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A B S T R A C T

A safety case is a hierarchical argument supported by evidence, whose scope is defined by contextual
information. The goal is to show that the conclusion of such argument, typically ‘‘the system is acceptably
safe’’, is true. However, because the knowledge about systems is always imperfect, the value true cannot be
assigned with absolute certainty. Instead, researchers have proposed to assess the belief that a conclusion is
true, which should be high for a safe system. Existing methods for belief calculations were shown to suffer
from various limitations that lead to unrealistic belief values. This paper presents a novel method, underlined
by formal definitions of concepts such as conclusion being true, or context defining the scope. Given these
definitions, a general, probabilistic model for the calculation of belief in a conclusion of an arbitrary argument
is derived. Because the derived probabilistic model is independent of any safety-case notation, the elements of
a commonly used notation are mapped to the formal definitions, and the corresponding probabilistic model is
represented as a Bayesian Network to enable large-scale calculations. Finally, the method is applied to scenarios
where previous methods produce unrealistic values, and it is shown that the presented method produces belief
values as expected.
1. Introduction

Belief - ‘‘Conviction of the truth of some statement [...]
especially when based on examination of evidence.’’

www.merriam-webster.com

Safety cases are being increasingly adopted to express the arguments
about why a system is acceptably safe to operate in a particular
environment. From their early days in high-risk industries in the United
Kingdom, e.g. oil and gas (UK GoV, 1992), and railway (UK GoV, 1994),
safety cases became the recommendation of international standards
in domains such as railway (Anon, 2003), automotive (International
Organization for Standardization, 2018), and others. The culmination
of this trend is reflected in the recent, first-ever standard for safety of
autonomous systems (UL4600 Task Group, 2020), where a safety case is
the central artifact throughout the safety lifecycle.

The core of a safety case is a hierarchy of arguments. Each argument
consists of claims, where one is designated as the conclusion, and the
remaining ones as premises. The premises are in turn conclusions of
other arguments, thus forming the hierarchy. The claims at the bottom
of the hierarchy are supported by evidence whose purpose is to show
that these claims are true. The idea is that if the conclusion of each

∗ Corresponding author.

argument follows from the corresponding premises, and if the claims
at the bottom of the hierarchy are true, then the conclusion of the top
argument will also be true. This is the purpose of a safety case, to show
that the claim at the top of the hierarchy is true. Typically, this claim
is ‘‘the system is acceptably safe’’ and to define the scope in which the
truthfulness of such claim is evaluated, safety cases contain contextual
information (Origin Consulting (York) Limited, 2018).

It is nowadays widely acknowledged that regardless of the exact
meaning of terms supported by, true, follows and context, showing that
a claim is true with absolute certainty is not possible (Duan et al.,
2017). The reason is the inherent uncertainty, both about whether a
conclusion follows from the premises, and about whether an evidence
supports a claim. For example, it cannot be said in general that the
claim ‘‘software component implements a requirement’’ is true given the
evidence of ‘‘successful testing’’ because testing is not an exhaustive
verification technique, the testing tool–set might produce false posi-
tives, the result might be interpreted incorrectly by humans etc. Also,
unless the typically natural-language conclusions and premises can be
formalized and then proven that the premises imply the conclusion, in
general, it cannot be said that a conclusion follows from the premises.

Because generally it is not possible to decide if a safety-case claim
is true or false, a number of researchers have proposed to quantify the
925-7535/© 2021 The Authors. Published by Elsevier Ltd. This is an open access ar

E-mail addresses: damirn@kth.se (D. Nešić), matny@kth.se (M. Nyberg), barba

https://doi.org/10.1016/j.ssci.2021.105187
Received 16 July 2020; Received in revised form 29 December 2020; Accepted 17
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ra.gallina@mdh.se (B. Gallina).

January 2021

http://www.elsevier.com/locate/safety
http://www.elsevier.com/locate/safety
http://www.merriam-webster.com
mailto:damirn@kth.se
mailto:matny@kth.se
mailto:barbara.gallina@mdh.se
https://doi.org/10.1016/j.ssci.2021.105187
https://doi.org/10.1016/j.ssci.2021.105187
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssci.2021.105187&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Safety Science 138 (2021) 105187D. Nešić et al.

G
2
H

belief, also called confidence, that safety-case claims are true (Cyra and
órski, 2011; Wang et al., 2019, 2018; Denney et al., 2011; Zhao et al.,
012; Bishop et al., 2011; Guiochet et al., 2015; Ayoub et al., 2013;
obbs and Lloyd, 2012). The idea is that if the calculated belief is

higher than a predefined threshold, then the claim can be considered
to be true. The intuition is that belief calculation corresponds to the
process of safety-case assessment (Kelly, 2007) in which an assessor
analyses safety-case arguments, and decides whether to accept them,
or to require additional information to increase own belief in the
conclusions of these arguments.

Despite a significant number of methods for belief calculations, a
recent survey (Duan et al., 2017) has identified a number of open
questions that hinder wider adoption. Moreover, a recent compre-
hensive replication study (Graydon and Holloway, 2016, 2017) has
analyzed twelve methods by reproducing the considered safety cases,
and the corresponding belief calculations. Then, the considered safety-
cases were subjected to various modifications to verify that the belief
values change as expected. In general, for each of the methods whose
original examples were possible to reproduce, Graydon and Holloway
(2016, 2017) has identified modifications which lead to unrealistic belief
values. Based on Graydon and Holloway (2016, 2017), the following list
summarizes the main reasons for unrealistic belief calculations:

I. None of the methods contains definitions of claim being true, of
conclusion following from the premises, of evidence supporting
a claim, or of contextual information. In the absence of such
definitions it is unclear what the source of the modeled un-
certainty is, and consequently it is unclear if the uncertainty
is modeled consistently for different types and structures of
arguments. Also, whenever belief values are assigned by experts,
these beliefs reflect the subjective definition of true, or follows
from premises, thus the result of belief calculations are subjective
and not comparable.

II. Some unrealistic calculations are a consequence of the built-
in properties of the underlying frameworks for reasoning about
uncertainty.

(a) A number of methods (Guiochet et al., 2015; Wang et al.,
2019, 2017; Cyra and Górski, 2011; Ayoub et al., 2013)
are based on the Dempster–Shafer (D–S) theory (Shafer,
1976). As convincingly shown in Dezert et al. (2012),
and in line with the analysis in Graydon and Holloway
(2016, 2017), the rules for combining beliefs in D–S
theory may lead to unrealistic calculations when many
beliefs are combined. The method in Wang et al. (2019)
improves one of D–S-based methods analyzed in Graydon
and Holloway (2016, 2017) by minimizing the number
of beliefs being combined. Namely, Wang et al. (2019)
accepts safety-case arguments with at most two premises,
but it is unclear if it is realistic to enforce such constraint
in real-world safety cases.

(b) The second class of methods (Denney et al., 2011; Zhao
et al., 2012; Hobbs and Lloyd, 2012) are based on
Bayesian Networks (BN) (Nielsen and Jensen, 2009),
which are based on classical probability theory (Jaynes,
2003; Athreya and Lahiri, 2006). These methods typically
encode a conclusion 𝑞 and premises 𝑝1,… , 𝑝𝑛 as discrete
random variables, both with states 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒. Then,
𝑃 (𝑞 = 𝑡𝑟𝑢𝑒) is calculated from the joint probability distri-
bution 𝑃 (𝑞, 𝑝1,… , 𝑝𝑛). However, according to the laws of
probability theory, the value 𝑃 (𝑞 = 𝑡𝑟𝑢𝑒) corresponds to
the sum of the conditional probability that the conclusion
is true given that the premises are true, and the conditional
probabilities that the conclusion is true given that one or
more premises are false. Assigning probability values to
cases when one or more premises are known to be false
is at best difficult, and typically impossible to estimate
2

reliably. Therefore, as noted by Graydon and Holloway
(2016, 2017), this leads to scenarios where even if a
crucial premise of an argument is known to be false, the
belief in the conclusion can still be rather high.

III. None of the methods state well-formedness constraints that define
for which safety cases can the belief be calculated reliably. As
observed in literature, such constraints can possibly be related
both to the syntactic structure of a safety case, but also to the
actual safety case content (Chowdhury et al., 2019). The absence
of well-formedness constraints means that any contradiction,
incompleteness, or ambiguity within a safety case may be prop-
agated into the corresponding uncertainty model, thus making
the belief calculations difficult or unrealistic. Defining and en-
forcing such constraints allows for a sanity check before the
belief calculations, thus maximing the chance for reliable belief
calculations.

1.1. Paper contribution

Guided by the issues faced by previous methods, the present paper
presents a novel method for calculating the belief in safety-case claims.
The method consists of three parts, which are simultaneously the three
contributions. To avoid the issues from (I), and ensure a clear definition
of the belief being calculated, the first contribution is a formalization
of the common safety-case elements, that is independent of the structure
of arguments, and of any concrete safety-case notation. The formaliza-
tion is based on the assumption that each concrete safety case can be
represented by formulas of a formal language . Because safety cases
are typically written in natural language, the purpose of such language
is not to be used for actual safety-cases, but rather to act as a formal
proxy for an arbitrary safety case in the context of the present paper.
Assuming such representation allows rigorous definitions of concepts
such as claim, claim being interpreted in a context, claim being supported
by evidence etc. These definitions are then an input for the derivation
of a general, probabilistic model for belief calculations that uniformly and
consistently captures the uncertainty within an arbitrary safety case.

Based on the representation of a safety case in terms of formulas of
a language , the second contribution is a general probabilistic model
for the lower limit of belief in the conclusion of an arbitrary safety-
case argument. The reason for calculating the lower limit, i.e. the
worst-case belief value, is to avoid the issues from (II.b) where it
is necessary to reason about the probability that a conclusion of an
argument is true even if some premises are false. Such reasoning is
not of practical relevance because it means acknowledging that there
are more premises in the argument than necessary, and this is one of
the well-known errors in argumentation, namely the irrelevant premise
fallacy (Greenwell, 2006).

The third contribution is more practical in nature, and it presents a
step-by step process for belief calculation given a safety case in Goal-
Structuring Notation (GSN) (Origin Consulting (York) Limited, 2018).
Firstly, to avoid the issues from (III), a number of well-formedness
constraints are defined over the standard GSN format, to ensure that
a safety case is of sufficient quality for reliable belief calculations.
Then, the safety-case elements of the GSN format are mapped to the
safety-case elements defined in terms of formulas of a language . This
mapping allows the creation of a probabilistic model according to con-
tribution two, for an arbitrary safety case in GSN format whose claims
are in natural language. Finally, the resulting probabilistic model,
according to the second contribution, is encoded as a Bayesian Network
to enable tool-supported, large scale, belief calculations.

Besides the three contributions, the paper evaluates the proposed
method against the same safety cases from Graydon (Graydon and Hol-
loway, 2016, 2017). More precisely, the same modifications from Gray-
don and Holloway (2016, 2017), which led to unrealistic belief values
in previous methods, are used to test if the proposed method is robust
with respect to these modifications. The results of the evaluation show
that the proposed method produces belief values as expected, unlike
the twelve methods analyzed in Graydon and Holloway (2016, 2017).
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1.1.1. Paper structure
In Section 2 the relevant background about probability theory,

Bayesian Networks, model theory, and Goal-Structuring Notation is
presented. Section 3 presents the methodology that underlines the
presented research study. Section 4 formalizes the common elements
of safety-case arguments in the framework of model theory. Section 5
defines the belief in a claim and derives a probabilistic model for the
ower limit of belief in a conclusion of an arbitrary argument. Section 6
onsiders the GSN notation as the concrete syntax for safety cases, de-
ines the well-formedness constraints for GSN, maps the GSN elements
o elements defined in model theory, and creates the corresponding
ayesian Network. In Section 7 proposed method is evaluated by using
he safety cases from Graydon and Holloway (2016, 2017). Section 8
iscusses the benefits, limitations, and practical concerns related to the
roposed method. Section 9 presents related work and is followed by
ection 10, which concludes the paper.

. Preliminaries

This section presents the relevant background related to probability
theory with an emphasis on Bayesian networks, followed by background
bout model theory, and Goal-Structuring Notation.

.1. Probability theory and Bayesian Networks

Probability theory reasons about random variables whose state is
ncertain, e.g. because it represents the outcome of a still unperformed
xperiment, or because it represents a statement for which there is a
ack of knowledge to decide if it is truthful or not. In the current paper,
he later case is of interest and such reasoning is sometimes referred to
s plausible reasoning (Jaynes, 2003).

Random variables are underlined by the concepts of a sample space
nd events. For a process whose outcome is uncertain, the sample
pace is the set of possible outcomes, which are mutually exclusive and
xhaustive. An event is a subset of the sample space. An example is
he sample space {1, 2, 3, 4, 5, 6} for rolling a six-sided dice, where an
vent 𝐴 is {2, 4, 6}, i.e. an even number. Typically, the events are of less
nterest compared to some function of these events. A random variable 𝑋
s function from the set of events over a sample space, to a set of random
ariable states. The set of possible states 𝑥1,… , 𝑥𝑛, which are mutually
xclusive and exhaustive, of a random variable 𝑋 is called the state space.
or example, the state space {𝑤𝑖𝑛, 𝑙𝑜𝑠𝑒} of 𝑋 could model winning a bet
epending on the outcome of rolling a die. To measure the degree of
ncertainty about the occurrence of events, and consequently about the
tate of a random variable, function 𝑃 assigns a probability value from
0, 1] to each event over the sample space.

