
LOOPS: A Holistic Control Approach for Resource Management
in Cloud Computing

Auday Al-Dulaimy
Mälardalen University, Västerås, Sweden

auday.aldulaimy@mdh.se

Javid Taheri
Karlstad University, Karlstad, Sweden

javid.taheri@kau.se

Alessandro V. Papadopoulos
Mälardalen University, Västerås, Sweden

alessandro.papadopoulos@mdh.se

Thomas Nolte
Mälardalen University, Västerås, Sweden

thomas.nolte@mdh.se

ABSTRACT
Resource sharing among a set of virtual machines (VMs) which are
co-hosted on heterogeneous physical machines (PMs) introduces
major benefits for improving resource utilization and total cost of
ownership, but it can create technical challenges on the running
performance. In practice, orchestrators are required to allocate
sufficient physical resources to each VM to meet a set of predefined
performance goals. To ensure a specific service level objective,
the orchestrator needs to be equipped with a dynamic tool for
assigning computing resources to each VM, based on the run-time
state of the target environment. To this end, we present LOOPS, a
multi-loop control approach, to allocate resources to VMs based
on the service level agreement (SLA) requirements and the run-
time conditions. LOOPS is mainly composed of one essential unit
to monitor VMs, and three control levels to allocate resources to
VMs based on requests from the essential node. A tailor-made
controller is proposed with each level to regulate contention among
collocated VMs, to reallocate resources if required, and to migrate
VMs from one host to another. The three levels work together to
meet the required SLA. The experimental results have shown that
the proposed approach can meet applications’ performance goals
by assigning the resources that the applications require.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
cloud computing, resource management, auto-scaling, vertical scal-
ing, horizontal scaling, VM migration.

ACM Reference Format:
Auday Al-Dulaimy, Javid Taheri, Alessandro V. Papadopoulos, and Thomas
Nolte. 2021. LOOPS: A Holistic Control Approach for Resource Management
in Cloud Computing. In Proceedings of the 2021 ACM/SPEC International
Conference on Performance Engineering (ICPE ’21), April 19–23, 2021, Virtual

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’21, April 19–23, 2021, Virtual Event, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8194-9/21/04. . . $15.00
https://doi.org/10.1145/XXXXXX.XXXXXX

Event, France. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
XXXXXX.XXXXXX

1 INTRODUCTION
Cloud computing has gained significant attention in the last decade
due to the wide range of services it offers. Cloud computing services
are offered by providing an access to a wide range of infrastruc-
tures hosted on cloud data centers. The resources are available
on-demand in a pay-as-you-go manner. The resources’ demand of
many applications is not static and varies over time. Cloud users
select pre-configured VMs from a set of VM types provided by cloud
providers to serve the applications. Thus, from one side, cloud users
do not know the performance that they get when they pick a given
resource configuration. They can either select the least possible
configuration for their applications, which results in performance
degradation, or they can acquire VMs based on the application peak
demand to achieve high application performance. However, peak
load resource allocation leads to resource wastage, and in this case,
users pay for resources that would not fully utilize. On the other
side, cloud providers try to consolidate VMs on a minimal number
of physical servers based on the virtualization concept, so as to
use the available physical resources efficiently and minimize the
running cost. Despite its benefits, performance degradation and
Service Level Agreement (SLA) violations can also occur for the
provided services due to contention among collocated VMs. Re-
quirements of cloud-based applications from the physical resources
are different, and they may vary for the same application over time.
Meeting specific metrics can be achieved by monitoring the system
status, understanding the contention among co-hosted VMs, and
accordingly reallocating the physical resources among the VMs.

This work presents an auto-scaling approach for controlling
contention among co-hosted VMs, and reallocating resources dy-
namically based on the resources’ demand of the cloud services.
The proposed approach, called LOOPS, consists of two main compo-
nents: (i) the Monitoring and Measurement Unit (MMU) to monitor
the VMs, and (ii) the adaptation level. The adaptation level is com-
posed of three controllers, each operating under the orchestration
of the MMU. The three levels are in charge of regulating contention
among co-hosted VMs, VM autoscaling, and VM migration. LOOPS
enforces the different loops coordination via the MMU.

The key contributions of this work are: (i) Design and imple-
mentation of a multi-loop control approach to allocate the required
resources for cloud-based applications. (ii) Introduction of an com-
ponent to coordinate and control the work of the proposed loops.

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

2 RELATEDWORK
Many auto-scaling techniques already tackled the problem of dy-
namic resource allocation in two directions Vertical Scaling (VS)
and/or Horizontal Scaling (HS) using different approaches. Some
works used upper and lower thresholds as conditions to do the
scaling actions [4, 10, 12]. However, identifying the thresholds
is a challenging task by itself. Other works adopted learning ap-
proach learn from the system and react accordingly [11, 16, 24, 29].
However, learning process is time consuming. Different works, as
in [15, 17, 25, 28], employed fuzzy control to manage resources.
However, Fuzzy controllers, in general, can guarantee stability and
effectively of the system only if their underlying rules are prop-
erly designed. Queuing theory inspired many works to apply it for
resource (re)allocation, such as [2, 5, 8, 9, 27]. In general, queuing
theory technique works well with the applications of stationary
characteristics. But this is not the case in cloud computing. Others
works, such as [6, 7, 13, 14, 23], used time series to predict the
required resources to be allocated to the application in the future.
However, time series has a drawback which is the prediction accu-
racy. Some works adopted control theory to define the conditions
needed to maintain a controlled output in the face of input varia-
tion by providing automation mechanisms for system management.
In [21], the authors presented an adaptive resource control system
to dynamically adjusts the resource shares to individual tiers. The
classical control theory was used in the system aiming to meet
the QoS goals and achieving high resource utilization in the data
centres. The authors of [20] proposed a resource allocation system,
called AutoControl, to automatically allocate resources based on
the dynamic workload changes aiming to achieve application SLOs.
AutoControl consists of two main parts: an online model estimator
to estimate the required resources, and a resource controller to
do the scaling actions. However, control theory approaches often
need some parameters that require to be tuned offline for differ-
ent applications or workloads. The feedback control systems also
need a feedback signal that is stable and well correlated with the
design goal measurement. Specifying appropriate feedback signals
for different applications adds complexity to the systems. Also,
these works only utilize VS and HS, while our work add another
level of scaling. Few works depend on designing levels for resource
management. In [22], the authors presented an approach for co-
operative multilayered scaling. Two layers were investigated: the
virtual infrastructure layer and the containers layer. The proposed
approach tried to synchronized the scaling actions in a way that
two layers are consider the scaling decisions of each other. The
most closely related to this work is our previous work presented
in [1]. It also adopted a multi-loop control approach, called Mul-
tiScaler , to allocate resources dynamically to ensure the SLA for
cloud applications. However, the loops in MultiScaler work inde-
pendently from each other, without coordinating their actions. It is
worth mentioning that auto-scaling in cloud computing is mostly
related to the Analyze and Plan parts of the well-known Monitor,
Analyze, Plan, and Execute (MAPE) loop [19]. Thus, the design of
LOOPS utilizes these two phases within a master unit to perform
the resource management process in a data center environment. By
coordinating with the master node, LOOPS ’s controllers maintain
the desired level of service in multiple closed loops. To the best of

Figure 1: LOOPS system model.

our knowledge, LOOPS is the first attempt to design an auto-scaling
system with three different levels working under an umbrella of a
master management unit.

