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, a model that identifies common patterns

for the jobs submitted to the cloud is presented. This model

predicts the type of the job submitted; and accordingly, the

set of users’ jobs is classified into four subsets. Each subset

contains jobs that have similar requirements. The goal of

job classification is to find a way to propose a useful

strategy that helps improve energy efficiency. Following

the process of jobs’ classification, a new placement strategy

(MTP) is proposed. Its core concept is to place VMs of the

jobs of different types in the same PM. The initial

evaluation of MTP shows promising results with regard to

the reduction of the total consumed energy of the data

center. This is because the compute and storage resources

of each PM are optimally utilized. Such utilization prevents

the idle state for the resources. Consequently, the total

number of PMs needed to execute the jobs is reduced.

As a future work, a performance model to explore the

trade-off between energy efficiency and QoS will be

developed. The effects of the proposed strategy on some of

QoS factors such as time and budget will be analyzed,

Also, the VM management approaches, such as VM

migration and consolidation, will be applied to the

proposed model to make it more integral to work in cloud

computing paradigm.

0

100

200

300

400

500

600

700

50 200 400 600 800 1000

C
o

n
su

m
ed

 P
o

w
er

Number of Jobs

Power Consumption

MTP GA RR

551

REFERENCES

[1] T. Horvath, T. Abdelzaher, K. Skadron and X. Liu, "Dynamic
voltage scaling in multi-tier web servers with end-to-end delay

control," IEEE TRANSACTIONS ON COMPUTERS, vol. 56, no. 4,

pp. 444-458, 2007.

[2] X. Wang, X. Fu, X. Liu and Z. Gu, "Power-aware CPU utilization

control for distributed real-time systems," in Real-Time and

Embedded Technology and Applications Symposium , San Francisco,
CA, 2009.

[3] B. Lawson and E. Smirni, "Power-aware Resource Allocation in

High-end Systems via Online Simulation," in Proceedings of the 19th
annual international conference on Supercomputing, New York, NY,

USA, 2005.

[4] W. Lang and J. M. Patel, "Energy management for map-reduce
clusters," in Proceedings of the 36th International Conference on

Very Large Data Bases, Singapore, 2010.

[5] J. Heo, P. Jayachandran, I. Shin, D. Wang, T. Abdelzaher and X. Liu,
"OptiTuner: On Performance Composition and Server Farm Energy

Minimization Application," IEEE Transactions on Parallel and

Distributed Systems, vol. 22, no. 11, pp. 1871-1878, 2011.

[6] D. Bradley, R. Harper and S. Hunter, "Workload-based power

management for Parallel computer systems," IBM Journal of

Research and Development, vol. 47, no. 5-6, pp. 703-718, 2003.

[7] B. Guenter, N. Jain and C. Williams, "Managing cost, performance,

and reliability tradeoffs for energy-aware server provisioning," in

Proceedings IEEE INFOCOM , Shanghai, 2011.

[8] S. K. Garg, C. S. Yeob, A. Anandasivamc and R. Buyya,

"Environment-conscious scheduling of HPC applications on

distributed Cloud-oriented data centers," Jornal of Parallel
Distributed Computing, vol. 71, no. 6, pp. 732-749, 2011.

[9] G. Tesauro, R. Das, H. Chan, J. O. Kephart, C. Lefurgy, D. W.

Levine and F. Rawson, "Managing power consumption and
performance of computing systems using reinforcement learning," in

In Proceedings of the 21st Annual Conference on Neural Information

Processing Systems, Vancouver, Canada, 2007.

[10] F. Zhang, J. Cao, K. Li, S. U. Khan and K. Hwang, "Multi-objective

scheduling of many tasks in cloud platforms," Future Generation

Computer System, vol. 37, pp. 309-320, 2014.

[11] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat and R. P.

Doyle, "Managing energy and server resources in hosting centers," in

Proceedings of the eighteenth ACM symposium on operating systems
principles, New York, NY, USA, 2001.

[12] J. Burge, P. Ranganathan and J. L. Wiener, "Cost-aware scheduling

for heterogeneous enterprise machines (CASH’EM), HPL-2007- 63,
,," Hewlett-Packard Development Company, Palo Alto, 2007.

[13] R. VIKRAM and A. NEELIMA, "Resource Over allocation to

Improve Energy Efficiency in Real-Time Cloud Computing Data
Centers," International Journal of Advanced Trends in Computer

Science and Engineering, vol. 2, no. 1, pp. 447-453, 2013.

[14] S. S. Deore and A. N. Patil, "Energy-Efficient Job Scheduling and

Allocation Scheme for Virtual Machines in Private Clouds,"

International Journal of Applied Information Systems, vol. 5, no. 1,
pp. 56-60, 2013.