The law of total probability states that for a set of pairwise disjoint
vents 𝐴1,… , 𝐴𝑛 such that their union is a sample space, given an event
over the same sample space, it holds that

(𝐵) =
𝑛
∑

𝑖=1
𝑃 (𝐵,𝐴𝑖).

n other words, the probability of 𝐵 is the sum of probabilities that 𝐵
ccurs jointly with each of the events 𝐴𝑖. To calculate the probability
f joint events, the product rule is used. According to the product rule,
he joint probability distribution 𝑃 (𝐴1,… , 𝐴𝑛) can be calculated as

𝑃 (𝐴1,… , 𝐴𝑛) = 𝑃 (𝐴1|𝐴2,… , 𝐴𝑛)

𝑃 (𝐴2|𝐴3,… , 𝐴𝑛)⋯𝑃 (𝐴𝑛−1|𝐴𝑛)𝑃 (𝐴𝑛),
(1)

here the notation 𝑃 (⋅|⋅) is called conditional probability. The product
ule states is that the probability 𝑃 (𝐴1,… , 𝐴𝑛) is equal to the proba-
ility of 𝐴1 given events 𝐴2,… , 𝐴𝑛, times the probability of 𝐴2 given
vents 𝐴3,… , 𝐴𝑛 etc. Conditional probabilities are also defined for
andom variables, but because variables 𝑋 and 𝑌 have their respective
3

tate spaces, writing 𝑃 (𝑋|𝑌 ) means that a probability value from [0, 1]
s assigned to each pair in the Cartesian product of state spaces of 𝑋
nd 𝑌 .

If information about an event 𝐶 does not change the probability of
vent an 𝐵, given the information about some event 𝐴, i.e. 𝑃 (𝐵|𝐴,𝐶) =
(𝐵|𝐴), we say that 𝐵 and 𝐶 are conditionally independent given 𝐴. The

same concept applies to random variables, i.e. two random variables 𝑋
and 𝑌 are conditionally independent given a variable 𝑍, if 𝑃 (𝑋|𝑌 ,𝑍) =
𝑃 (𝑋|𝑍). Typically, when probability theory is used to model a phys-
cal phenomena, a number of conditional independence assumptions
re encoded into the probabilistic model in order to faithfully model
he physical phenomenon. A graphical model which effectively en-
odes conditional independence assumptions for large joint probability
istribution is a Bayesian Network.

efinition 1 (Bayesian Network). A Bayesian network consists of the
ollowing:

(i) a set  of random variables, and a set of edges  between the
variables,

(ii) each variable has a finite state space,
(iii) variables and edges form an acyclic directed graph 𝐺,
(iv) to each variable 𝑋 ∈  with parents 𝑌1,… , 𝑌𝑛 in 𝐺, a conditional

probability table 𝑃 (𝑋|𝑌1,… , 𝑌𝑛) is attached. □

More precisely, a Bayesian network graphically represents the joint
robability distribution 𝑃 (𝑋1,… , 𝑋𝑛) which can be factorized accord-
ng to the product rule as

(𝑋1,… , 𝑋𝑛) =
𝑛
∏

𝑗=1
𝑃 (𝑋𝑗 |𝑝𝑎(𝑋𝑗 )), (2)

here 𝑝𝑎(𝑋𝑗 ) denotes the parent random variables in the graph 𝐺. The
main use of Bayesian Networks is to update probability values based on
received evidence, where the evidence is an observation that a random
variable 𝑋 is in a particular state 𝑥𝑖, i.e. 𝑃 (𝑋 = 𝑥𝑖) = 1.

.2. Model theory

This section recalls the basics of model theory. Note that the fol-
owing description is a less formal summary compared to the typical
efinitions that can be found in Huth and Ryan (2004), Marker (2006)
nd Doets (1996).

Central concepts in model theory are a formal language , and a
odel that may satisfy the formulas of language . A language  is de-

ined through a set of symbols and rules, which define how symbols can
e combined into well-formed formulas. The set of symbols is partitioned
nto two subsets. The first one is the set of logical symbols, e.g. con-
unction, disjunction denoted ∧ and ∨, existential quantification denoted
, until operator denoted  , etc. In addition, the logical symbols also
nclude symbols which express variables, and these will typically be
enoted as 𝑥, 𝑦, 𝑧. The non-logical symbols either express relations 𝑄 of
rity 𝑛 > 0, typically referred to as predicates, or express functions 𝑔 with
rity 𝑛 > 0, or express specific entities, typically referred to as constants
. The set of non-logical symbols is called the signature of a language,
enoted 𝛴, and the signature is chosen to support creation of formulas
or a particular subject topic. For example, a part of the signature for
he language of set-theory could be {∈, ∅,∪,∩}, where ∈,∪ and ∩ are

binary predicates over symbols that represent sets, and ∅ is a constant
that represents an empty set.

Given the symbols of a language , the rules to form well-formed
formulas are defined as follows:

• Certain language symbols are declared to be terms, denoted 𝑡.
These include variables, constants, and possibly functions. Gram-
mar 𝑡 defines the allowed combinations of terms.

• Atomic well-formed formulas are 𝑄(𝑡1,… , 𝑡𝑛), where 𝑄 is an n-ary

predicate and 𝑡1,… , 𝑡𝑛 are terms.
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• Grammar 𝑓 defines the composite well-formed formulas as com-
binations of atomic formulas and logical symbols.

To simplify the rest of the text, we will assume that all formu-
las are well-formed, and simply write formula. Moreover, arbitrary
formulas will be denoted 𝜙,𝜑, and 𝜓 . For some intuition, an exam-
le of an atomic formula is 𝙿𝚎𝚛𝚜𝚘𝚗(𝚡), where Person is an unary

predicate, and x is a variable. An example of a composite formula
is ∀𝚡.𝙿𝚎𝚛𝚜𝚘𝚗(𝚡) → 𝙷𝚞𝚖𝚊𝚗(𝚡) where 𝑥 is bound to a universal quantifier
and where the formula states that all things that are a person are also
a human. Note that if all variables within a formula are bound to a
quantifier, then it said that this formula has no free variables and it is
referred to as a sentence.

While logical symbols have a standard meaning, non-logical sym-
bols do not, and their meaning is defined over a model .

Definition 2 (Model). A model  is given by the following data:

(i) a non-empty set 𝑀 of concrete values, called the universe,
(ii) an element 𝑐 ∈𝑀 for each constant 𝑐,

(iii) a function 𝑔 ∶𝑀𝑛 →𝑀 for each function 𝑔 of arity 𝑛,
(iv) a set 𝑄 ⊆ 𝑀𝑛 for each predicate 𝑄 of arity 𝑛.

The set of possible models for a language  is denoted 𝐌 and
𝑐, 𝑔, 𝑄 are referred to as interpretations of non-logical symbols
𝑐, 𝑔,𝑄. The universe of a model contains concrete entities over which
interpretation is performed, e.g. a universe over which predicates Per-
son and Human would be interpreted would typically contain a num-
ber of individuals. Given the concept of a model, model theory in-
ductively defines whether a model satisfies a formula, for each type
of formula defined by the grammar 𝑓 . Because for the purpose of
the present paper the exact syntax of language  is not relevant, we
introduce the function 𝑒𝑣𝑎𝑙 for language  that, given a model from
𝐌 and a formula of , returns the value true or false.

Definition 3 (Model Satisfies a Formula). Let 𝑒𝑣𝑎𝑙 be a function that
given a model  ∈ 𝐌 and a formula 𝜙 of , returns the Boolean value
true or false. If 𝑒𝑣𝑎𝑙(, 𝜙) = 𝑡𝑟𝑢𝑒, we say that  satisfies 𝜙, denoted
 ⊧ 𝜙. We also say that a formula 𝜙 evaluates to true for the model .

2.3. Goal-Structuring Notation

This section recalls the definition of the Goal-Structuring Nota-
tion (Origin Consulting (York) Limited, 2018), which is used as the
concrete safety-case syntax in the evaluation section. Moreover, this
section highlights the fact that other safety-case notations fundamen-
tally rely on the same concepts, which means that regardless of the
concrete syntax, a common meaning of safety-case arguments can be
defined. A complete, formal definition of GSN notation can be found
in Denney and Pai (2018), while a less formal summary follows.

Definition 4 (GSN Argument). A GSN argument is a labeled directed
acyclic graph, where 𝑁 is the set of nodes, 𝐴 is the set of arcs, and
𝑙𝑡, 𝑙𝑑 are functions that label nodes with a type and a description.
Function 𝑙𝑑 is defined as 𝑙𝑑 ∶ 𝑁 → 𝗌𝗍𝗋𝗂𝗇𝗀. Function 𝑙𝑡 is defined as
𝑙𝑡 ∶ 𝑁 → {𝗀𝗈𝖺𝗅, 𝗌𝗍𝗋𝖺𝗍𝖾𝗀𝗒, 𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇, 𝖼𝗈𝗇𝗍𝖾𝗑𝗍, 𝗃𝗎𝗌𝗍𝗂𝖿 𝗂𝖼𝖺𝗍𝗂𝗈𝗇, 𝖺𝗌𝗌𝗎𝗆𝗉𝗍𝗂𝗈𝗇}. Further-
more, a GSN argument satisfies the following conditions:

(i) The type of the root node 𝑛 is goal,
(ii) Arcs start from nodes of type goal or strategy,

(iii) Nodes of type goal cannot simultaneously connect to nodes of
type solutions and strategy,

(iv) Nodes of type strategy cannot connect to nodes of type strategy,
nor of type solution,

(v) Nodes of type solution cannot connect to any other node. □
4

Fig. 1. A safety-case fragment in GSN format.

Fig. 1 shows a fragment of a safety case from Ayoub et al. (2013),
expressed in GSN notation. This example will be used as the running ex-
ample in the following sections. The overall claim is captured by Goal
1, which states that ‘‘all identified hazards are sufficiently mitigated’’, and
this should follow from Goal 2 which states that ‘‘hazard H1 has been
eliminated’’, and Goal 3 which states that the ‘‘probability of H2 occurring
is < 1 × 10−6ℎ−1’’. The two premises are supported by two different
olution nodes, namely Solution 1 that references ‘‘testing results’’, and
olution 2 that references ‘‘formal verification results’’. The reasoning as

o why claim in Goal 1 follows from the ones in Goal 2 and Goal 3, is
xpressed by the Strategy 1 node. Finally, the contextual information
hat is needed to draw the overall conclusion is captured by Context

stating that ‘‘identified hazards are H1 and H2’’, and Justification 1
tating that 1 ∗ 10−6ℎ−1 is the limit for H2.

As can be seen from Fig. 1, and as defined by the GSN stan-
ard (Origin Consulting (York) Limited, 2018), goal nodes represent
laims about a system, strategy nodes represent inference rules that
re used to infer a claim from subclaims, solution nodes are references
o evidence, assumption nodes express claims that are assumed to
e true, justification nodes express the rationale for why a certain
nference rule or a claim is considered true, and context nodes express
ontextual information in which a claim is interpreted.

An inspection of other popular safety-case notations such as CAE
Adelard LLP, 2020), SACM (Anon, 2020), or NOR-STA (Górski et al.,
012) shows that despite the different naming conventions and graphi-
al representations, they effectively support safety-case arguments that
ave the same elements and same structure as the GSN notation. It
hould also be noted that all of these notations are just that, a concrete
yntax for a safety case whose semantics is however undefined. In sum-
ary, regardless of the notation, safety-case arguments are comprised

f claims, inference rules, evidence, and one or more types of contextual
nformation.

.3.1. Fallacious safety-case arguments
Fallacious arguments are arguments that encode some form of faulty

easoning. The work in Greenwell (2006) presents the taxonomy of
allacies in system safety arguments, which contains 33 different fallacies,
rouped into eight major categories. The four categories of fallacies that
ill be considered in the present paper are shown in Table 1.

To provide some intuition, consider the argument with the con-
lusion ‘‘software implements allocated safety requirements’’, given the
remise that ‘‘the source code was written by senior developers’’. If we
cknowledge the fact that even the most senior developers can acci-
entally introduce faults into the source code, this is an example of
fallacy from the category anecdotal arguments. Indeed, there exists a
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able 1
ategories of considered fallacies from Greenwell (2006).
Fallacy category Explanation

Anecdotal arguments Conclusion does not follow from the premises
Diversionary arguments High number of premises distracts from the fact that th

conclusion does not follow from the premises
Omission of key evidence Key evidence is missing or is even counter-evidence
Linguistic fallacies The used language is vague and ambiguous

correlation between the seniority of a developer, and the quality of the
source code. However, there is no causation between these two claims,
thus the conclusion does not follow from the premises. The importance
of detecting and removing fallacious arguments is that a method for
belief calculation will necessarily produce misleading belief values given
a fallacious argument.

3. Methodology

This section describes the methodology that underlines the per-
formed research study, and motivates the choices of different notations
and formalisms. Fig. 2 visualizes the different elements of the study and
the relations between them.

The starting point for the present study is the work in Graydon
and Holloway (2016, 2017), which presents an analysis of previously
methods for the quantification of belief in a safety case. The work
in Graydon and Holloway (2016, 2017) defines so-called counterexam-
ples, which are safety cases that lead to unrealistic belief values for twelve
reviously-proposed methods for belief quantification. The purpose of
he present study was to develop a method for the calculation of belief
n arbitrary safety cases that also produces belief values as expected for
he counterexamples from Graydon and Holloway (2016, 2017).

As Fig. 2 shows, to ensure that the belief can be calculated for
rbitrary safety-cases, elements of safety-case arguments are identified
rom different, existing safety-case notations. As discussed in Section 2.3,
ifferent safety-case notations are fundamentally based on the same
oncepts and this study focuses on these fundamental concepts instead
n their usage in a particular notation. Because existing safety-case
otation define the syntax but not the semantics of safety cases, i.e. it
s undefined when a safety-case claim is true, the first contribution
s a deterministic safety-case interpretation, which is effectively a de-
erministic semantics off the elements of safety-case arguments. This
eterministic interpretation is developed based on the principles of
odel theory (Marker, 2006) and Section 3.1 motivates this choice.

Given a clear definition of when a safety-case claim is true, the
econd contribution is a generalization into a probabilistic safety-case
nterpretation, referred to as the belief model. This is effectively a prob-
bilistic safety-case semantics that also considers the cases when the
vailable knowledge is insufficient to use the deterministic safety-case
nterpretation. The choice of probability theory over other frameworks
5

or reasoning under uncertainty is motivated by the maturity and gen-
rality of probability theory, and also by the fact that other frameworks
uch as belief theory are shown to be unsound in certain scenarios (Dez-
rt et al., 2012). The consequence of the proposed belief model is
hat for large, real-size safety cases, the corresponding belief model
ay become a large joint-probability distribution. To enable practical
anipulation and analysis of large joint-probability distributions, the

elief model is encoded as a Bayesian Network which can then be created
and analyzed with off-the-shelf tool support.