3 THE LOOPS APPROACH
This section describes the system model of the proposed approach,
which is described in Fig. 1, and explains how a multi-loop fashion
works under the umbrella of a main monitoring unit to allocate
resources to VMs based on their actual needs. The LOOPS approach
employs a combination of multi-level resource management sys-
tems for ensuring an acceptable desired metric rate while allocating
the required resources to the VMs that serve the cloud-based ap-
plications. More precisely, LOOPS comprises an essential unit and
three levels to allocate resources efficiently for VMs, as explained
in the following sections.

3.1 Monitoring and measurement unit
An essential part in LOOPS is the Monitoring and Measurement
Unit (MMU). The unit’s main functions are: (i) check the status
of all running VMs and monitor some metrics, such as the VM
and PM throughput, to take some measurements from them, and
accordingly, (ii) coordinate the tasks of the three scaling levels by
issuing requests to their close-loop controllers to do the necessary
resource management actions. Those actions aim to regulate re-
sources’ shares (using 4 control strategies), scale resources (using
Algorithm 1), and migrate VMs (using Algorithm 2).

3.2 LOOPS levels
The LOOPS approach works in three levels, each level has its con-
troller. LOOPS separates the scopes of the three levels and investi-
gates the levels’ compatibility. The controllers are separated, but
they complement each other by coordinating with MMU. They
receive commands from MMU to trigger the required actions peri-
odically. The three levels are: Resource Tuning Level (RTL), Virtual
Machine Level (VML), and Physical Machine Level (PML).

3.2.1 RTL. RTL is the first level in LOOPS that is responsible for
regulating allocated resources. The controller at this level, called
the Resource Tuning Controller (rtCTRL), tunes the resources that
are already allocated to the VMs. It adjusts shared resources inside
each PM to regulate the contention per VM. RTL handles contention

among co-hosted VMs for obtaining shared resources. Some appli-
cations served by the co-hosted VMs need more shared resources
than others. This can compromise the performance of other ap-
plications. rtCTRL can modify three variables for implementing
the amount of resources each VM receives from the PM during
contention; they are resource shares, resource limits, and resource
reservations. Resource sharing is an effective way to prioritize
VMs in case of contention, and thus, ‘shares’ can be provided ap-
propriately and accurately. Moreover, shares must be checked and
modified dynamically as they are relative to each other. Resource
shares are defined for each VM to enforce the amount of resources
each VM would receive in case of contention. Resource limits are
other control variables that influence the ultimate allocation of re-
sources to VMs. That is, VMs’ limits can also be applied in addition
to specifying the values of the VMs’ shares, and resource limits
enforce the final resource allocations regardless of the number of
shares provided. Reserving resources is another way to ensure
the performance of VMs in virtualized environments. PMs will first
cut-out the amount of reserved resources to each VM and then split
the rest according to ‘shares’ and ‘limits’. VMs co-hosted on the
same PM can always receive a minimum compute power of CPU
allocation, regardless of other VMs in the system. The MMU unit
triggers request to rtCTRL to perform the tuning action based on
some measurements from the VMs. The domain of the rtCTRL is
the VM, in other words, it can not perform any action outside the
VM. In RTL, the four different control strategies, presented in [1], to
tune and regulate the share, limit, and reservation values are inves-
tigated. Here we generalize the variables used in the formalization
of the strategies. They strategies are: Steps-Slow, Steps-Adaptive,
Steps-Ratio, and Free-Ratio.

The Steps-Slow control strategy defines a specific step value
that will be added/subtracted to/from the current limit value. The
limit of the next cycle can then be increased/decreased by rtCTRL
based on the MMU decision. Thus, the limit parameter is tuned
based on the following equation:

𝐶𝑃𝑈 𝐿𝑖𝑚𝑖𝑡
𝑐+1 = 𝐶𝑃𝑈 𝐿𝑖𝑚𝑖𝑡

𝑐 ± 𝑆𝑡𝑒𝑝𝑠𝐿𝑖𝑚𝑖𝑡 (1)

where:𝐶𝑃𝑈 𝐿𝑖𝑚𝑖𝑡
𝑐+1 is the CPU limit in the next cycle,𝐶𝑃𝑈 𝐿𝑖𝑚𝑖𝑡

𝑐 is the
current CPU limit. 𝑆𝑡𝑒𝑝𝑠𝐿𝑖𝑚𝑖𝑡 is a hardware-dependent parameter.
It can be calculated as:

𝑆𝑡𝑒𝑝𝑠𝐿𝑖𝑚𝑖𝑡 = 𝑟𝑜𝑢𝑛𝑑

(
𝐶𝑃𝑈𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

𝑉𝑀
− (𝑣𝐶𝑃𝑈𝑠 ×𝐶𝑃𝑈 𝑆𝑝𝑒𝑒𝑑)

𝜂

)
(2)

where: 𝐶𝑃𝑈𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
𝑉𝑀

is the amount of reserved CPU to the VM,
𝑣𝐶𝑃𝑈𝑠 is the number of VM cores, 𝐶𝑃𝑈 𝑆𝑝𝑒𝑒𝑑 is the CPU speed,
𝜂 is the number of cycles required to change the limit from the
minimum to maximum value, or vise versa.

In Steps-Adaptive, the value of the limit parameter in the next
cycle can be adapted by rtCTRL based on the MMU decision. The
value is changed as same as in the Steps-Slow control strategy,
but the difference here is that it is possible to change more than
one defined 𝑆𝑡𝑒𝑝𝑠𝐿𝑖𝑚𝑖𝑡 to the 𝐶𝑃𝑈 𝐿𝑖𝑚𝑖𝑡

𝑐 in order to get 𝐶𝑃𝑈 𝐿𝑖𝑚𝑖𝑡
𝑐+1 .

However, we restrict the number of possible change times to be
from 1 to 4. In general, this strategy exhibits more aggressive be-
havior compared to Steps-Slow strategy, but such behavior may be
important to make sure that the SLA violations can be maintained.