[15] E. Feller, "Autonomic and Energy-Efficient Management of Large-

Scale Virtualized Data Centers," PhD thesis, ISTIC, University of
Rennes, 2013.

[16] A. Beloglazov, "Energy-Efficient Management of Virtual Machines

in Data Centers for Cloud Computing," PhD thesis, Department of
Computing and Information Systems, The University of Melbourne,

2013.

[17] D. Pisinger, "Algorithms for Knapsack Problems," PhD thesis,
University of Copenhagen, 1995.

[18] G. Lee, Resource Allocation and Scheduling in Heterogeneous Cloud

Environments, PhD thesis, College Of Engineering, University Of

California, Berkeley, 2012.

[19] G. Nudd, D. Kerbyson, E. Papaefstathiou, S. Perry, J. Harper and D.

Wilcox, "PACE: A Toolset For The Performance Prediction Of

Parallel And Distributed Systems," International Journal of High
Performance Computing Application, vol. 14, no. 3, pp. 228-251,

2000.

[20] J. Yang, I. Ahmad and A. Ghafoor, "Estimation of execution times on
heterogeneous supercomputer architectures," in International

Conference on Parallel Processing, 1993.

[21] H. Sanjay and S. Vadhiyar, "Performance Modeling Of Parallel
Applications For Grid Scheduling," Journal of Parallel Distributed

Computing, vol. 68, no. 8, pp. 1135-1145, 2008.

[22] F. Berman, H. Casanova, A. Chien, K. Cooper, H. Dail, A. Dasgupta,
W. Deng, J. Dongarra, L. Johnsson, K. Kennedy, C. Koelbel, B. Liu,

X. Liu, A. Mandal, G. Marin, M. Mazina, J. Crummey, C. Mendes,

A. Olugbile, J. Patel, D. Reed, Z. Shi and O. Siever, "New grid

scheduling and rescheduling methods in the grads project,"

International Journal of Parallel Programming, vol. 33, no. 2, pp.

209-229, 2005.

[23] J. Chen and L. K. John, "Predictive Coordination of Multiple On-

Chip Resources for Chip Multiprocessors," in International

Conference on Supercomputing, Tuscon, Arizona, USA, 2011.

[24] Z. Zhang and J. M. Chang, "A Cool Scheduler for Multi-Core

Systems Exploiting Program Phases," IEEE TRANSACTIONS ON

COMPUTERS, vol. 63, no. 5, pp. 1061-1073, 2014.

[25] J. Zhu, D. Li, J. Wu, H. Liu, Y. Zhangy and J. Zhang, "Towards

bandwidth guarantee in multi-tenancy cloud computing networks," in

International Conference on Network Protocols, Austin, TX, 2012.

[26] S. B. S. M. Moustafa, SLA Monitoring For Federated Cloud

Services, MSc thesis, School of Computing, Queen’s University,

2015.

[27] A. Beloglazov, J. Abawajyb and R. Buyya, "Energy-aware resource

allocation heuristics for efficient management of data centers for

Cloud computing," Future Generation Computer Systems, vol. 28,
no. 5, pp. 755-768, 2012.

[28] M. T. Chaudhry, T. C. Ling, A. Manzoor, S. A. Hussain and J. Kim,

"Thermal-Aware Scheduling in Green Data Centers," ACM
Computing Surveys, vol. 47, no. 3, p. Article 39, 2015.

[29] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose and R.

Buyya, "CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning

Algorithms," Software: Practice and Experience Journal, vol. 41, no.

1, pp. 23-50, 2011.

[30] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose and R.

Buyya, "Cloudsim: A Toolkit For Modeling And Simulation Of

Cloud Computing Environments And Evaluation Of Resource
Provisioning Algorithms," Software—Practice & Experience

Journal, vol. 41, no. 1, pp. 23-50, 2011.

[31] Google, "https://cloud.google.com/storage/docs/overview," [Online],

2015.

[32] J. W. Charles Reiss, "Google Cluster-Usage Traces: Format And
Schema," Google Inc, version 2, 2013.

[33] Amazon, "http://aws.amazon.com," [Online], 2015.

[34] Y.-S. Dong, G.-C. Xu and X.-D. Fu, "A Distributed Parallel Genetic

Algorithm of Placement Strategy for Virtual Machines Deployment

on Cloud Platform," The Scientific World Journal, vol. 2014, no.
Article ID 259139, 2014.

[35] Eucalyptus, "https://www.eucalyptus.com," [Online], 2015.

552