As shown in Fig. 2, to verify whether the developed belief-model
overcomes the limitations of belief-models from previous methods, the
study uses the same counterexamples from Graydon and Holloway
(2016, 2017) to evaluate the developed belief model. The counterex-
amples, which were expressed in GSN notation, were taken directly
from Graydon and Holloway (2016, 2017) and to help presentation,
they were recreated with the help of an open-source, GSN notation
editor called D-Case (Matsuno et al., 2010). The corresponding Bayesian
Networks and the belief calculations were created with the help of
the academic version of GeNIe Modeler (Bayes Fusion). The criteria
to judge whether the developed belief-model is superior compared to
the previous ones was that for all counterexamples, the developed
belief-model produces belief values as expected.

3.1. The choice of model theory

Because safety cases do not have a broadly accepted semantics (Lan-
gari and Maibaum, 2013), defining its semantics required the selection
of a suitable framework for this task. Before selecting model theory,
several other frameworks were considered. One candidate was the
argumentation framework (Bench-Capon and Dunne, 2007; Dung, 1995;
Riveret et al., 2018) from the artificial intelligence community. How-
ever, these frameworks abstract away the inner structure of arguments,
while for safety cases, the structure is very much emphasized. Also,
these frameworks are primarily used to reason about the relative strength
between arguments and not about whether the conclusions of argu-
ments are true or false. Another candidate was the so-called informal
logic (Walton, 1996, 2008), which builds on the work in (Toulmin,
2003; Wigmore, 1931), and which comes from the domain of philos-
ophy. The purpose of informal logic is to enable critical thinking but
because it has been developed primarily to support everyday argu-
ments, e.g. legal or rhetoric in general, it stay on an informal and
abstract level. Finally, model-theory framework comes from the domain
of mathematical logic and it studies formal languages and the scenarios
in which the formulas of these languages evaluate to true or false. In
model theory an argument consists of several formulas, i.e. the inner
structure of arguments is explicit, and the semantics of formulas is
well-defined. Given that the goal in the present paper is to be able to
assign a true or false value to claims, to capture the structure of each
argument, and to have a formal representation which allows unambigu-
ous reasoning, model-theory was adopted to define the deterministic
interpretation of safety cases.
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4. Deterministic interpretation of safety cases

To formally reason about the content of a safety case, in this section
we develop an appropriate formal representation, which is the first
contribution of the paper. The primary goal is to define a representation
that is sufficiently detailed to define what it means for a claim to be
true or false, but also sufficiently general so that arbitrary, typically
natural-language safety-cases can be represented.

Due to the choice to rely on the principles of model theory, we
assume that the content of each, typically natural-language safety case,
can be represented by a set of formulas of a formal language . Fig. 3
llustrates the underlying idea where each real-world safety case is
epresented by a set of formulas of a formal-language.

If the differences between the claims of two safety cases are drastic,
.g. between a safety case from the automotive and aerospace domain,
hen the formulas that represent these two safety cases will probably
elong to two different languages, e.g. 1 and 2 in Fig. 3. However,
language 𝑖 might be sufficient to represent several safety cases,

.g. different versions of a safety case within a single company, or
ven safety cases from different companies. The crucial thing to note is
hat because our goal is to reason about arbitrary safety cases, we do
ot focus on a particular language 𝑖 and the set of safety cases this
anguage can represent. Rather we define the properties of an arbitrary
anguage , and define how the formulas of an arbitrary language can
e used as claims, inference rules, evidence etc. Although the assumed
bstraction, i.e. the formulas of a language , are not expected to be
xplicitly created, they are used within the scope of the paper as a
ormal proxy to rigorously define the elements of real-world safety cases,
nd the relations between them. The purpose of these definitions is
o provide the foundation for the subsequent derivation of a general
robabilistic-model of belief for an arbitrary safety case, independent
f the concrete notations, e.g. the ones in Section 2.3.

The following subsections introduce the definitions of safety-case
lements based on model-theory.

.1. Claims and inference rules

Given the assumptions that formulas of  represent the content
f a safety case, i.e. for each element of a safety case there exists a
emantically equivalent formula of , we define claims, arguments etc.,
n terms of formulas of . First, the definition of a claim is introduced.

efinition 5 (Claim). A claim is a sentence of . □

As an example, consider the claim from Goal 3 in Fig. 1, which
tates that ‘‘Hazard H1 has been eliminated’’. An equivalent representa-
ion as a sentence of a language  is Eliminated(H1), where H1
s a constant and Eliminated is a unary predicate. An example of

composite formula is a representation of the claim from Goal 1 in
ig. 1, namely
6

𝚡.𝙷𝚊𝚣𝚊𝚛𝚍(𝚡) → 𝚂𝚞𝚏𝚏𝙼𝚒𝚝𝚒𝚐𝚊𝚝𝚎𝚍(𝚡), (3) c
here 𝚡 is a variable, and Hazard and SuffMitigated are two
nary predicates. In the remainder of the text, claims will be typically
enoted 𝑝 and 𝑞. As discussed previously, claims are the building blocks
f arguments.

efinition 6 (Argument). An argument is a pair ({𝑝1,… , 𝑝𝑛}, 𝑞), denoted
1,… , 𝑝𝑛 ⊢ 𝑞, where {𝑝1,… , 𝑝𝑛} is a non-empty set of claims called
remises, and 𝑞 is a claim called conclusion. □

An argument corresponds to a statement that a conclusion follows
rom the given premises. Off course, a conclusion of one argument
an be a premise of another argument, thus forming a hierarchy of
rguments. For example, the argument from Fig. 1 where Goal 1 is
he conclusion and Goal 2 and Goal 3 are premises, can be encoded as

𝙴𝚕𝚒𝚖𝚒𝚗𝚊𝚝𝚎𝚍(𝙷𝟷), 𝙿𝚛(𝙷𝟸) < 1 × 10−6ℎ−1 ⊢

∀𝚡.𝙷𝚊𝚣𝚊𝚛𝚍(𝚡) → 𝚂𝚞𝚏𝚏𝙼𝚒𝚝𝚒𝚐𝚊𝚝𝚎𝚍(𝚡)
(4)

nd it formally represents the argument ‘‘all hazards are sufficiently
itigated since hazard H1 is eliminated and hazard H2 occurs with a

requency less than 1×10−6ℎ−1’’. To understand why this conclusion was
sserted, the used inference rule must be stated.

efinition 7 (Inference Rule). An inference rule is a pair ({𝜙1,… , 𝜙𝑘}, 𝜑),
enoted ⟨𝜙1,… , 𝜙𝑘∴𝜑⟩, where {𝜙1,… , 𝜙𝑘} are formulas called premises,
nd 𝜑 is a formula called conclusion. □

Since the argument in (4) is a representation of the overall con-
lusion from Fig. 1, the corresponding inference rule from Fig. 1
eads ‘‘argument over all identified hazards’’. This inference rule actually
onflates several inference rules and the language  representation of
ne of them is
⟨𝙷𝚊𝚣𝚊𝚛𝚍(𝚝),(𝙴𝚕𝚒𝚖𝚒𝚗𝚊𝚝𝚎𝚍(𝚝) ∨ 𝙿𝚛(𝚝) < 𝙻𝚒𝚖𝚒𝚝(𝚝))

∴𝚂𝚞𝚏𝚏𝙼𝚒𝚝𝚒𝚐𝚊𝚝𝚎𝚍(𝚝)⟩.
(5)

The inference rule in (5) can be read as: if something represented
y 𝑡 is a hazard, and if it is either eliminated or the probability of its
ccurrence is lower than a predefined limit, then we can infer that 𝑡 is
ufficiently mitigated. The inference rule in (5) allows inferring that a
ingle 𝑡 is sufficiently mitigated, but the conclusion in (4) states that
ll hazards are sufficiently mitigated. The additional inference rules
eeded to infer the conclusion in (4) are natural deduction rules (Huth
nd Ryan, 2004), namely the rule to infer an implication, called implica-
ion introduction, and the rule to generalize the conclusion to all hazards,
alled universal quantification introduction. Moreover, the definition of
𝑖𝑚𝑖𝑡(𝑡) is also needed, but we defer this discussion to a later part of
ection 4.

Here we draw attention to a relation between inference rules and
rguments. In the example argument (4), constants 𝙷𝟷, 𝙷𝟸 replace the
rbitrary term 𝚝 from (5). This highlights the point that an argument

an rely on an inference rule only if they syntactically match. As the
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example shows, syntactic matching means that for each formula within
the inference rule, there exists a formula within the argument such that
their syntactic structure is equivalent with respect to the grammar 𝑓 of

language  (c.f. Section 2.2). The difference between the two is that
he inference rule allow arbitrary terms, while arguments necessarily
ontain concrete terms.

Before proceeding to the next section we note that a common
lternative way to express an inference rule ⟨𝜙1,… , 𝜙𝑘∴𝜑⟩ is as an

implication formula ∀ ∗ .𝜙1 ∧⋯ ∧ 𝜙𝑛 → 𝜑 (Galton, 1990, p. 201), where
∀ ∗ denotes universal quantification over all terms within 𝜙1,…𝜙𝑛 and
𝜑. This notation will be used when probabilistic models are considered,
and such implication formulas will be denoted 𝜓 . A consequence of
using this notation is that the grammar 𝑓 must contain a rule for
implication.

4.2. Evidence and sound inference rules

When assessing a safety case, the ideal scenario is that for each
claim 𝑝 within a safety case, it holds that  ⊧ 𝑝 according to Defi-
nition 3, i.e. each claim 𝑝 is true. While the next section discusses why
this is often not possible, here we consider the type of claims for which
 ⊧ 𝑝 is the case because  was explicitly analyzed with respect to 𝑝.
This is the case for claims that are declared to be evidence.

Firstly, note that evidence-elements in different safety case nota-
tions (c.f. Section 2.3) are not claims, but references to claims within
engineering artifacts. For example, the solution node from Fig. 1 is a
reference to the claim 𝑝 within the ‘‘testing result’’, which could state
that ‘‘𝚜𝚠𝟷 passed testing against test suite for 𝙷𝟸’’, or that ‘‘𝚜𝚠𝟷 failed testing
against test suite for 𝙷𝟸’’. Because formulas of  are a representation of a
concrete safety case, we assume that all references are dereferenced, and
that each piece of evidence is a claim. Secondly, and more importantly,
these claims encode the results of verification activities that explicitly
analyze a model , i.e. the relevant part of the universe of , to
establish that  satisfies some property. While Section 6.1.1 discusses
the uncertainty about the analysis process itself, the claim that is the
result of an explicit analysis of  is considered to be true regardless
of what 𝑝 states.

Definition 8 (Evidence). An evidence is a claim, denoted 𝑒, for which
it holds that  ⊧ 𝑒. The set of all evidence is denoted E. □

As discussed in Section 1, the idea of a safety-case is that given the
available evidence-claims, the intermediary and ultimately the overall
claim of a safety case is true. Whether this is the case depends on
the used inference rules. Ideally, an inference rule should be such that
whenever its premises are true, also the conclusion is true. Inference
rules with such a property ensure that when a specific argument
conclusion is inferred from the argument premises that are known to
be true, then the conclusion will also be true. In other words, the use
of such inference rules ensures that false conclusions are impossible to
infer from premises which are true. This property of inference rules is
called soundness.

Definition 9 (Sound Inference rule). An inference rule ⟨𝜙1,… , 𝜙𝑘∴𝜑⟩
is sound if for all  ∈ 𝐌 it holds that  ⊧ 𝜙1,… , ⊧ 𝜙𝑘 implies
 ⊧ 𝜑. □

Note that if an inference rule is expressed as an implication formula
𝜓 , then a sound 𝜓 is one that is satisfied by all models in 𝐌. For
some intuition, recall the previously discussed inference rule implication
introduction, for which there exists a formal proof of soundness (Huth
and Ryan, 2004), and this is a reason why it is commonly used. The
example argument in Section 2.3.1, related to the seniority of the
developers is fallacious exactly because the used inference rule in not
sound. Also, the example inference rule in (5) is not sound, because
there could be models in 𝐌 where the predicate Eliminated has
no interpretation. However, if the set of possible models is restricted to
7

a subset of 𝐌, such that this predicate always has an interpretation,
then the inference rule may have a restricted form of soundness in the
scope of a subset of 𝐌. In other words, the scope in which formulas
are evaluated is defined, and in safety cases this is the role of contextual
information. Contextual information typically contains definitions such
as 𝙻𝚒𝚖𝚒𝚝(𝚝), which was missing to draw the conclusion of the argument
in (4).

4.3. Contextual information

A subset of 𝐌 is defined by a set of formulas 𝛤 called a the-
ory (Marker, 2006), such that each formula in 𝛤 is satisfied by each
 in this subset of 𝐌. Because the set 𝛤 can contain many formulas,
often a smaller, finite set of formulas  is defined, called axioms, and
it is shown that all models that satisfy each 𝛼 ∈  also satisfy each
𝛾 ∈ 𝛤 . If this is the case, we say that the theory 𝛤 is a logical consequence
of the axioms . For example, if a company decides to develop their
systems according to the theory of contract-based design (Benveniste
et al., 2018; Nešić et al., 2019), then the conclusions of arguments,
which rely on the theorems of contract-based design will be true, as
long as the models generated by the engineering process satisfy the
axioms of contract-based design.