Thus, the limit parameter in Steps-Adaptive is tuned based on the
following equation:

𝐶𝑃𝑈 𝐿𝑖𝑚𝑖𝑡
𝑐+1 = 𝐶𝑃𝑈 𝐿𝑖𝑚𝑖𝑡

𝑐 ±
(
𝑆𝑡𝑒𝑝𝑠𝐶𝑜𝑛𝑡𝑟𝑜𝑙 × 𝑆𝑡𝑒𝑝𝑠𝐿𝑖𝑚𝑖𝑡

)
(3)

where:𝐶𝑃𝑈 𝐿𝑖𝑚𝑖𝑡
𝑐+1 is the CPU limit in the next cycle,𝐶𝑃𝑈 𝐿𝑖𝑚𝑖𝑡

𝑐 is the
current CPU limit, 𝑆𝑡𝑒𝑝𝑠𝐿𝑖𝑚𝑖𝑡 is a hardware-dependent parameter
calculated as in (2), 𝑆𝑡𝑒𝑝𝑠𝐶𝑜𝑛𝑡𝑟𝑜𝑙 is the the number of possible
adding/subtracting times, it is calculated as follows:

𝑆𝑡𝑒𝑝𝑠𝐶𝑜𝑛𝑡𝑟𝑜𝑙 =

(
𝑄𝑜𝑆𝑇𝑎𝑟𝑔𝑒𝑡 −𝑄𝑜𝑆𝐶𝑢𝑟𝑟𝑒𝑛𝑡

)
𝛿

(4)

and 𝛿 is a metric-dependent parameter, in this work it is calculated
as in (5)

𝛿 = 𝑄𝑜𝑆𝑇𝑎𝑟𝑔𝑒𝑡 × 𝜗 (5)

where 𝜗 is a percentage from the desired metric, which is empir-
ically set to 0.1 to get an acceptable number of 𝑆𝑡𝑒𝑝𝑠𝐿𝑖𝑚𝑖𝑡 to be
added/subtracted from the current limit value.

In Steps-Ratio, the limit of the next cycle can be adapted based
on ratio and proportion. A proportion is written as an equation
with a ratio on each side, one side represents the ratio of the current
actual metric over the current limit parameter, and the other side
represents the ratio of the desired metric over the unknown limit
parameter value. The cross products is used to find the unknown
limit parameter value. Then, after determining the specific step
value (𝑆𝑡𝑒𝑝𝑠𝐿𝑖𝑚𝑖𝑡) that will be added/subtracted to/from the current
limit value, the unknown limit parameter value is rounded to serve
as the limit value for the next cycle. In this case, the limit parameter
is tuned based on the following equation:

𝐶𝑃𝑈 𝐿𝑖𝑚𝑖𝑡
𝑐+1 = round

(
𝑄𝑜𝑆𝑇𝑎𝑟𝑔𝑒𝑡 ×𝐶𝑃𝑈 𝐿𝑖𝑚𝑖𝑡

𝑐

𝑄𝑜𝑆𝐶𝑢𝑟𝑟𝑒𝑛𝑡

)
(6)

After getting the new value to the limit, we round that value to the
nearest 𝑆𝑡𝑒𝑝𝑠𝐿𝑖𝑚𝑖𝑡 .

In Free-Ratio, the limit of the next cycle is measured the same
way as in the Steps-Ratio strategy, but with only one difference:
the next CPU limit is not rounded because it results from ratio and
proportion, while as explained before, the next CPU limit in the
Steps-Ratio strategy is rounded to the nearest 𝑆𝑡𝑒𝑝𝑠𝐿𝑖𝑚𝑖𝑡 . Thus, the
parameters are tuned based on the following equation:

𝐶𝑃𝑈 𝐿𝑖𝑚𝑖𝑡
𝑐+1 =

𝑄𝑜𝑆𝑇𝑎𝑟𝑔𝑒𝑡 ×𝐶𝑃𝑈 𝐿𝑖𝑚𝑖𝑡
𝑐

𝑄𝑜𝑆𝐶𝑢𝑟𝑟𝑒𝑛𝑡

(7)

Fig. 1 shows that RTL is responsible for tuning element 𝑘1 in vector
𝑅1 = (𝑖, 𝑗, 𝑘1), where 𝑖 represents 𝑉𝑀𝑖 , 𝑗 represents 𝑃𝑀 𝑗 , and 𝑘1 =
(
−→
𝐶 ,
−→
𝑀,
−→
𝐷 ,
−→
𝐵) is a vector itself which encompass all parameters that

rtCTRL can tune in the system, where:
−→
𝐶 = (𝐶𝑃𝑈 𝑠ℎ𝑎𝑟𝑒 ,𝐶𝑃𝑈 𝑙𝑖𝑚𝑖𝑡 ,𝐶𝑃𝑈 𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)
−→
𝑀 = (𝑀𝑒𝑚𝑜𝑟𝑦𝑠ℎ𝑎𝑟𝑒 , 𝑀𝑒𝑚𝑜𝑟𝑦𝑙𝑖𝑚𝑖𝑡 , 𝑀𝑒𝑚𝑜𝑟𝑦𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)
−→
𝐷 = (𝐷𝑖𝑠𝑘𝑠ℎ𝑎𝑟𝑒 , 𝐷𝑖𝑠𝑘𝑙𝑖𝑚𝑖𝑡 , 𝐷𝑖𝑠𝑘𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)
−→
𝐵 = (𝐵𝑊 𝑠ℎ𝑎𝑟𝑒 , 𝐵𝑊 𝑙𝑖𝑚𝑖𝑡 , 𝐵𝑊 𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)

3.2.2 VML. This level includes the Virtual Machine Controller
(vmCTRL) that performs vertical scaling by adding/removing re-
sources or performs horizontal scaling by adding/removing VMs

Algorithm 1 The VML algorithm.
1: function VMSwitchingOnOff(Set 𝐿𝐼𝑆𝑇𝑃𝑀 , Set 𝐿𝐼𝑆𝑇𝑉𝑀)
2: 𝑇ℎ𝑟𝐷 ← Desired threshold
3: 𝑇ℎ𝑟𝐴 ← Actual threshold
4: 𝑇ℎ𝑟𝐷𝑖𝑓 𝑓 ← | 𝑇ℎ𝑟𝐷 −𝑇ℎ𝑟𝐴 |
5: 𝑉𝑀𝑎𝑐𝑡𝑖𝑣𝑒 ← The number of active VMs
6: 𝑇ℎ𝑟𝑃𝑒𝑟𝑉𝑀 ← floor (𝑇ℎ𝑟𝐴/𝑉𝑀𝑎𝑐𝑡𝑖𝑣𝑒)
7: if 𝑇ℎ𝑟𝐷 >= 1.1 ×𝑇ℎ𝑟𝐴 then
8: 𝑉𝑀𝑛𝑢𝑚𝑏𝑒𝑟 ← ceil (𝑇ℎ𝑟𝐷𝑖𝑓 𝑓 /𝑇ℎ𝑟𝑃𝑒𝑟𝑉𝑀)
9: SwitchOn (𝑉𝑀𝑛𝑢𝑚𝑏𝑒𝑟 , VM)
10: end if
11: if 𝑇ℎ𝑟𝐷 <= 0.9 ×𝑇ℎ𝑟𝐴 then
12: 𝑉𝑀𝑛𝑢𝑚𝑏𝑒𝑟 ← 1
13: SwitchOff (𝑉𝑀𝑛𝑢𝑚𝑏𝑒𝑟 , VM)
14: end if
15: return Updated Set 𝐿𝐼𝑆𝑇𝑉𝑀