In the rest of the paper, we assume that there exists a set of axioms
 = {𝛼1,… , 𝛼𝑚}, which defines the set of models 𝐌 ⊆𝐌, over which
the formulas of  are evaluated. Moreover, we assume that each 𝛼 is a
formula of language . The axioms can be domain or company-specific
definitions and rules, e.g. naming conventions, definitions of engineer-
ing artifacts etc., but also general axioms of mathematics, physics etc.
In other words, axioms in  are most frequently the definitions of non-
logical symbols of language . For example, recall the node 𝙲𝚘𝚗𝚝𝚎𝚡𝚝𝟷

from Fig. 1 that captures the definition of identified hazards, which can
be expressed as a formula ∀𝚡.𝙷𝚊𝚣𝚊𝚛𝚍(𝚡) → 𝚡 = 𝙷𝟷 ∨ 𝚡 = 𝙷𝟸. Deciding if
the conclusion of (4) is true can only be done by considering that only
identified hazards are 𝙷𝟷 and 𝙷𝟷. Therefore, different kinds of contextual
information within safety cases are interpreted as axioms in .

Definition 10 (Context). A context is an axiom 𝛼 ∈  and each model
 ∈ 𝐌 is such that  ⊧ 𝛼. □

Definition 10 concludes the list of definitions that capture the
elements and relations between the elements of a safety case. Before
proceeding to the next section, we consider how the formal definitions
can be used to detect various kinds of fallacious arguments.

A definition of symbols and formulas of a language  directly
reduces the risk of linguistic fallacies in Table 1, e.g. if a safety-case
claim cannot be represented by a formula of  then this claim probably
contains ambiguities or inconsistencies. Requiring syntactic matching is
a way to avoid the omission of key evidence and diversionary arguments
fallacies from Table 1, where in both cases the argument premises do
not match, or are absent, with respect to the used inference rule. Fi-
nally, using sound inference rules in safety cases ensures that anecdotal
arguments fallacies from Table 1 are avoided, where the conclusion does
not follow from the premises.

In this section, a formula of , and consequently the safety-case
claim it represents, was always either true or false. The next section
considers the more general case when the available knowledge is
insufficient to decide if a claim is true or false, thus leading to the
concept of belief in a claim.

5. Belief in safety-case arguments

This section presents the second contribution, namely a definition
of the concept of belief in arbitrary claims, inference rules, and finally
conclusions of arbitrary arguments.

Ideally, a safety case should be a hierarchy of arguments, according
to Definition 6, where the premises and conclusions are satisfied by a
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model , according to Definition 3, that is associated with a partic-
ular engineering process. Depending on the type of argument claims,
function 𝑒𝑣𝑎𝑙 from Definition 3 will require a model  according
to Definition 2, of different content, size, and granularity, in order
to return either the value true or false. For example, in the context
f ISO 26262 (International Organization for Standardization, 2018)
art 3, it is necessary to assert the claim that ‘‘each hazard is either
revented or sufficiently mitigated’’ (c.f. Fig. 1). Then the universe of
he model  must contain a representation of a real hazard log
ith identified hazards, of the corresponding specification document
ith safety goals, and of the corresponding traceability information.
oreover, the model should contain the interpretation for constants

hat represent hazards and safety goals, and for the predicates prevented
and sufficiently mitigated. Given such model, and the mentioned claim,
function 𝑒𝑣𝑎𝑙 can return a value true or false.

However, claims within a safety case are often about complex
properties such as the ones about the implementation of the system
being assured, or about the environment in which the system should
operate. Examples are claims about software implementing a require-
ment, or successfully processing all inputs from the environment. For
the function 𝑒𝑣𝑎𝑙 to return a value true or false for such claims, the
universe of the required model would have to contain the complete state-
space of a software, or a model of the intended operating-environment
behavior. However, because the number of software states is typically
astronomical (David et al., 2011), and the behavior of the intended
environment is random (Hauer et al., 2019), in such cases it is often not
possible, or practically feasible to construct the required model (Bishop
t al., 2011; Bloomfield et al., 2007). In general, this means that for
ome claims within a safety case, and because the model  is partly
nknown, the function 𝑒𝑣𝑎𝑙 cannot return a value true or false. Other
ethods have previously discussed a general lack of knowledge in

he context of safety-cases (Rushby, 2017), or informally introduced
ncertainty about the ‘‘contribution of evidence to a claim’’ (Wang et al.,
019), or uncertainty about the ‘‘appropriateness and trustworthiness of
he context’’ (Denney et al., 2011). In the present paper, the fact that the
odel  underlies the definition of a claim being true or false allows

ormally expressing the uncertainty about whether a claim is true or
alse as the uncertainty about the model . This observation leads to
formal definition of the belief in a claim.

.1. Belief in a conclusion of an argument

As discussed in the previous section, because the model  is
partially unknown, it is not possible to decide if for some conclusion
𝑞 it holds that  ⊧ 𝑞. Consequently, the present paper estimates the
probability that  ⊧ 𝑞, i.e. 𝑃 ( ⊧ 𝑞). This means that the model 
s treated as a discrete random variable with the state space containing
tates  ⊧ 𝑞 and  ̸⊧ 𝑞, i.e.  satisfies 𝑞,  does not satisfy 𝑞.

A crucial thing to note is that the model  is not completely
nknown. Firstly,  is a member of the set 𝐌, but more importantly,
he safety-case evidence and the asserted axioms represent observations
hat the model satisfies each 𝑒 ∈ 𝐸 and each 𝛼 ∈ , respectively. In
ther words, instead of calculating the marginal probability 𝑃 ( ⊧ 𝑞), a
onditional probability can be calculated, namely

( ⊧ 𝑞 |  ⊧ , ⊧ 𝐸). (6)

The expression in (6) is the belief in a claim 𝑞. As a shorthand, from
ow on we will simply write 𝑃 (𝑞|, 𝐸) or 𝑃 (¬𝑞|, 𝐸) as a shorthand for
( ̸⊧ 𝑞| ⊧ , ⊧ 𝐸). The value 𝑃 (𝑞|, 𝐸) is best understood as a

pecial case of plausible reasoning (Polya, 1990; Jaynes, 2003). Because
n general it is not possible to determine if  ⊧ 𝑞, only the plausibility
f  ⊧ 𝑞 can be determined, given all available information. In other
ords, the value 𝑃 (𝑞|, 𝐸) represents the state of knowledge about
, encoded in  and 𝐸, with respect to the claim 𝑞. Whenever the

′
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et of evidence is updated to 𝐸 with additional information about  i
hat supports the conclusion  ⊧ 𝑞, then it holds that 𝑃 (𝑞|, 𝐸) <
(𝑞|, 𝐸′).

In the most general sense, expression (6) is sufficient to calculate the
elief in the top safety-case claim. However, because 𝑞 is typically an
bstract claim, e.g. system is acceptably safe, while the evidence is very
pecific, e.g. positive review of SW specification, estimating this value di-
ectly would be very difficult. But the power of safety cases lies exactly
n the fact that 𝑞 should be possible to deduce from given hierarchy of
rguments and not only the evidence. More precisely, to calculate the
elief in the top conclusion, the belief in the corresponding premises
nd inference rule can be taken into account. This means that given an
rgument 𝑝1,… , 𝑝𝑛 ⊢ 𝑞 based on an inference rule 𝜓 , and according
o the law of total probability (c.f. Section 2.1), the belief in 𝑞 can be
alculated as
𝑃 (𝑞|, 𝐸) =𝑃 (𝑞, 𝜓, 𝑝1,… , 𝑝𝑛|, 𝐸)

+ 𝑃 (𝑞, 𝜓, 𝑝1,… ,¬𝑝𝑛|, 𝐸) +⋯

+ 𝑃 (𝑞,¬𝜓,¬𝑝1,… ,¬𝑝𝑛|, 𝐸).

(7)

The only term in Eq. (7) that is of interest is the first one, because
e assume that this term is much larger than the other ones. This is
reasonable assumption because in all other cases at least one of the

remises, or the inference rule, is not satisfied by the model , thus
he probability that  ⊧ 𝑞 must very low. Consequently, all terms but
he first one are omitted from (7), and (7) becomes an inequality which
efines a tight lower limit of the belief in conclusion 𝑞. More formally, it
ollows that

(𝑞|, 𝐸) ≥ 𝑃 (𝑞, 𝜓, 𝑝1,… , 𝑝𝑛|, 𝐸). (8)

y using the product rule of probability theory, (8) becomes:

𝑃 (𝑞|, 𝐸) ≥𝑃 (𝑞|𝜓, 𝑝1,… , 𝑝𝑛,, 𝐸)𝑃 (𝜓|𝑝1,… , 𝑝𝑛,, 𝐸)

𝑃 (𝑝1|𝑝2,… , 𝑝𝑛,, 𝐸)⋯𝑃 (𝑝𝑛|, 𝐸).
(9)

Since each of the factors in the product from (9) is conceptually
ifferent, one by one factor is now analyzed.

First consider the factor 𝑃 (𝜓|𝑝1,… , 𝑝𝑛,, 𝐸). This is the probability
hat a model satisfies the implication formula of the inference rule,
iven that a model satisfies the premises, axioms and evidence. Ac-
ording to Definition 9 and Section 4.3, if an inference rule is sound,
hen it is satisfied by all possible models, and if it is not sound, then
t might be a logical consequence of axioms . In either case, the
remises of a particular argument, and evidence of a particular safety
ase are irrelevant. Therefore, according to the definition of conditional
ndependence it holds that 𝑃 (𝜓|𝑝1,… , 𝑝𝑛,, 𝐸) = 𝑃 (𝜓|), and we call
his factor the belief in an inference rule.

Next factors to consider is the set of factors related to the premises.
ithin the majority of safety-case arguments proposed in the past

0 years (Szczygielska and Jarzębowicz, 2018), the premises of ar-
uments are considered independent. Another indication that such
ndependence is assumed, is the fact that standardization documents,
nd each formalization of safety case notation from Section 2.3 either
xplicitly forbid such dependencies, or such dependencies are never
sed. Because in the general case, two premises may be dependent,
his common independence assumption is interpreted as conditional
ndependence between the premises given the evidence, and the factors
(𝑝1|𝑝2,… , 𝑝𝑛,, 𝐸)⋯𝑃 (𝑝𝑛|, 𝐸) reduce to 𝑃 (𝑝1|, 𝐸)⋯𝑃 (𝑝𝑛|, 𝐸).

Finally, the first factor is the probability that a conclusion is satis-
ied, given that the premises, the inference rule as implication formula
, the axioms, and the evidence are satisfied. This term represents

he concept of syntactic matching from the previous section, i.e. this
actors models the belief that 𝑞 can be inferred from 𝑝1,… , 𝑝𝑛 based
n the inference rule 𝜓 . An important observation is that this factor is
onditionally independent of 𝐸 given the premises 𝑝1,… , 𝑝𝑛. However,
his factor is not in general independent of . If we recall the example
rom Fig. 1, concluding that all identified hazards are sufficiently mitigated

s not possible without the definition of identified hazards, i.e. an
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axiom. Therefore, 𝑃 (𝑞|𝜓, 𝑝1,… , 𝑝𝑛,, 𝐸) reduces to 𝑃 (𝑞|𝜓, 𝑝1,… , 𝑝𝑛,).
iven the simplifications of each of the terms from (8), inequality (8)
ecomes
𝑃 (𝑞|, 𝐸) ≥𝑃 (𝑞|𝜓, 𝑝1,… , 𝑝𝑛,)𝑃 (𝜓|)𝑃 (𝑝1|, 𝐸)⋯

𝑃 (𝑝𝑛|, 𝐸).
(10)

Inequality, (10) is a general probabilistic model of the lower limit of
belief in the conclusion of an arbitrary safety-case argument. Depending
on the particular claims, inference rule, and evidence, (10) can be
modified in different ways, and such different scenarios are discussed
in the following section.

5.2. Argument-specific modifications of (10)

This section shows how the probabilistic model from (10) can be
modified, or how some factors can be assigned values, for different
kinds of arguments.

5.2.1. Matching of arguments and inference rules
In the case where an argument is such that the claims within the

argument syntactically match the formulas within the inference rule, as
described in Section 4.1, then it holds that 𝑃 (𝑞|𝜓, 𝑝1,… , 𝑝𝑛,) = 1 and
(10) becomes

𝑃 (𝑞|, 𝐸) ≥ 𝑃 (𝜓|)𝑃 (𝑝1|, 𝐸)⋯𝑃 (𝑝𝑛|, 𝐸) (11)

An example of such argument is

𝙷𝚊𝚣𝚊𝚛𝚍(𝙷𝟷), 𝙴𝚕𝚒𝚖𝚒𝚗𝚊𝚝𝚎𝚍(𝙷𝟷) ⊢ 𝚂𝚞𝚏𝚏𝙼𝚒𝚝𝚒𝚐𝚊𝚝𝚎𝚍(𝙷𝟷)

and the corresponding inference rule is

⟨𝙷𝚊𝚣𝚊𝚛𝚍(𝚝), 𝙴𝚕𝚒𝚖𝚒𝚗𝚊𝚝𝚎𝚍(𝚝)∴𝚂𝚞𝚏𝚏𝙼𝚒𝚝𝚒𝚐𝚊𝚝𝚎𝚍(𝚝)⟩.

5.2.2. Arguments with evidence as premises
For an argument where 𝑘 ≤ 𝑛 premises are evidence 𝑒1,… , 𝑒𝑘,

inequality (10) is actually

𝑃 (𝑞|, 𝐸) ≥𝑃 (𝑞|𝜓, 𝑝1,… , 𝑝𝑛−𝑘, 𝑒1,… , 𝑒𝑘,)𝑃 (𝜓|)

𝑃 (𝑝1|, 𝐸)⋯𝑃 (𝑝𝑛−𝑘|, 𝐸)𝑃 (𝑒1|, 𝐸)⋯

𝑃 (𝑒𝑘|, 𝐸).

Because each 𝑒𝑖 is an element of 𝐸, it follows that each 𝑃 (𝑒𝑖|, 𝐸) = 1
and (10) reduces to

𝑃 (𝑞|, 𝐸) ≥𝑃 (𝑞|𝜓, 𝑝1,… , 𝑝𝑛−𝑘, 𝑒1,… , 𝑒𝑘,)𝑃 (𝜓|)

𝑃 (𝑝1|, 𝐸)⋯𝑃 (𝑝𝑛−𝑘|, 𝐸).
(12)

An interesting scenario is when an argument contains evidence that is
a counter-evidence. Although a widely accepted definition of counter-
evidence does not exist, multiple sources describe it as an evidence
that refutes, or undermines a claim (Greenwell, 2006; Nemouchi et al.,
2019; Origin Consulting (York) Limited, 2018). Because an evidence
is always a premise of an argument, then it must be that a counter-
evidence refutes or undermines the claim that is the conclusion of the
corresponding argument. Also, because conclusions are inferred from
the corresponding premises based on an inference rule, it follows that
counter-evidence hinders the intended inference.

To interpret the concept of counter-evidence, recall that according
to Definition 8, an evidence is a claim 𝑒 and it holds that  ⊧ 𝑒.
Given an argument where evidence are premises, according to Sec-
tion 4.1, the conclusion can be inferred from the premises if there
exists syntactic matching between the claims of the argument and the
formulas of the corresponding inference rule. However, a counter-
evidence is a premise that is opposite to the one that achieves syntactic
matching. For example, consider an argument whose conclusion should
be 𝚂𝚞𝚏𝚏𝙼𝚒𝚝𝚒𝚐𝚊𝚝𝚎𝚍(𝙷𝟸), and the intended inference rule to infer this
conclusion is
9

⟨𝙷𝚊𝚣𝚊𝚛𝚍(𝚝), 𝙿𝚛(𝚝) < 𝙻𝚒𝚖𝚒𝚝(𝚝)∴𝚂𝚞𝚏𝚏𝙼𝚒𝚝𝚒𝚐𝚊𝚝𝚎𝚍(𝚝)⟩.
To perform the inference according to the inference rule, and to achieve
syntactic matching, a premise of an argument must be evidence that
𝙿𝚛(𝙷𝟸) < 𝙻𝚒𝚖𝚒𝚝(𝙷𝟸). A counter-evidence would be a premise that is the
opposite, i.e. the evidence 𝙿𝚛(𝙷𝟸) ≥ 𝙻𝚒𝚖𝚒𝚝(𝙷𝟸). As can be seen, an evi-
dence can be a counter-evidence only in relation to a particular inference
rule. In general, counter-evidence is a special case of a premise that
does not syntactically match the inference rule. This case is opposite to
the case considered in Section 5.2.1.

Still, inequality (12) applies but the value of factor 𝑃 (𝑞|𝜓, 𝑝1,… ,
𝑝𝑛−𝑘, 𝑒1,… , 𝑒𝑘,), which represents the degree of syntactic matching
between the inference rule and the argument, must be set accordingly.
In the case with matching premises, including evidence, this factor will
be set to a rather high value, i.e. similar to the case in Section 5.2.1.
In the case with premises that do not match the inference rule, e.g. for
counter-evidence, this value must be set to a value close to 0.

5.2.3. Values of belief in inference rules
In the not so common, but highly desirable case when there exists

a proof that the inference rule is a consequence of the adopted axioms,
the term 𝑃 (𝜓|) is equal to 1, and (10) can be reduced to

𝑃 (𝑞|, 𝐸) ≥𝑃 (𝑞|𝜓, 𝑝1,… , 𝑝𝑛,)𝑃 (𝑝1|, 𝐸)⋯

𝑃 (𝑝𝑛|, 𝐸).
(13)

Moreover, if an inference rule is sound, i.e. the implication formula
𝜓 is satisfied by each model in 𝐌, then it holds that 𝑃 (𝜓|) = 𝑃 (𝜓) =
1 and inequality (13) still applies. The belief in an inference rule can
be set to 1 also when an inference rule is prescribed by a standard and
is used within a safety case that shows compliance with this standard.
In all other cases, the belief in an inference rule must be strictly less
than 1. Assigning a high belief in an inference rule, for which there is
little proof that it follows from the adopted axioms, corresponds to the
anecdotal arguments fallacy from Table 1.

6. From a safety case to a Bayesian Network

This section presents the third contribution of the paper, which is
oriented towards the practical use of the proposed method. Namely,
inequality (10), and its modifications (11)–(13) are derived for a single
argument based on a representation of a safety case in terms of formulas
of a language . However, a safety case is typically expressed in natural
language and it contains many inter-dependent arguments, which rely
on particular, possibly common, inference rules and premises. This
means that for a complete safety case, an inequality such as (10)
would correspond to a large joint probability distribution with many
conditional independence assumptions that reflect the structure of the
argument within a safety case. To enable practical, tool-supported
reasoning about such probability distributions, inequality (10) can be
encoded as a Bayesian Network. However, because inequality (10) is
derived independently of any concrete safety-case notation, first it is
necessary to map the types of elements of a particular notation to the
argument elements in terms of formulas of a language .

Defining such mapping, and encoding (10) into a Bayesian Net-
work is the topic of this section. Going from a concrete, natural-
language safety in one the notations from Section 2.3, to a corre-
sponding Bayesian Network for belief calculations is done in three
steps:

• Mapping the types of elements of a concrete safety-case notation
to the concepts of claim, argument, inference rule, evidence, and ax-
ioms as defined in Section 4. The considered safety-case notation
is GSN and by establishing this mapping, a probabilistic model
(10) can be obtained for an arbitrary safety case in GSN format.

• An encoding of the probabilistic model (10), into a Bayesian
Network. By creating a Bayesian Network, tool-supported belief

calculations for real-size safety cases are enabled.
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Fig. 4. (a) GSN argument from Fig. 1, and (b) its modification to conform with Definition 11.
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• An assignment of values to the conditional probability tables (CPTs)
that are associated with the random variables within the Bayesian
Network.

Before defining the mapping in step one, we define the well-formednes
constraints to ensure that a safety case in GSN format is sufficiently
complete and non-fallacious, thus facilitating reliable belief calcula-
tions.

6.1. Well-formedness constraints over GSN arguments

The GSN format as defined in Definition 4 is envisioned as a flexible
notation, where many argument elements are optional. For example,
elements that represent inference rules can be omitted, axioms from
which the inference rule should follow can be omitted, a claim can
be supported both by evidence and claims simultaneously etc. The
following definition is in line with Definition 4, but it introduces
additional constraints.

Definition 11 (Constrained GSN Argument). A constrained GSN argument
is a GSN argument that satisfies the following conditions:

(i) Nodes of type goal cannot connect to other nodes of type goal,
(ii) Each node of type goal connects either to exactly one node of

type strategy, or to at least one type solution,
(iii) Each node of type strategy connects to a node of type justifica-

tion,

To exemplify the differences between a constrained GSN argument
and a regular GSN argument, Fig. 4(a) shows the structure of the GSN
argument from Fig. 1, and Fig. 4(b) shows its modification in order to
conform with Definition 11 (nodes Context 1 and Context 2 are
explained later).

Firstly, although (Denney and Pai, 2018; Origin Consulting (York)
Limited, 2018) allow goals to connect directly to other goals, condition
(i) in Definition 11 prohibits this in order to ensure that there exists
a strategy node that represents the inference rule of the argument,
e.g. 𝚂𝚝𝚛𝚊𝚝𝚎𝚐𝚢𝟷 in Fig. 4. Secondly, without loss of generality, condition
(ii) allows goals to connect to only one strategy node. This means that
a conclusion represented by a goal should follow from the premises
represented by other goals, based on a single inference rule. Thirdly,
condition (iii) requires that each strategy is connected to a justifica-
tion node that justifies the use of the particular strategy, e.g. 𝙹𝟷 in
ig. 4. Such justification node should express the axioms whose logical
onsequence is the inference rule.

Besides the constraint of Definition 11, we assume that the de-
scription of context nodes contain the definitions of entities within the
connected goal or strategy nodes. For example, the context node
Context 1 from Fig. 1 contains the definition of identified hazards.
This use of context nodes is the most common scenario and it is
referred to as explication (Graydon, 2014).
10

a

6.1.1. GSN arguments with evidence as premises
GSN arguments with evidence as premises deserve special consid-

eration. One reason for this is of general nature, because the sources
of uncertainty related to evidence are specific. The second reason
for special treatment is a built-in limitation of GSN to express such
uncertainties.

In the general setting of model theory, Definition 8 and conse-
quently Sections 4 and 5 have treated evidence simply as the claims
that are absolutely true, i.e. as facts from which further inferences can be
made. However, within a concrete safety case, generated by a concrete
engineering process, typically there is uncertainty about whether the
evidence is really true. For example, although an evidence might state
that ‘‘SW1 passed unit testing’’, to be certain that this evidence is true,
ne must eliminate the possibility that the testing tool-set has produced
false positive, or that the test-cases exercised a very small portion of

he software state space. Previous methods, e.g. Wang et al. (2019) and
enney et al. (2011), conflate all such uncertainties into a single value.

In the present paper we take a different approach and instead of
odeling the belief in evidence, we require that the sources of uncer-

ainty related to the evidence are explicitly argued about in the safety
ase. The reason for doing so is twofold. Firstly, safety standards such
s ISO 26262 International Organization for Standardization (2018)
nd IEC 61508 The International Electrotechnical Commission (2010),
lready require that the quality of the used tools is justified, that testing
overage is justified etc. Thus, safety cases already contain such claims,
nd they can be included in arguments where evidence are premises.
econdly, requiring that such uncertainties are made explicit results in
ore systematic and thorough safety cases, and minimizes the room for

ntroducing confirmation bias (Leveson, 2011).
To achieve this, we require that for arguments with evidence as

remise, context nodes are used to according to a common pattern
alled implicit premise (Graydon, 2014). Context nodes that are implicit
remises are references to other goal nodes within the safety case.
or example, in Fig. 4(a) Goal 3 is supported by Solution 2. A
ontext node Context 3 is added in Fig. 4(b) to act as an implicit
remise to the argument 𝚂𝚘𝚕𝚞𝚝𝚒𝚘𝚗𝟸 ⊢ 𝙶𝚘𝚊𝚕𝟹, i.e. the argument becomes
𝚘𝚗𝚝𝚎𝚡𝚝𝟹, 𝚂𝚘𝚕𝚞𝚝𝚒𝚘𝚗𝟸 ⊢ 𝙶𝚘𝚊𝚕𝟹. Node Context 3 is a reference to a
oal node that argues that a particular source of uncertainty related to
vidence Solution 2 has been eliminated. This constraint is captured
y the following definition, and this definition is the reason for nodes
ontext 2 and Context 3 in Fig. 4(b).

efinition 12 (Complete GSN Argument). A complete GSN argument
s a constrained GSN argument such that for each (𝑛1, 𝑛2) ∈ 𝐴 where
𝑡(𝑛1) = 𝗀𝗈𝖺𝗅 and 𝑙𝑡(𝑛2) = 𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇, there exists at least one node 𝑛3 ∈ 𝑁
here 𝑙𝑡(𝑛3) = 𝖼𝗈𝗇𝗍𝖾𝗑𝗍, (𝑛1, 𝑛3) ∈ 𝐴 and 𝑛3 is an implicit premise. □

The second consideration about GSN arguments with evidence as
remises stems from a limitation of the GSN format. Namely, accord-
ng to Definition 11, but also definitions in Denney and Pai (2018)
nd Origin Consulting (York) Limited (2018), an argument in GSN
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Table 2
The mapping of GSN types of nodes to concepts based on formulas of language .

GSN node Concept based on  Clarification

𝗀𝗈𝖺𝗅 claim as per Definition 5
𝗌𝗍𝗋𝖺𝗍𝖾𝗀𝗒 inference rule as per Definition 7
𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 evidence as per Definition 8
𝖺𝗌𝗌𝗎𝗆𝗉𝗍𝗂𝗈𝗇 axiom 𝛼 ∈  Information whose truth is assumed
𝗃𝗎𝗌𝗍𝗂𝖿 𝗂𝖼𝖺𝗍𝗂𝗈𝗇 axiom 𝛼 ∈ 

𝖼𝗈𝗇𝗍𝖾𝗑𝗍
axiom 𝛼 ∈  Definitions of entities in connected nodes, i.e. explication
claim as per Definition 5 Reference to nodes of type 𝗀𝗈𝖺𝗅, i.e. implicit premise
Table 3
Encoding inequality (10) as a Bayesian Network.

Concept based on formulas of  Random variable (s) State space Parent random variable (s)

evidence 𝑒 𝑋𝑒 𝑠𝑎𝑡, 𝑛𝑜𝑡𝑆𝑎𝑡 No parents
axiom 𝛼 𝑋𝛼 𝑠𝑎𝑡, 𝑛𝑜𝑡𝑆𝑎𝑡 No parents
inf. rule 𝜓 𝑋𝜓 𝑠𝑜𝑢𝑛𝑑, 𝑛𝑜𝑡𝑆𝑜𝑢𝑛𝑑 𝑋𝛼
premises 𝑝1 ,… , 𝑝𝑛 𝑋𝑝1 ,… , 𝑋𝑝𝑛 𝑠𝑎𝑡, 𝑛𝑜𝑡𝑆𝑎𝑡 Depending on arguments where 𝑝1 ,… , 𝑝𝑛 are conclusions
conclusion 𝑞 𝑋𝑞 𝑠𝑎𝑡, 𝑛𝑜𝑡𝑆𝑎𝑡 𝑋𝜓 , 𝑋𝑝1 ,… , 𝑋𝑝𝑛 , 𝑋𝛼

Bayesian Network Evidence: 𝑃 (𝑋𝛼 = 𝑠𝑎𝑡) = 1, 𝑃 (𝑋𝑒 = 𝑠𝑎𝑡) = 1
T
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format where the premises are evidence, are not allowed to have a
strategy node, i.e. an inference rule, explicitly declared. For example, in
Fig. 4(a) this is the case for the argument 𝚂𝚘𝚕𝚞𝚝𝚒𝚘𝚗𝟸 ⊢ 𝙶𝚘𝚊𝚕𝟹. Although
in some scenarios the evidence directly supports the corresponding
conclusion, thus there is no need to state the inference rule, in other
scenarios this is not the case. For example, it cannot be said directly that
the claim ‘‘Probability of H2 occurring is < 1×10−6∕ℎ’’ is true, given the
evidence about successful testing. This means that although omitted,
implicit inference rules exist, for which the belief must be estimated. The
fact that in general an argument always relies on an inference rule
is also visible in inequality (10). Only in the special case when the
inference rule is sound, or is a logical consequence of the axioms, the
belief in the inference rule disappears from (10) and reduces to (13).
To circumvent this limitation of GSN, when defining the procedure to
create a Bayesian Network given a safety case, all implicit inference rules
will be made explicit.