16: end function

from the system. As shown in Fig. 1, VML is responsible for modi-
fying element 𝑘2 in vector 𝑅2 = (𝑖, 𝑗, 𝑘2), where 𝑖 represents 𝑉𝑀𝑖 , 𝑗
represents 𝑃𝑀 𝑗 , and 𝑘2 is:
• Either a vector which encompass all parameters that vmC-
TRL can scale vertically, and it is represented in the system
as 𝑘2𝑉𝑆 = (𝐶𝑜𝑟𝑒𝑛𝑢𝑚𝑏𝑒𝑟 , 𝑀𝑒𝑚𝑜𝑟𝑦𝑠𝑖𝑧𝑒 , 𝐷𝑖𝑠𝑘𝑠𝑖𝑧𝑒 , 𝐵𝑊 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦).
In this case, LOOPS can vertically scale the parameters of
𝑘2𝑉𝑆 (For example: add/remove cores to VMs).
• Or an integer value representing the variation of number
of VMs that vmCTRL can scale horizontally, and it is repre-
sented in the system as 𝑘2𝐻𝑆 ∈ Z, Z = {0,±1,±2, . . .}.

In this case, LOOPS can horizontally scale the number of VMs
(For example: add/remove VMs to/from the system). However, this
work adopts HS as most hypervisors do not support online vertical
scaling, i.e., 𝑘2 is always an integer value and it represented as 𝑘2𝐻𝑆 .
TheMMU unit triggers request to vmCTRL to perform the HS action
based on some measurements from the VMs. The domain of the
rtCTRL is the PM, in other words, it can add/remove VM(s) to/from
the hosted VM. Algorithm 1 describes how the VM placement
problem is solved in this work.

3.2.3 PML. To avoid any possible performance degradation, the
system is required to make decisions at runtime, such as resources
scaling decisions, as in RTL and VML. VM migration also involves
making important decision to avoid such a degradation. PML in-
cludes the Physical Machine Controller (pmCTRL) that performs the
dynamic VM placement from one host to another based on metrics
received from the PM itself rather than the VMs co-hosted on the
PM. Fig. 1 shows that PML is responsible for specifying a value
for element 𝑘3 in vector 𝑅3 = (𝑖, 𝑗, 𝑘3), where 𝑖 represents 𝑉𝑀𝑖 , 𝑗
represents 𝑃𝑀 𝑗 , and 𝑘3 is an index for the destination 𝑃𝑀 𝑗 ∈ 𝑃𝑀
where 𝑉𝑀𝑖 is selected by pmCTRL to migrate to.

The PMs are represented as a set of𝑚 PMs in the cloud data cen-
ter: 𝑃𝑀 = {𝑃𝑀1, 𝑃𝑀2, . . . , 𝑃𝑀𝑚}. Each PM has a limited capacity
(𝑃𝑀𝐶𝑎𝑝

𝑗
) of the following resources: processing core(s), memory,

disk, and bandwidth. The VMs are represented as a set of 𝑛 VMs
hosted on 𝑃𝑀 in the data center:𝑉𝑀 = {𝑉𝑀1,𝑉𝑀2, . . . ,𝑉𝑀𝑛}. The
requirements of an instance 𝑉𝑀𝑖 from 𝑃𝑀 𝑗 can be represented as
(𝑉𝑀𝑅𝑒𝑞

𝑖,𝑗
). The VM placement can be considered as a bin packing

problem, which is NP-hard. Thus, it is reasonable to apply a heuris-
tic. This is solved in many works in the literature, such as in [3]
and [18]. In this work, there is a slight difference in solving the
VM problem. We are aiming to minimize a specific value 𝑇ℎ𝑟𝐷𝑖𝑓 𝑓 ,
which is the absolute difference between two values: 𝑇ℎ𝑟𝐴 and
𝑇ℎ𝑟𝐷 which are representing the actual and desired throughput,
respectively, i.e., 𝑇ℎ𝑟𝐷𝑖𝑓 𝑓 =| 𝑇ℎ𝑟𝐴 − 𝑇ℎ𝑟𝐷 |. The VM placement
process considers the following constraints:

𝑛∑︁
𝑖=1

𝑉𝑀
𝑅𝑒𝑞

𝑖,𝑗
× 𝑥𝑖, 𝑗 ≤ 𝑃𝑀

𝐶𝑎𝑝

𝑗
(8)∑︁

∀𝑖, 𝑗
𝑥𝑖, 𝑗 = 1 (9)

The constraint in (8) ensures that the capacity condition is met
for all VMs co-hosted on 𝑃𝑀𝑗 . The VM placement process in this
work requires more than a single capacity constraint in selecting the
destination node. The considered resources are: cpu/core, memory,
disk, and bandwidth. The constraint in (9) ensures that each VM is
hosted only on one PM. The decision variable 𝑥 is equal to 1 if the
VM is assigned to the node, otherwise it is 0.

The VM placement process adopted in this work follows a dis-
tributed model, in which the problem is divided into three phases:

Source host detection: This phase determines the need to mi-
grate one or several VM from a selected host when it is not opti-
mally utilized. In this work, the host with the highest CPU usage is
considered the source host for VMs migration.

VM selection: This phase selects the VM(s) that would be mi-
grated from the source host selected in the detection phase. This
work selects the VM with the highest CPU usage for migration.

Destination host detection: Placing VM(s) selected form the
VM selection phase on other active, or reactivated hosts. This phase
is responsible for placing the migrated VMs on the host with the
lowest CPU usage. The phase finds a 𝑃𝑀 𝑗 to be the destination host
to migrate a VM to.

The MMU triggers request to pmCTRL to perform the VM migra-
tion processes based on some measurements from the PMs, within
the datacenter. Algorithm 2 describes how the VM placement prob-
lem is solved in this work.