Note that because implicit inference rules exist only for GSN ar-
guments where evidence are premises, it follows that these can only
state that a particular type of evidence, implies a particular type of con-
clusion. Such inference rules correspond exactly to recommendations
from various standards about which evidence to produce in order to
ensure a certain property. For example, ISO 26262, part 4 Table 9,
gives ASIL-dependent recommendation which type of evidence should
be produced in order to support the claim that a ‘‘system correctly
implements functional and technical safety requirements’’.

6.1.2. Mapping GSN nodes to concepts in terms of formulas of 
Definitions 11, Definitions 12, explicit modeling of implicit in-

ference rules, and the use of context nodes for explication, are the
well-formedness constraints imposed on standard GSN arguments. Given
these, we define the first step towards creating a Bayesian network for
belief calculations for a safety case in GSN format. Namely, the types
of nodes from GSN notation are mapped to the elements of safety-
case arguments that are defined in terms of formulas of language .
Table 2 shows the mapping. Note that the mapping is independent
of the description of GSN nodes, i.e. there is no requirement that the
descriptions of GSN nodes must be formulas of a formal language.
Table 2 states that whatever the description of a goal node is, it is
onsidered to be a claim, the description of strategy node is considered

to be an inference rule etc. In this way, the typically natural-language
content of a safety case populates the probabilistic belief-model (10).

6.2. Building the Bayesian Network

To enable practical, tool-supported analysis of a belief model for a
complete safety case, we encode inequality (10) into a Bayesian Network.
11

t

Table 3 shows the mapping between the elements of a safety case in
terms of formulas of a language , to discrete random variables and
their corresponding conditional probability tables (CPTs). Table 3 also
sets some of the Bayesian Network evidence.

The mapping is defined for an argument 𝑝1,… , 𝑝𝑛 ⊢ 𝑞, the corre-
sponding inference rule 𝜓 , and the axioms connected to 𝑞 and 𝜓 . If
the premises 𝑝1,… , 𝑝𝑛 are evidence, and despite the GSN format (c.f.
Section 6.1.1), it is assumed that an inference rule is declared and
a corresponding random variable is created. Note that the mapping
should be recursively applied to each premise 𝑝𝑖, that is a conclusion of
another argument until the complete GSN argument is converted into
a Bayesian Network.

To illustrate that by using the encoding in Table 3, the resulting
Bayesian Network captures the same factorization as inequality (10),
consider the GSN argument in Fig. 5(a) and the corresponding Bayesian
Network in Fig. 5(b).

The GSN argument encodes three arguments according to Defini-
tion 6, namely

𝙶𝟸, 𝙶𝟹 ⊢ 𝙶𝟷, 𝚂𝚗𝟷 ⊢ 𝙶𝟸, 𝚂𝚗𝟸 ⊢ 𝙶𝟹.

he first argument relies on the explicit inference rule 𝚂𝟷, and for the
two latter arguments the implicit inference rules are inferred when the
Bayesian network is created, namely 𝚂𝟸 and 𝚂𝟹. Besides the three argu-
ments, the toy safety case encodes the axioms  = {𝙲𝟷, 𝙹𝟷, 𝙰𝟷, 𝙲𝟸, 𝙲𝟹}
nd evidence 𝐸 = {𝚂𝚗𝟷, 𝚂𝚗𝟸}. Given the three arguments in Fig. 5(a),

the corresponding inference rules, axioms and evidence, the Bayesian
Network in Fig. 5(b) is the result of applying the encoding from Table 3.
The Bayesian Network captures the joint probability distribution

𝑃 (𝑋𝐺1, 𝑋𝑆1, 𝑋𝐽1 = 𝑠𝑎𝑡, 𝑋𝐺2, 𝑋𝑆2, 𝑋𝐽1 = 𝑠𝑎𝑡, 𝑋𝑆𝑛1 = 𝑠𝑎𝑡,

𝑋𝐺𝑥, 𝑋𝐺3, 𝑋𝑆3, 𝑋𝑆𝑛2 = 𝑠𝑎𝑡, 𝑋𝐺𝑦)

hich corresponds to the following factorization:

𝑃 (𝑋𝐺1|𝑋𝑆1, 𝑋𝐶1 = 𝑠𝑎𝑡, 𝑋𝐺2, 𝑋𝐺3)𝑃 (𝑋𝑆1|𝑋𝐽2 = 𝑠𝑎𝑡)

𝑃 (𝑋𝐺2|𝑋𝑆2, 𝑋𝐺𝑥, 𝑋𝑆𝑛1 = 𝑠𝑎𝑡, 𝑋𝐽1 = 𝑠𝑎𝑡)

𝑃 (𝑋𝐺3|𝑋𝑆3, 𝑋𝑆𝑛2 = 𝑠𝑎𝑡, 𝑋𝐺𝑦)

𝑃 (𝑋𝐶1 = 𝑠𝑎𝑡)𝑃 (𝑋𝐽2 = 𝑠𝑎𝑡)

𝑃 (𝑋𝐽1 = 𝑠𝑎𝑡)𝑃 (𝑋𝑆𝑛1 = 𝑠𝑎𝑡)𝑃 (𝑋𝑆𝑛2 = 𝑠𝑎𝑡)

(14)

A comparison to (10) shows that expression (14) contains the same
ind of factors as (10). The difference between (10) and (14) is that
10) captures the lower limit of the belief in claim, while the CPTs of
andom variables in the Bayesian Network also encode the probabilities
or the conclusion being true if either of the premises, or the inference
ule are not satisfied. To adjust the Bayesian Network to encode only
he calculation for the lower limit of beliefs, but also to enable the
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Fig. 5. A GSN structure (a), and the corresponding Bayesian Network (b). Nodes with dashed outline represent implicit inference rules.
actual belief calculations, the CPTs of the Bayesian Network must set
accordingly.

6.3. Setting probability values of CPTs

The final step in the three-step process to create a Bayesian Net-
work, is to populate the Bayesian Network CPTs. In general, there are
three different types of values to assign.

6.3.1. Type I CPT values
The first type are the values for the CPTs of random variables 𝑋𝑞 ,

that represent a conclusion of an argument, whose parents are random
variables 𝑋𝑝1 ,… , 𝑋𝑝𝑛 , 𝑋𝜓 , and possibly 𝑋𝛼 . The CPTs of such 𝑋𝑞 en-
code the probability that 𝑋𝑞 = 𝑠𝑎𝑡 or 𝑋𝑞 = 𝑛𝑜𝑡𝑆𝑎𝑡, for all combinations
of states of parent variables. Because we are only interested in the case
when 𝑋𝑞 = 𝑠𝑎𝑡, each 𝑋𝑝𝑖 = 𝑠𝑎𝑡, 𝑋𝜓 = 𝑠𝑎𝑡, and 𝑋𝛼 = 𝑠𝑎𝑡, and under the
assumption that the inference rule and the argument syntactically match
(c.f. Section 5.2.1), the value 𝑃 (𝑋𝑞 = 𝑠𝑎𝑡|𝑋𝑞 = 𝑠𝑎𝑡, 𝑋𝑝1 = 𝑠𝑎𝑡,… , 𝑋𝑝𝑛 =
𝑠𝑎𝑡, 𝑋𝜓 = 𝑠𝑜𝑢𝑛𝑑,𝑋𝛼 = 𝑠𝑎𝑡) is set to 1. For all other combinations of
states of parent variables 𝑃 (𝑋𝑞 = 𝑠𝑎𝑡|…) = 0.

6.3.2. Type II CPT values
The second type are the values for the probability that an explic-

itly declared inference rule, is sound or a logical consequence of the
asserted axioms. An example from (14) is 𝑃 (𝑋𝑆1 = 𝑠𝑜𝑢𝑛𝑑|𝑋𝐽2 =
𝑠𝑎𝑡). In general, this value must be set manually, but as discussed in
Section 5.2 there are two special cases in which setting this value is
trivial, i.e. 𝑃 (𝜓|) = 1. The first case is when there exists a formal
proof that the inference rule follows from the axioms. The second case
is when a definition from a standard is used as an inference rule within
a development process alligned with that standard. For example, ISO
26262 Part 8, Section 6 defines a correctly specified safety requirement
as a requirement that is unambiguous, comprehensible, atomic etc. This
definition can also be interpreted as an inference rule stating that if a
safety requirement is unambiguous, comprehensible, atomic etc., then a
safety requirement is correctly specified. If such inference rule is used
within a safety case that argues safety with respect to ISO 26262, the
belief in this inference rule can be set to 1.

6.3.3. Type III CPT values
The third type are the values for the belief in the implicit inference

rules. Again, in the general case, such values must be set manually.
Fortunately, because the belief in such inference rule represents the
probability that a certain type of evidence implies a certain type of
conclusion, the literature from the evidence-based software engineering
community can provide some realistic values. For example, contribu-
tions in Graves et al. (2001) and Juristo et al. (2004) quantify the
effectiveness of various testing techniques for fault detection, contri-
butions in Zheng et al. (2006) and Wedyan et al. (2009) quantify the
effectiveness of static-analysis for fault detection, contributions in Ed-
mundson et al. (2013) and Runeson et al. (2006) evaluate and compare
the effectiveness of various types of testing and manual code-review
methods for fault detection, etc.
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7. Evaluation

In this section the proposed method is evaluated. The evaluation is
structured around the work in Graydon and Holloway (2016, 2017).
As discussed in the introduction, the work in Graydon and Holloway
(2016, 2017) has reproduced the safety cases and corresponding belief
calculations from twelve different publications, and then subjected the
safety cases from these publications to various modification to verify
that belief values change as expected. Whenever a modification led to
an unrealistic change in belief value, this modification was declared
to be a counterexample. Also, for each counterexample, the expected
change of belief values was defined. The work in Graydon and Holloway
(2016, 2017) has identified two general counterexamples which led to
unrealistic belief calculations for six methods, and three method-specific
counterexamples which led to unrealistic belief calculations.

The remainder of this section is an evaluation against the counterex-
amples from Graydon and Holloway (2016, 2017). More precisely, the
evaluation is performed as follows:

• We recreate a safety case that was analyzed in Graydon and
Holloway (2016, 2017). The safety case to recreate is chosen
in a way such that the largest number of counterexamples can
be applied. For the chosen safety case, four counterexamples are
applicable, both general ones, and two method-specific.1

• We create the Bayesian Network that corresponds to the recreated
safety case, and calculate the belief in the top claim to ensure that
the value is similar to the methods analyzed by Graydon.

• We modify the safety case according to each of the four applicable
counterexamples, recalculate the belief values, and compare the
change of belief value to the expected change as defined in Gray-
don and Holloway (2016, 2017). The goal is to show that the
proposed method produces belief values as expected, unlike the
methods analyzed in Graydon and Holloway (2016, 2017).

7.1. The considered safety case and the corresponding Bayesian Network

Fig. 6 shows the safety-case fragment that is used for the evaluation
of the proposed method, and which is created with the open-source
GSN editor called D-Case (Matsuno et al., 2010). The safety-case frag-
ment is taken from Figure J1 in Graydon, but nodes 𝙹𝟷, 𝙹𝟸, 𝙲𝟸 − 𝙲𝟻

and 𝙲𝟽 were added to conform to the well-formedness constraints from
Section 6.1. As will be seen later, because the counterexamples modify
only the number and the structure of goal and evidence nodes, the
additional context and strategy nodes do not preclude the use of the
counterexamples. Also note that the identifiers of the implicit inference
rules are overlaid over the GSN argument, namely 𝚂𝟹 − 𝚂𝟻.

The argument structure in Fig. 6 argues that a system is acceptably
safe, since the significant hazards have been identified, and since

1 The third method-specific counterexample is conceptually a special case
f counterexample 1 in Section 7.2.



Safety Science 138 (2021) 105187D. Nešić et al.
Fig. 6. Safety-case fragment in GSN format which is used for evaluation.
each of the identified hazards has been mitigated. The first hazard is
mitigated by showing that it is completely eliminated, and the second
one is mitigated by showing that the frequency of occurrence is lower
than a predefined limit. Context nodes express the definitions, such as
adequately mitigated, or refer to goal-nodes that claim that a particular
tool is appropriately qualified 𝙲𝟸 − 𝙲𝟺, and that the involved personnel
is sufficiently competent 𝙲𝟻. The justification nodes 𝙹𝟷, 𝙹𝟸 refer to
the natural deduction rules of logic, and to the slightly adapted, but
generally accepted definitions of tolerable risk and safety from the ISO
26262 standard.

Given the argumentation structure from Fig. 6, Fig. 7 shows the
corresponding Bayesian Network, created according to Table 3. Note
the three random variables that represent the implicit inference rules
of arguments whose premises are evidence, namely 𝙸𝚗𝚏𝚎𝚛𝚎𝚗𝚌𝚎𝚁𝚞𝚕𝚎𝚂𝟹−
𝙸𝚗𝚏𝚎𝚛𝚎𝚗𝚌𝚎𝚁𝚞𝚕𝚎𝚂𝟻 in Fig. 7. The Bayesian Network is manually created
with the tool GeNIe Modeler (Bayes Fusion).

Once the Bayesian Network is created, the CPTs are populated and
the overall belief is calculated. According to Table 3, Bayesian Network
evidence is asserted for random variables that represent safety-case ev-
idence and axioms, namely for evidence 𝙴𝚟𝚒𝚍𝚎𝚗𝚌𝚎𝙴𝟷-𝙴𝚟𝚒𝚍𝚎𝚗𝚌𝚎𝙴𝟺, and
for axioms 𝙰𝚡𝚒𝚘𝚖𝙲𝟷, 𝙰𝚡𝚒𝚘𝚖𝚜𝙲𝟼, 𝙰𝚡𝚒𝚘𝚖𝚜𝙲𝟽, 𝙰𝚡𝚒𝚘𝚖𝙹𝟷-𝙰𝚡𝚒𝚘𝚖𝙹𝟸. In Fig. 7,
the underlined state of a random variable denotes that this is the states
for which evidence is asserted.

The CPT values for random variables 𝙲𝚕𝚊𝚒𝚖𝙶𝟷-𝙲𝚕𝚊𝚒𝚖𝙶𝟻 are of Type I
from Section 6.2. The CPT values for random variables 𝙸𝚗𝚏𝚎𝚛𝚎𝚗𝚌𝚎𝚁𝚞𝚕𝚎𝟷
-𝙸𝚗𝚏𝚎𝚛𝚎𝚗𝚌𝚎𝚁𝚞𝚕𝚎𝟸 are of Type II from Section 6.2. Fortunately, because
the asserted axioms and inference rules from Fig. 7 can be expressed
as formulas of predicate logic, and because it can be proven that the
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asserted inference rules are logical consequences of the asserted axioms,
then the belief in these inference rules is equal to 1. The CPT values
for random variables 𝙸𝚗𝚏𝚎𝚛𝚎𝚗𝚌𝚎𝚁𝚞𝚕𝚎𝟹-𝙸𝚗𝚏𝚎𝚛𝚎𝚗𝚌𝚎𝚁𝚞𝚕𝚎𝟻 are of Type III
from Section 6.2 and must be set manually. Because our method differs
from ones analyzed in Graydon and Holloway (2016, 2017), these
values do not directly correspond to values in Graydon and Holloway
(2016, 2017). Because the methods analyzed by Graydon and Holloway
(2016, 2017) set the vast majority of the values arbitrarily, and also
to rather high values, we set the Type III values in a way to obtain
a similar belief in the top claim as in Graydon and Holloway (2016,
2017). Since random variables 𝙸𝚗𝚏𝚎𝚛𝚎𝚗𝚌𝚎𝚁𝚞𝚕𝚎𝟹 − 𝙸𝚗𝚏𝚎𝚛𝚎𝚗𝚌𝚎𝚁𝚞𝚕𝚎𝟻 rep-
resent the effectiveness of increasingly rigorous verification techniques,
namely review, testing, and formal verification, the beliefs are set to
0.9, 0.95, and 0.99, respectively. Finally, if the argument structure
from Fig. 6 would be a complete safety case, the CPT values for
𝙲𝚕𝚊𝚒𝚖𝙲𝟸-𝙲𝚕𝚊𝚒𝚖𝙲𝟻 would be of Type I. However, because Fig. 6 contains
just a fragment, we manually set these values to 0.99. The impact of
particular probability values on the belief calculation is discussed in
detail in Section 8.

Given these values, and by using the GeNIe tool, the computed
lower limit of the belief in the top claim is 0.81. Comparable value
in Graydon and Holloway (2016, 2017) (Table 2) is also around 0.8.
The following section applies the modifications from the four coun-
terexamples to the safety case fragment in Fig. 6, and analyzes the
changes of the belief in the top claim.
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Fig. 7. The Bayesian Network for the GSN argument from Fig. 6, according to Tables 2 and 3.
7.2. Results

In this section we analyze the belief values produced by the Bayesian
Network from Fig. 7 for various modifications of the safety case from
Fig. 6, according to counterexamples from Graydon and Holloway
(2016, 2017). As mentioned previously, four counterexamples are
considered and the modifications for all four counterexamples are
superimposed in the safety case in Fig. 8. The following four subsections
consider the four counterexamples and each starts by describing the
counterexample based on Figs. 6 and 8, then follows the modification of
the Bayesian Network from Fig. 7 and new belief calculation, and then
the comparison to the expected change of the belief. For quick reference,
Table 4 shows the belief values calculated by the proposed method for
different counterexamples, as well as the expected change in values
according to Graydon and Holloway (2016, 2017).

7.2.1. Counterexample 1
The first counterexample is named masked missing-evidence or

counter-evidence and it reveals unrealistic calculations in six of the
twelve methods analyzed in Graydon and Holloway (2016, 2017).
This counterexample first extends the safety case from Fig. 6 with 18
additional hazards, corresponding goals, and evidence. The additional
hazards, except the identifier, are identical to 𝙷𝟷. That is, goal G_4.1
is the same as goal G_4 in Fig. 6 and it claims that H1 is eliminated,
while goals G_4.2-G_4.19 claim that the additional 18 hazards are
also eliminated. Goal G_5 is the same as in Fig. 6. In the Bayesian
Network for this counterexample, the CPTs of the additional nodes are
populated with the same values as the node 𝙲𝚕𝚊𝚒𝚖𝙶𝟺 from Fig. 7. Given
the additional hazards, the counterexample shows that in the presence
of counter-evidence, or missing evidence, the belief in the top claim is
unrealistic. In the case with counter-evidence, newly added evidence
𝙴_𝟻 shows that the probability of 𝙷𝟸 is greater than 1×10−6∕ℎ. In the case
with missing evidence, the evidence referenced by 𝙴_𝟷.𝟷𝟿 is missing. In
both cases, the belief in the top claim reduces just a few percent, while
the expected change is a more significant reduction of the belief.

To establish a reference belief value, and without counter-evidence
or missing evidence, we extend the Bayesian Network from Fig. 7 with
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nodes for the 18 additional hazards and compute the belief in the top
claim. This is value 1 in Table 4, which is 0.56. The corresponding
value in Graydon and Holloway (2016, 2017) is still around 0.8, but
that is unrealistic. A system with two and 20 hazards, which are not
mitigated with certainty, cannot have the same value for the belief in
the claim that the system is acceptably safe. Therefore, the proposed
method yields a more realistic value already for the reference value.

To model the case with counter-evidence we use the principle
discussed in Section 5.2.2. Since counter-evidence means that there
is no syntactic matching between the inference rule and the argument
premises, the value

𝑃 (𝙲𝚕𝚊𝚒𝚖𝙶𝟻 = 𝑠𝑎𝑡|𝙸𝚗𝚏𝚎𝚛𝚎𝚗𝚌𝚎𝚁𝚞𝚕𝚎𝚂𝟻 = 𝑠𝑜𝑢𝑛𝑑, 𝙴𝚟𝚒𝚍𝚎𝚗𝚌𝚎𝙴𝟷 = 𝑠𝑎𝑡,

𝙴𝚟𝚒𝚍𝚎𝚗𝚌𝚎𝙴𝟸 = 𝑠𝑎𝑡, 𝙴𝚟𝚒𝚍𝚎𝚗𝚌𝚎𝙴𝟻 = 𝑠𝑎𝑡,… )

is set to 0.1 as in Graydon and Holloway (2016, 2017). The case when
𝙴_𝟷.𝟷𝟿 is missing, is conceptually the same as the case with counter-
evidence. Because the premise of the argument is missing, then there
is no syntactic matching between the argument and the inference rule.
i.e. the value
𝑃 (𝙲𝚕𝚊𝚒𝚖𝙶𝟺.𝟷𝟿 = 𝑠𝑎𝑡|𝙸𝚗𝚏𝚎𝚛𝚎𝚗𝚌𝚎𝚁𝚞𝚕𝚎𝚂𝟺.𝟷𝟿 = 𝑠𝑜𝑢𝑛𝑑,

𝙴𝚟𝚒𝚍𝚎𝚗𝚌𝚎𝙴𝟷.𝟷𝟿 = 𝑠𝑎𝑡, 𝙲𝚕𝚊𝚒𝚖𝙲𝟺 = 𝑠𝑎𝑡)

must be relatively low. Following the counterexample in Graydon and
Holloway (2016, 2017), we set this value also to 0.1. Value 2 and 3
in Table 4 show the beliefs values for missing evidence 𝙴_𝟷.𝟷𝟿, and
counter-evidence 𝙴_𝟻.

As can be seen from Table 4, the lower limit of the belief in the top
claim is much smaller for missing evidence and counter-evidence than
for the reference value, as expected. Because Graydon and Holloway
(2016, 2017) do not define explicitly how big should the reduction be,
it could be argued that our method reduces the belief too much, because
there is still high belief that the remaining 19 out of the 20 hazards are
adequately mitigated. However, because the definition of safety in the
safety case requires that each hazard is adequately mitigated, then even
if only one identified hazards is not adequately mitigated, the belief in
the claim that the system is acceptably safe must suggest that the claim
should be rejected.
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Fig. 8. Modification of the argument from Fig. 6 according to the counterexamples from Graydon and Holloway (2016, 2017).
7.2.2. Counterexample 2
The second counterexample is named sensitivity to the arbitrary scope

of hazards, and it reveals unrealistic calculations in three of the twelve
methods analyzed in Graydon and Holloway (2016, 2017). Namely,
this counterexample reveals drastically different belief in the top claim
depending on the number of identified hazards, and with a single
missing evidence. More precisely, with only two identified hazards
and one missing evidence, the belief in the top claim is high, while
with 20 identified hazards and one missing evidence the belief is
very low. Essentially, this counterexample compares the safety case
fragment from Fig. 6 with one missing evidence, and the safety case
fragment from Fig. 8 with one missing evidence (counter-evidence 𝙴_𝟻
is removed).

To model this counterexample, we consider that the missing evi-
dence is 𝙴_𝟷 in Fig. 6, and 𝙴_𝟷.𝟷 in Fig. 8. The belief in the top claim
for the case with 20 hazards and missing evidence has already been
calculated for counterexample 1, and this is value 3 in Table 4. The
belief in the top claim with only two identified hazards and missing
evidence 𝙴_𝟷 can be calculated from the Bayesian Network in Fig. 7 by
setting

𝑃 (𝙲𝚕𝚊𝚒𝚖𝙶𝟺 = 𝑠𝑎𝑡|𝙸𝚗𝚏𝚎𝚛𝚎𝚗𝚌𝚎𝚁𝚞𝚕𝚎𝚂𝟺 = 𝑠𝑜𝑢𝑛𝑑,

𝙴𝚟𝚒𝚍𝚎𝚗𝚌𝚎𝙴𝟷 = 𝑠𝑎𝑡, 𝙲𝚕𝚊𝚒𝚖𝙲𝟺 = 𝑠𝑎𝑡)

to 0.1 as in Graydon and Holloway (2016, 2017). Value 4 in Table 4
shows the belief in the top claim for this case.

As can be seen, and unlike the methods analyzed in Graydon and
Holloway (2016, 2017), regardless of the number of identified hazards,
missing evidence results in a low belief in the top claim because the
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definition of safety requires all identified hazards to be mitigated. The
two beliefs differ slightly because if the mitigation of each identified
hazard is somewhat uncertain, and if there are many hazards, then that
is reflected as a slightly lower belief in the top claim.

7.2.3. Counterexample 3
The third counterexample from Graydon and Holloway (2016,

2017) is unnamed but it considers optimistic versus pessimistic scenarios.
This counterexample reveals unrealistic calculations in four methods
analyzed in Graydon and Holloway (2016, 2017). Namely, one or more
of the manually asserted belief values are changed from high belief
values, i.e. optimistic values, to low belief values, i.e. pessimistic values.
The expected change is that in the optimistic case, the belief in the top
claim is high, while in the pessimistic case the expected belief value is
significantly lower. To model the counterexample, we follow Appendix
L from Graydon and Holloway (2016, 2017) and change the belief in
the completeness of hazard identification from very high to very low.

Because the manually asserted belief values in the CPTs for Fig. 8
are already very high, we consider that this is the optimistic variant,
i.e. value 1 in Table 4 shows the belief in the top claim for the opti-
mistic case. Unlike the two previous counterexamples, in this scenario
the required evidence is present, which means that syntactic matching
exists. The fact that evidence exists, but the belief in the conclusion
of the argument is pessimistic means either that the process to produce
the evidence is probably erroneous, or that this type of evidence does
not directly support the corresponding type of conclusion. Because
the sources of uncertainty for evidence are not distinguished in the
analyzed methods, Graydon and Holloway (2016, 2017) does not spec-
ify the source of the pessimism. In our method, the uncertainty about
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Table 4
Belief in the top claim of the safety case fragment from Fig. 8 for different counterexamples. Far-right column specifies the expected relations between the values.

Nr. Counterexample Belief in 𝙶_𝟷 Expected change acc. to Graydon and Holloway (2016, 2017)

Value 1 Reference value 0.56 n/a
Value 2 Counter-evidence 0.057 < Value 1
Value 3 Insufficient evidence 0.057 < Value 1
Value 4 Hazard scope - 2 hazards 0.08 ≈ Value 3
Value 5 Pessimistic case 0.063 ≪ Value 1
Value 6 Imperfect A 0.6 > Value 2, 3, 7, and ≫ 0.0
Value 7 Imperfect B 0.19 > Value 2, 3, and < Value 6
evidence is either related to the process of producing the evidence,
modeled by context nodes as implicit premises, or to the implicit inference
rule. For this scenario, we choose to model this counterexample by
reducing the belief in the implicit inference rule. Consequently, the CPT
value 𝑃 (𝚂𝟹 = 𝑠𝑜𝑢𝑛𝑑) is set to 0.1, as in Graydon and Holloway (2016,
2017). The result would have been the same if the belief in claim 𝙲_𝟻,
which is an implicit premise, was set to 0.1.

Value 5 in Table 4 shows the lower limit of the belief that the top
claim is satisfied for the pessimistic case. Unlike the methods analyzed
in Graydon and Holloway (2016, 2017), where the belief in the top
claim is reduced by just a few percent in the pessimistic case, Fig. 8
shows a significant difference, as expected. In words, if the belief in the
completeness of the hazard identification is very low, then the belief in
the safety of the system must also be very low.