3.3 Coordinating scaling actions using MMU
MMU identifies a decision vector 𝐷 = (𝐿1, 𝐿2, 𝐿3), to demonstrate
the relationship between intervals in the activation time of the
three levels. These intervals are represented as cycles. L1, L2, and
L3 are decision variables to be set to ‘0’ or ‘1’ by MMU at each
cycle. The variable is set to ‘1’ if its corresponding level is activated,
otherwise it is ‘0’. On each cycle, L1, L2, and L3 represent activating
RTL, VML, and PML in the system respectively. The cycle interval
is variable and can be changed and tuned. In general, short intervals
would result in repeated scaling actions and would ultimately com-
promise the system’s reliability and increase system overheads. At
the same time, longer intervals also stalled reaction to the system
requirements and prevent it from taking prompt scaling actions.
Therefore, it should be selected carefully. MMU is responsible for
assigning the values of D at the beginning of each cycle:

𝐷 = (𝐿1, 𝐿2, 𝐿3) (10)

where ∀𝑖 ∈ {1, 2, 3} : 𝐿𝑖 ∈ {0, 1}.

Algorithm 2 The PML algorithm.
1: function VMPlacement(Set 𝐿𝐼𝑆𝑇𝑃𝑀 , Set 𝐿𝐼𝑆𝑇𝑉𝑀)
2: Sort 𝐿𝐼𝑆𝑇𝑃𝑀 by PMs𝐶𝑃𝑈 %
3: 𝑃𝑀𝑆𝑅𝐶 ← The PM with the highest𝐶𝑃𝑈 %
4: if | 𝑇ℎ𝑟𝐷 −𝑇ℎ𝑟𝐴 | ≥ 0.1 ×𝑇ℎ𝑟𝐷 then
5: 𝑃𝑀𝐷𝑆𝑇 ← PM with lowest𝐶𝑃𝑈 %
6: 𝑆𝑅𝐶𝑣𝑚𝐿𝐼𝑆𝑇 ← all VMs ∈ 𝐿𝐼𝑆𝑇𝑉𝑀 on 𝑃𝑀𝑆𝑅𝐶

7: Sort 𝑆𝑅𝐶𝑣𝑚𝐿𝐼𝑆𝑇 by VMs𝐶𝑃𝑈 %
8: 𝑉𝑀𝑆𝐸𝐿𝐸𝐶𝑇𝐸𝐷 ← The VM with the highest𝐶𝑃𝑈 %
9: if the configuration of𝑉𝑀𝑆𝐸𝐿𝐸𝐶𝑇𝐸𝐷 fits in 𝑃𝑀𝐷𝑆𝑇 then
10: Migrate (𝑉𝑀𝑆𝐸𝐿𝐸𝐶𝑇𝐸𝐷 , 𝑃𝑀𝑆𝑅𝐶 , 𝑃𝑀𝐷𝑆𝑇)
11: else
12: Switch on new 𝑃𝑀𝑛𝑒𝑤

13: 𝑃𝑀𝐷𝑆𝑇 ← 𝑃𝑀𝑛𝑒𝑤

14: Migrate (𝑉𝑀𝑆𝐸𝐿𝐸𝐶𝑇𝐸𝐷 , 𝑃𝑀𝑆𝑅𝐶 , 𝑃𝑀𝐷𝑆𝑇)
15: end if
16: end if
17: return VM placement
18: end function

RTCTRL VMCTRL PMCTRL

STEADY
100

000

010 001

010 000

001

001

000

000

Figure 2: The state diagram of the MMU and the controllers.

Eq. (10) illustrates that MMU can issue one out of eight possible
requests at each cycle, as there are three levels and two values
for 𝐿𝑖 . For example, when D = (1,0,0) at specific cycle number, say
cycle 10, then at cycle 10 only RTL will be activated. And when D
= (1,1,0) at specific cycle number, say cycle 20, then at cycle 20 RTL
and VML will be activated. And this is the case for all other eight
possible options. LOOPS is designed in a way that, at the beginning
of each cycle, it checks and decides to activate or ignore activating
the levels in the following sequence: (1) RTL, (2) VML, and finally
(3) PML. In other words, MMU consecutively decides if there is a
need to tune resources allocated to VMs (activate/skip RTL), then,
it decides if it is required to switch on/off VMs or not (activate/skip
VML), and finally, it decides if migrating VMs between PMs can
enhance the system performance or not (activate/skip PML).

3.4 Model formulation
As explained in Fig. 2, the activation of the three controllers is
triggered by a finite state automaton, that is described by the 5-
tuple ⟨𝑄, Σ, 𝛿, 𝑞0, 𝐹 ⟩.

𝑄 = {Steady, rtCTRL, vmCTRL, pmCTRL} is a finite set of states.
The elements of this set represent the controllers in the system,
in addition to another state called Steady, which represents the

MMU. Steady is considered as the state where there is no need to
take any action (no tune/scale/migrate) by the controllers.

Σ = {000, 001, 010, 011, 100, 101, 110, 111} is a finite set of alphabet
symbols. The elements of this set describe the requests issued by the
MMU to the controllers to take actions, that is, to tune, scale, and/or
migrate VMs aiming to meet a predefined metric. In LOOPS, the
metric is throughput. At a specific predefined cycle and according
to the system status, MMU decides the required actions to be taken
by the controller in order to meet the desired metric value. The
decisions made after comparing the actual throughput with the
desired one. Each alphabet ∈ Σ is not a string of three elements, it
is only one element composed of three characters. Another note to
be illustrated is that, as LOOPS activates or ignores activating the
levels in a specific order, not all the eight alphabets are used in the
system. As discussed before in the previous section, the sequence
applied in the system is RTL, VML, and then, PML. Thus, only
four alphabets are needed to formulate the model, and Σ can be
expressed as:

Σ = {000, 001, 010, 100}
Hence, instead of using:

- 011 as an input when MMU wants to activate VML and PML, the
system reads two inputs in the following sequence: 010 , 001
- 101 as an input when MMU wants to activate RTL and PML, the
system reads two inputs in the following sequence: 100 , 001
- 110 as an input when MMU wants to activate RTL and VML, the
system reads two inputs in the following sequence: 100 , 010
- 111 as an input when MMU wants to activate RTL, VML, and PML,
the system reads these three inputs 100 , 010 , 001 sequentially.

𝛿 : 𝑄 × Σ→ 𝑄 is the set of transition functions. The transaction
function defines the rules for moving from one state to another.
If the system has an arrow from state 1 to state 2 labeled with
condition x, that means that if the automaton is in state 1 when
condition x happens, it then moves to state 2. The system processes
the running VMs until the end of execution. The processing begins
with the start state. The automaton receives the symbols from the
MMU represented as the Steady state. After reading each symbol,
the system moves from one state to another along the transition
that has that symbol as its label. When it reads the last symbol, the
system ends the execution of VMs.

𝑞0 ∈ 𝑄 is the initial state, which is set as 𝑞0 = Steady.
𝐹 ⊆ 𝑄 is the set of final states, defined as 𝐹 = {Steady}.

4 PERFORMANCE EVALUATION
4.1 Experimental setup
The proposed approach is implemented in PowerShell running on
a Windows 10 (64bit) system. A cloud-based application, which
is Shamir’s Secret Share schema, is selected to examine its perfor-
mance evaluation. More information about the application can be
found in [26]. The experiments were run on a VMware vSphere
cloud with four PMs. Each VMware-ESXi PM had a quad-core Intel
3.4GHz CPU, 8 GB memory, 200 GB storage, and 10 Gbps network.
A HTCondor platform, which is a distributed computing system, is
installed to emulate a workload for our cloud environment. This
platform consists of one master node (HTCondor master-node) and
10 worker nodes (HTCondor execute-node). The task of HTCondor
master-node is to distribute jobs amongst the other ten HTCondor

execute-nodes which, in turn, execute the jobs allocated to them.
Those nodes were VMs, each with 2 vCPUs, 2GB of RAM, 20GB of
storage, and 1Gbps vNICs. In this work, once HTCondor master-
node begins submitting the jobs to the HTCondor execute-nodes,
they started executing the jobs till they finish the execution. During
the execution, LOOPS monitors the system status periodically on
cycles basis, as the total execution time of the submitted jobs is
divided into step cycles. The cycle step time (cycle interval) is de-
signed to be variable and can be changed and tuned. It empirically
sets to 30 seconds in all experiments because any shorter period
would result in repeated scaling actions and would ultimately com-
promise the system’s reliability and increase system overheads.
Longer periods also stalled reaction to the system requirements
and prevent it from taking prompt scaling actions. After each cycle
step, the MMU decides which level in LOOPS should be activated.
Thus, the action was determined by the MMU to activate a specific
level among the three, regardless of previous or future actions of
other controllers. Different experiments were tested. In the experi-
ments, RTL adopts the four different control strategies (Steps-Slow,
Steps-Adaptive, Steps-Ratio, and Free-Ratio), which are discussed
in Section 3, to tune and regulate the share, limit, and reserva-
tion values of the resources that are already allocated to VMs. In
this work, we only focused on changing the "Limit" value, but the
proposed control strategies at RTL can be applied to other parame-
ters ("Share" and "Reservation") as well. Concerning the value of
𝑆𝑡𝑒𝑝𝑠𝐿𝑖𝑚𝑖𝑡 which is defined as a hardware-dependent parameter to
be used in Steps-Slow and Steps-Adaptive strategies, it is set to 500
in the experiments. To clarify why it is set to 500, refer to (2), and
to VMs configuration used in our experiments. As described earlier,
each VM is of a 2-core with 3.4 GHz speed. The minimum amount of
CPU we reserved to this VM is 1000, and the maximum amount of
CPU we can allocate to this VM is 6800 (2 x 3.4 = 6.8). The allowed
change is from 1000 to 6800, which means that the difference is
5800. In this work, we are aiming go from the minimum to the
maximum amount of CPU (and vise versa) in around 10 steps. Thus
the value of 𝜂 is set to 10. Thus, by dividing the difference (5800) by
𝜂, the result is equal to 500 after flooring (580), which can (almost)
approach the maximum amount of CPU which could be allocated
to a VM (1000 + (10 × 500) = 6000). Thus, in about 10 cycles, we
can go from the minimum to the maximum amount of CPU limit
for any VM. However, Steps-Slow value is variable which can be
changed/adjusted in the system. We could make it higher value to
approach the maximum amount of CPU we can allocate to this VM,
but we noticed an aggressive system behavior when we did so in
the experiments.

4.2 Results and discussion
Resulted throughput. As shown in Fig. 1, the system model

in LOOPS takes the desired or targeted throughput (expressed as
desired metric) as an input, and the output of the model as the
actual throughput. To examine the resulted throughput, a hypo-
thetical pattern with clear sudden workload bursts is used in the
experiments as desired throughput patterns. The results of apply-
ing LOOPS indicates that the actual throughput almost matched,
or above, the pattern of the desired throughput, as shown in the
top part of Fig. 3. The performance of LOOPS converges to the

0

100

200

Th
ro
ug

hp
ut

[r
eq
/s
] LOOPS

𝜃𝐷 Steps-Slow Steps-Adaptive Steps-Ratio Free-Ratio

20 40 60 80
0

100

200

Cycle number

Th
ro
ug

hp
ut

[r
eq
/s
] MultiScaler

Figure 3: Resulted throughput compared with a hypotheti-
cal workload pattern using the LOOPS approach (top) and
with theMultiScaler (1/5/25) approach (bottom).

optimal result (i.e., matches the metric pattern) at each cycle. The
convergence takes place as the MMU gives the system the ability
to activate RTL, VML, and/or PML at each cycle. For examples, in
the top part of Fig. 3, convergence takes place directly at cycle 1.
This is because LOOPS can provide the necessary resources to meet
the desired throughput at the beginning of each cycle.

Comparing LOOPS with MultiScaler. To validate the correct-
ness and effectiveness of LOOPS, we compared it with MultiScaler ,
a closely related auto-scaling approach presented in [1].MultiScaler
is chosen as it is similar to LOOPS when it comes to the number of
resource management levels, where both approaches are working
within the same three closed-loops. The main difference is that
MultiScaler has no essential component or unit to coordinate the
defines specific intervals, and at each interval, only one level is
activated. In a brief, MultiScaler proposed a V1/V2/V3 design that
defines the relationship between intervals in the activation time
of the three levels. These intervals are represented as cycles. V1,
V2, and V3 are variables. V1 represents the first activation of RTL
in the system as well as the first reactivation within the cycles; V2
represents the first activation of VML in the system and its first
reactivation within the cycles; and V3 represents the first activation
of PML in the system and its first reactivation within the cycles.
For example, when V1/V2/V3 sets to 1/5/25 (as shown in the bot-
tom of Fig. 3), it means that RTL is activated at cycle 1, VML at
cycle 5, and PML is at cycle 25. One level is activated at each cycle.
This will continue repeatedly until the end of execution. While in
LOOPS, MMU is added to the system to make it possible to issue
requests to controllers to take the required action(s) at any cycle
or interval. Comparing the results shown in Fig. 3 (top) with the
results shown in Fig. 3 (bottom) demonstrates the importance of

injecting the MMU to the system in order to meet the desired met-
ric. As seen in Figure 3, the actual throughput could approach the
desired throughput from the first cycle by applying LOOPS, this
is due to the ability of MMU to trigger the necessary requests to
the controllers at the same time to tune, scale, and/or migrate the
running VMs. This is not the case in MultiScaler , as for example,
what was needed in cycle 1 is switching on a number of VMs to
meet the desired throughput, which happened at cycle 5 when VML
activated. The convergence continues until the desired throughput
value is changed. We can then see the difference again between
the desired and actual throughput. Any difference in the intervals
before convergence is due to the lack of resources serving the ap-
plication: an issue that can be resolved when activating the three
scaling levels after the desired throughput value is changed.

Applying different control strategies. Adopting different con-
trol strategies is essential to enhance the system’s performance and
to achieve the desired metric, especially when the resources allo-
cated to the submitted jobs relatively suffice. Each control strategy
leads to different results for the same application and within the
same number of cycles. To further clarify this, let us again examine
Fig. 3. When Free-Ratio control strategy is selected in RTL, the
system reacts faster than it does when selecting other strategies.
This is because the limit can be changed in the Free-Ratio strat-
egy without restrictions, as it is changed proportionally to meet
the system’s requirements. However, such unrestricted changes
require further tuning actions, a matter that makes the selection of
the control strategy a crucial and precise process.

Response to workload changes. LOOPS features fast response
to the changes, and shows stability in approaching the desired
throughput, even though at some cycles produces more throughput
than the desired one. This can be done by providing the required
amount of resources at the beginning of each cycle. LOOPS reacts
to the changes by taking the required action(s) at each cycle after
submitting the jobs to the system. For example, in Figure 4 (top),
we can see that when the desired throughput jumped from 60
to 180 at cycle 40, LOOPS takes the necessary actions directly at
the same cycle. The number of VMs, which were switched on,
notably increased at cycle 40 in order to maintain stable results by
approaching the desired throughput as fast as possible. This is the
case when LOOPS utilizes a number of VM migrations to reduce
contentions, which results in performance enhancement.

4.3 Performance metrics and evaluation
For the performance evaluation of LOOPS, three metrics are con-
sidered. Also, we performed a pairwise t-test among the different
techniques, to examine if their behavior is statistically similar, or if
there is statistical evidence of one method being better than another.

Throughput error. The first metric is the throughput error
∆𝜃 . Let 𝜃𝑖 be the throughput at iteration 𝑖 produced by the sys-
tem when a given method is executing, and 𝜃D

𝑖
the corresponding

desired throughput. ∆𝜃𝑖 is computed as

∆𝜃𝑖 = 𝜃𝑖 − 𝜃D𝑖 (11)

This metric quantifies the instantaneous accuracy of the consid-
ered method, with respect to the desired throughput. A positive
value would reflect an overprovision of resources, while a neg-
ative value would reflect an underprovision. The ideal value for

Table 1: Averages and standard deviations of the Through-
put Error ∆𝜃 , and of the number of active virtual machines
𝑣 , for the different methods.

Control Strategy Avg. ∆𝜃 Std. ∆𝜃 Avg. 𝑣 Std 𝑣

Steps-Slow 11.3 26.5 6.31 2.37
Steps-Adaptive 9.5 24.5 6.1 2.27
Steps-Ratio 7.2 23.0 6.01 2.18
Free-Ratio 9.0 23.2 6.02 2.16

Table 2: t-test results for the throughput error.

Control Strategy Steps-Slow Steps-Adaptive Steps-Ratio Free-Ratio
Steps-Slow - 0.220 0.012 0.170

Steps-Adaptive 0.220 - 0.129 0.718
Steps-Ratio 0.012 0.129 - 0.144
Free-Ratio 0.170 0.718 0.144 -

Table 3: t-test results for the number of VMs.

Control Strategy Steps-Slow Steps-Adaptive Steps-Ratio Free-Ratio
Steps-Slow - 0.029 0.0003 0.0038

Steps-Adaptive 0.029 - 0.274 0.342
Steps-Ratio 0.0003 0.274 - 0.894
Free-Ratio 0.0038 0.342 0.894 -

∆𝜃 is zero, meaning that the method is able to always provision
the right amount of resources to produce the desired throughput.
Table 2 reports the 𝑝-values of the pairwise t-tests performed on
the throughput error. In order to conclude that there is statistical
evidence on the difference between the methods, the 𝑝-value should
be lower than 0.01.Overall, the different methods perform similarly
in terms of following the desired throughput. This requires a deeper
analysis on the allocated resources. One method may behave statis-
tically similar to another method in terms of ∆𝑡 , but it may manage
the available resources better.

Number of VMs. The second metric that we consider is associ-
ated with the number of VMs 𝑣𝑖 . Such quantity can be monitored
by considering an initial number of VMs 𝑣0, when the system is
initialized, and by adding the number of VMs that are switched on,
and removing the number of VMs that are switched off, i.e.

𝑣𝑖 = 𝑣𝑖−1 + #𝑉𝑀on − #𝑉𝑀off (12)

The top of Fig. 4 shows the evolution of 𝑣𝑖 for the different meth-
ods over the LOOPS experiments shown in Fig. 3. The allocated
number of VMs highlight that all the methods follow – in slightly
different ways – the trend imposed by the desired throughput. Ta-
ble 1 reports the average and the standard deviation of the number
of VMs, for the different control strategies. When it comes to the
number of VMs, the Free-Ratio and Step-Ratio control strategies
have the lowest averages. Table 3 reports the 𝑝-values of the pair-
wise t-tests performed on the number of used VMs in LOOPS part
of experiments 3. The table show that Free-Ratio and Step-Ratio
are statistically better only with respect to Steps-Slow.

VMmigration. Finally, the last metric considers the cumulative
number of VM migration performed over the experiments. The
cumulative number of migrations 𝑐𝑚𝑖 at cycle 𝑖 , can be computed
recursively on the basis of the number of current migrations𝑚𝑖 as

𝑐𝑚𝑖 = 𝑐𝑚𝑖−1 +𝑚𝑖 (13)

20 40 60 80
0

5

10

Cycle number

#
A
ct
iv
e
VM

s

Steps-Slow Steps-Adaptive Steps-Ratio Free-Ratio

0

20

40

60

80

45
59

42
54

Control strategy

To
t.
#V

M
m
ig
ra
tio

ns Steps-Slow Steps-Adaptive Steps-Ratio Free-Ratio

Figure 4: Number of active VMs (top) and total number of
VM migrations (bottom).

The bottom of Fig. 4 shows the value of 𝑐𝑚 at the end of the
LOOPS experiments shown in Fig. 3 tells that Steps-Slow control
strategy beat the other strategies in term of resulting the minimum
number of VMs migration.

Considering all the different metrics, we can conclude that the
strategies which utilize the ratio and proportion method in calcu-
lating the "limit" value (i.e., Steps-Ratio and Free-ratio) are better
when they are combined with VML and PML. This is due to the
following two reasons: (i) They use resources efficiently as they
have the lowest averages of used resources (VMs), and (ii) They
minimize the cost of VMs migration, as they produce the minimum
number of VMs migration.

5 CONCLUSION
This work presents a holistic approach, called LOOPS, to ensure
matching a desired metric for cloud-based applications. LOOPS
works in three different levels, under the orchestration of an essen-
tial unit, in order to: (i) tune some variables allocated to co-hosted
VMs during contention, (ii) scale VMs in/out, and (iii) migrate VMs.
The results of evaluating the approach in a real testbed demon-
strated a promising results in meeting the desired level of perfor-
mance. LOOPS features fast response to changes which is a critical
issue for real-time applications, and achieves the required man-
agement and scaling actions efficiently in a dynamic and periodic
manner. As a future work, we are working on testing more control
strategies to be implemented with different applications.

ACKNOWLEDGMENTS
This research has been performed with the support from the Swedish Knowl-
edge Foundation (KKS) under the SACSys project, and from the Swedish
Research Council (VR).

REFERENCES
[1] A. Al-Dulaimy, J. Taheri, A. Kassler, M. Hoseiny Farahabady, S. Dencg, and

A. Zomaya. 2020. MULTISCALER: A Multi-Loop Auto-Scaling Approach for
Cloud-Based Applications. IEEE Trans. Cloud Computing (2020).

[2] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth. 2012. Efficient Provisioning of
Bursty Scientific Workloads on the Cloud Using Adaptive Elasticity Control. In
W. Scientific Cloud Computing.

[3] A. Beloglazov and R. Buyya. 2013. Managing Overloaded Hosts for Dynamic
Consolidation of Virtual Machines in Cloud Data Centers under Quality of Service
Constraints. IEEE Trans. Par. and Distr. Syst. 24, 7 (2013).

[4] E. Casalicchio and L. Silvestri. 2013. Mechanisms for SLA provisioning in cloud-
based service providers. Computer Networks 57, 3 (2013).

[5] W. Dawoud, I. Takouna, and C. Meinel. 2012. Elastic Virtual Machine for Fine-
Grained Cloud Resource Provisioning. In Glob. Trends in Comp. and Comm. Syst.

[6] S. Dutta, S. Gera, A. Verma, and B. Viswanathan. 2012. SmartScale: Automatic
Application Scaling in Enterprise Clouds. In IEEE Int. Conf. Cloud Computing.

[7] W. Fang, Z. Lu, J. Wu, and Z. Cao. 2012. RPPS: A Novel Resource Prediction and
Provisioning Scheme in Cloud Data Center. In IEEE Int. Conf. Services Computing.

[8] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang. 2014. Adaptive, Model-
driven Autoscaling for Cloud Applications. In Int. Conf. Aut. Comp.

[9] R. Han, M. M. Ghanem, L. Guo, Y. Guo, and M. Osmond. 2014. Enabling Cost-
Aware and Adaptive Elasticity of Multi-Tier Cloud Applications. Future Gener.
Comput. Syst. 32 (2014).

[10] R. Han, L. Guo, M. M. Ghanem, and Y. Guo. 2012. Lightweight Resource Scaling
for Cloud Applications. In IEEE/ACM Int. Symp. Cluster, Cloud and Grid Comp.

[11] R. Hu, J. Jiang, G. Liu, and L. Wang. 2013. KSwSVR: A New Load Forecasting
Method for Efficient Resources Provisioning in Cloud. In IEEE Int. Conf. Services
Comp.

[12] W. Iqbal, M. Dailey, and D. Carrera. 2009. SLA-Driven Adaptive Resource Man-
agement for Web Applications on a Heterogeneous Compute Cloud. In Cloud
Comp.

[13] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek. 2011. Adaptive resource
provisioning for read intensive multi-tier applications in the cloud. Future Gen.
Comp. Syst. 27, 6 (2011).

[14] S. Islam, J. Keung, K. Lee, and A. Liu. 2012. Empirical prediction models for
adaptive resource provisioning in the cloud. Future Gen. Comp. Syst. 28, 1 (2012).

[15] J. Wei and C.-Z. Xu. 2006. eQoS: Provisioning of Client-Perceived End-to-End
QoS Guarantees in Web Servers. IEEE Trans. Comp. 55, 12 (2006).

[16] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta. 2012. Modeling
Virtualized Applications Using Machine Learning Techniques. SIGPLAN Not. 47,
7 (2012).

[17] P. Lama and X. Zhou. 2010. Autonomic Provisioning with Self-Adaptive Neural
Fuzzy Control for End-to-end Delay Guarantee. In IEEE Int. Symp. Modeling,
Analysis and Sim. of Comp. and Telecomm. Syst.

[18] Z. Li, X. Yu, L. Yu, S. Guo, and V. Chang. 2020. Energy-efficient and quality-aware
VM consolidation method. Future Gen. Comp. Syst. 102 (2020).

[19] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. 2014. A review of
auto-scaling techniques for elastic applications in cloud environments. Journal
of grid computing 12, 4 (2014), 559–592.

[20] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and A.
Merchant. 2009. Automated Control of Multiple Virtualized Resources. In ACM
European Conf. Computer Systems.

[21] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, and
K. Salem. 2007. Adaptive Control of Virtualized Resources in Utility Computing
Environments. In ACM European Conf. Computer Systems.

[22] V. Podolskiy, A. Jindal, and M. Gerndt. 2019. Multilayered Autoscaling Perfor-
mance Evaluation: Can Virtual Machines and Containers Co–Scale? Int. Journal
of Applied Mathematics and Comp. Science 29, 2 (2019).

[23] R. Prodan and V. Nae. 2009. Prediction-based real-time resource provisioning for
massively multiplayer online games. Future Gen. Comp. Syst. 25, 7 (2009).

[24] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin. 2009. VCONF: A Reinforcement
Learning Approach to Virtual Machines Auto-Configuration. In Int. Conf. Aut.
Comp.

[25] J. Rao, Y. Wei, J. Gong, and C. Xu. 2013. QoS Guarantees and Service Differ-
entiation for Dynamic Cloud Applications. IEEE Trans. Network and Service
Management 10, 1 (2013).

[26] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[27] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood. 2008. Agile Dynamic

Provisioning of Multi-Tier Internet Applications. ACM Trans. Auton. Adapt. Syst.
3, 1 (2008).

[28] L. Wang, J. Xu, M. Zhao, and J. Fortes. 2011. Adaptive Virtual Resource Manage-
ment with Fuzzy Model Predictive Control. In Int. Conf. Aut. Comp.

[29] C.-Z. Xu, J. Rao, and X. Bu. 2012. URL: A unified reinforcement learning approach
for autonomic cloud management. J. Parallel and Distrib. Comput. 72, 2 (2012).

	Abstract
	1 Introduction
	2 Related work
	3 The LOOPS Approach
	3.1 Monitoring and measurement unit
	3.2 LOOPS levels
	3.3 Coordinating scaling actions using MMU
	3.4 Model formulation

	4 Performance Evaluation
	4.1 Experimental setup
	4.2 Results and discussion
	4.3 Performance metrics and evaluation

	5 Conclusion
	Acknowledgments
	References