7.2.4. Counterexample 4
The fourth counterexample considers two cases of imperfect evidence,

named imperfect A and imperfect B. This counterexample reveals un-
realistic calculations for a single method analyzed in Graydon and
Holloway (2016, 2017). Namely, for the argument structure from Fig. 8
with 20 hazards, the evidence 𝙴_𝟷.𝟸 − 𝙴_𝟷.𝟷𝟿 for the 18 added hazards
(counter-evidence 𝙴_𝟻 is removed) is imperfect to different degrees.
What is meant by this is that for arguments where evidence 𝙴_𝟷.𝟸 −
𝙴_𝟷.𝟷𝟿 are premises, the belief in the corresponding conclusions has
different values. For the case imperfect A, four evidence perfectly
support the corresponding conclusions, 13 evidence are such that belief
in the corresponding conclusion is very high, and one evidence is such
that the belief in the corresponding conclusion is just high. For the
case imperfect B, four evidence is perfect, one evidence is such that
the belief in the corresponding conclusion is very high, and 13 evidence
is such that the belief in the corresponding conclusion is just high. The
counterexample reveals three issues with belief calculations. Firstly, the
belief that the system is acceptably safe is very low for imperfect A,
although the majority of hazards are mitigated with very high belief.
Secondly, the belief in the top claim of imperfect A and B is similar,
despite the 13 very high beliefs in imperfect A versus just one very
high belief in imperfect B. Thirdly, the belief for imperfect A and B is
similar to the cases with counter-evidence and missing evidence from
counterexample 1, although this should not be the case.

To model this counterexample, as in counterexample 3, the CPTs
of the variables that represents the implicit inference rules is adjusted.
Because Graydon and Holloway (2016, 2017) contains only qualitative
values for this scenario, we interpret perfect evidence as belief value 1,
very high as value 0.99, and high as value 0.9. For imperfect A, we set
the four beliefs for 𝚂_𝟺.𝟸− 𝚂_𝟺.𝟻 to 1, the 13 beliefs for 𝚂_𝟺.𝟼− 𝚂_𝟺.𝟷𝟾 to
0.99, and belief for 𝚂_𝟺.𝟷𝟿 to 0.9. For imperfect B, the same CPT values
are modified but only with the ratio four with belief 1, one with belief
0.99, and 13 with belief 0.9. Values 6 and 7 in Table 4 show the belief
in the top claim for imperfect A and imperfect B.

Regarding the first issue, and as expected by Graydon and Holloway
(2016, 2017), our method calculates the belief value for imperfect
A that is relatively high, and it certainly cannot be interpreted as a
suggestion to consider the top claim false. Secondly, again as expected,
the belief for imperfect A is significantly higher than the belief for
imperfect B because imperfect B incorporates much more uncertainty.
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Finally, both the belief for imperfect A and imperfect B are much
higher than the values for missing and counter-evidence. Therefore,
with respect to all three issue, our method produces belief values in
the top claim as expected.

8. Discussion

This section discusses the benefits and limitations of the proposed
method with respect to decision-making based on the calculated belief
values, and also the practical issues such as using other notations for
the safety case, or working with large Bayesian Networks.

8.1. Decision making based on the belief values

The most important consideration is the use of the proposed method
in terms of the numerical values it produces. As any other quantitative
technique, the purpose of quantifying the belief in the top claim of a
safety case is for decision-making. There are two types of decisions that
can be made based on the proposed method. The first one is to decide
if the lower limit of belief in the top safety-case claim is higher than a
predefined threshold, and thus conclude that the top claim should be
considered to be true. The second type of decision is which part of the
safety case should be improved, e.g. by creating additional evidence or
by changing an inference rule, in order to increase the belief in the top
claim the most.

8.1.1. Change-impact analysis
First we consider the second type of decision-making. Identifying

the beliefs whose increase would led to the greatest increase of the
belief in the top claim can be achieved by performing sensitivity analy-
sis (Castillo et al., 1997) of the Bayesian Network. Sensitivity analysis
of Bayesian Networks is a mature analysis method and is often readily
available in tools for editing Bayesian Network, e.g. in GeNIe Modeler.
The goal of sensitivity analysis is to assess how sensitive particular
probability values are, in GeNIE modeler called a target node, to small
changes of other probability values. Fig. 9 shows the Bayesian Network
from Fig. 7 with the CPT values from counterexample 2, namely the
sensitivity to scope of hazards, where the target node is 𝙲𝚕𝚊𝚒𝚖𝙶𝟷. The
sensitivity to changes in other probability values is indicated by the
heat map, where the highest sensitivity is indicated by red color and
the lowest with gray color.

Because in counterexample 2 evidence 𝙴_𝟷 is missing, as expected,
Fig. 9 indicates that the probability values of the target node 𝙲𝚕𝚊𝚒𝚖𝙶𝟷

are most sensitive to changes of probability values for node 𝙲𝚕𝚊𝚒𝚖𝙶𝟺.
The reason for this is that the CPT of node 𝙲𝚕𝚊𝚒𝚖𝙶𝟺 encodes the value
that represents the absence of syntactic matching between the used
inference rule and the premises. It follows that the belief whose increase
would lead to the biggest increase of the belief in 𝙲𝚕𝚊𝚒𝚖𝙶𝟷, is the
belief in 𝙲𝚕𝚊𝚒𝚖𝙶𝟺, i.e. the missing evidence 𝙴_𝟷 should be provided. The
usefulness of sensitivity analysis is especially visible in large Bayesian
Networks where the probability values in CPTs are not so drastically

different such as in counterexample 2.
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Fig. 9. Sensitivity analysis of the Bayesian Network for counterexample 2 with only 2 hazards (target node is 𝙲𝚕𝚊𝚒𝚖𝙶𝟷.). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
8.1.2. Stop/continue development/deployment
The first type of decision that can be made based on the belief

values is the decision whether the calculated belief in the top claim
is sufficiently high to indirectly conclude that system is acceptably
safe. The evaluation in Section 7 has shown that the belief in the top
safety-case claim changes as expected for various realistic, and extreme
changes of the underlying argument structure, and probability values.
This result strongly indicates that the calculation of the belief is sound,
and that if the CPTs are populated with reliable probability values, then
the belief in the top claim can be trusted. Moreover, the description of
the three types of CPT values in Section 6.3 has pointed to the different
sources of reliable probability values.

This leaves the question of what is an appropriate threshold for
the lower limit of the belief in order to decide that a claim should be
considered true. Our conjecture is that such value is specific to each
company or even a particular system, and moreover, this value is differ-
ent in different stages of the system lifecycle. Therefore, identifying the
parameters which impact the threshold value, and developing a model
to calculate the value, is left as a topic of future work. However, here
we present some preliminary ideas towards such model.

First and foremost, the belief in the top claim depends on the exact
numerical values in the CPTs. More precisely, the majority of CPTs will
be of Type I. The values of Type II and III will in some cases be
possible to obtain from literature, standards, or by doing formal proofs.
However, some values will have to be assigned manually. Depending
on the choice of values that correspond to qualitative estimates such as
high, very high, or very low, the threshold will have to be set differently.
Secondly, and as evident by comparing the belief in the top claim
for the safety case fragment with two identified hazards and for 20
identified hazards, the more random variables that represent belief less
than 1, the lesser is the belief in the top claim. This behavior of the
model also matches the intuition; the more sources of uncertainty, the
lower the overall belief and this means that the threshold must depend
on the complexity of the system and the corresponding safety case.
Thirdly, the threshold value must be different in different stages of the
safety lifecycle. Initially, the belief in the top claim will be very low
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and as more evidence is added the belief in the top claim will rise.
However, it might be useful to judge if the belief in the safety concept
is sufficiently high, before proceed to actual system development and in
this case multiple different threshold values would be needed. Finally,
the threshold value must be chosen such that the belief in the top claim
of a safety case for a system that is known to be safe, is higher than the
threshold. Therefore, it is realistic to assume that a baseline threshold
value will be derived based on a safety case of a system that is shown
to be safe, and then tuned for different companies, probability-value
scales etc.

8.2. Practical aspects of using the method

The proposed method is independent of any concrete safety case
notation. Just as Table 2 presents a mapping from a GSN argument
structure into the representation in terms of formulas of a language
, a mapping from other notations such as CAE, SACM, or NOR-STA
could also be defined. Furthermore, the method is general in the sense
that it is independent of any particular standard, domain, implementa-
tion technology, or engineering process. However, in a concrete usage
scenario, the set of axioms  will have to be selected, and then the
probability values in the Bayesian Network become specific for this
scenario. For example, the argumentation structure in Fig. 6 adopts
the axioms of ISO 26262 which makes the argument applicable to the
automotive domain.

An additional benefit of the mappings in Tables 2 and 3, is that
they can be used to build a tool that automatically constructs Bayesian
Networks for a given safety case. Such tool is essential for industrial
acceptance of the proposed method because real-world safety cases are
huge artifacts. Such tool would also allow additional simplifications
to be made, in order to bring the method closer to typical process of
safety-case creation. Namely, the responsibility for enforcing some well-
formedness constraints could be moved from the safety-case creator to
such tool. For example, strategy nodes could be optional between goal
nodes, but the tool would warn the user that it is considered that the
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omitted strategy node expresses an inference rules which is known to
be sound.

When it comes to the practical aspects of working with large safety
cases, and consequently large Bayesian Networks, there are several
simplifications that can be employed. Firstly, as it can be seen from
Fig. 9, the Bayesian Network nodes, which have received evidence, are
irrelevant for the calculation of the belief in the top claim. Therefore,
to avoid maintaining a large Bayesian Network, all nodes that represent
evidence, and axioms can be removed, and the conditional-probability
tables of their children nodes can be modified accordingly. In such
scenario, the evidence and the axioms act as background information
for the complete Bayesian Network. Also, if a Bayesian Network is still
very large, Bayesian Network editors such as GeNIe allow partitioning
a large model into several smaller ones.

9. Related work

Both the formal representation of safety-case content, and confi-
dence assessment in the top claim of a safety case have been the subject
of previous research. These two types of related work are reviewed in
the following sections.

9.1. Formal representation of safety-case content

In recent years, a growing number of research contribution are
proposing the formalization of safety cases in order to enable au-
tomated safety-case construction and analysis (Diskin et al., 2018;
Nemouchi et al., 2019; Nešić et al., 2019; Prokhorova et al., 2015;
Rushby, 2015, 2017). Work in Diskin et al. (2018) presents a method
which is an alternative to notations in Section 2.3, called model-
transformation based assurance. The central idea is that safety-case
creation can be defined as a function 𝑓 which takes as input engineer-
ing data, and outputs assurance data. When creating the assurance data,
the function 𝑓 must satisfy certain constraints, and conceptually this
is the definition of model-transformations. Consequently, the assurance
case is defined by the input engineering data, in the form of various
meta-models, the function 𝑓 , and the constraints that the function 𝑓

ust satisfy. The work in Nemouchi et al. (2019) presents a syntactic
xtension of the Isabelle theorem prover (Paulson, 1994) that allows
anual creation of textual GSN arguments. By using the built-in Is-

belle capabilities, it is ensured that a variety of structural constraints,
uch as the ones in Definition 11, are satisfied. Moreover, the method
hows how claims about a software satisfying a requirement can be
ormalized and verified in Isabelle, and then the verification results
an be referenced within GSN arguments. The method in Nešić et al.
2019) presents a formal structure, based on the contract-based design
aradigm (Benveniste et al., 2018), which contains the component-based
rchitecture and the corresponding assume-guarantee specification of a

configurable system. Given such formal structure, the work in Nešić et al.
(2019) defines the translation from this structure into a GSN argument,
which claims that the configurable system satisfies the allocated re-
quirements in all configurations of the system. In a conceptually similar
way to Nemouchi et al. (2019), the work in Prokhorova et al. (2015)
presents a methodology for formalizing functional safety-requirements
and system models in Event-B language Abrial (2010). Then, by using
theorem proving, the functional safety requirements are verified against
the system model, and the verification results are the evidence for
several GSN arguments.

The proposed method differs from each the discussed methods. The
work in Nemouchi et al. (2019), Nešić et al. (2019) and Prokhorova
et al. (2015) introduce a formal model which is a proxy for a small
part of a safety case. In other words, these methods identify claims
that can be formalized in particular formal theory, but do not provide
a framework to formalize arbitrary claims. The work in Diskin et al.
(2018) does not even maintain an explicit safety-case-like artifact, but
rather places the focus on establishing the formal framework where
the input engineering artifacts and a transformation function can be
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defined. s
9.2. Confidence assessment

When it comes to methods for belief, or confidence, assessment in
safety cases, the literature contains two types of methods; qualitative,
and quantitative. The quantitative methods (Wang et al., 2019; Cyra
and Górski, 2011; Denney et al., 2011; Zhao et al., 2012; Bishop et al.,
2011; Hobbs and Lloyd, 2012) primarily differ with respect to the
used framework for uncertainty modeling. The two most prominent
ones are the Dempster–Shafer theory (D–S) (Shafer, 1976) and classical
probability theory, typically in the Bayesian sense. Because the method
in the present paper relies on probability theory, other such methods
are analyzed in detail, but also some of the most notable D–S-based
methods. Table 5 shows a comparison between the different methods.

When it comes to the methods based on the D–S theory, Cyra
and Górski (2011), Wang et al. (2019) and Ayoub et al. (2013) are
three of the most mature methods. Both the work in Cyra and Górski
(2011), Ayoub et al. (2013), and the predecessor of Wang et al. (2019)
in Guiochet et al. (2015), were included in the evaluation by Graydon
and Holloway (2016, 2017), and each of the methods failed to handle
one or more counterexamples. There are several major differences
between (Cyra and Górski, 2011; Wang et al., 2019; Ayoub et al.,
2013) and the method in the present paper. Firstly, Cyra and Górski
(2011) and Wang et al. (2019) simply reuse the syntactic definitions of
safety-case elements from NOR-STA or GSN notation, and do not define
their semantics, e.g. when a claim is true. Instead, methods in (Cyra
and Górski, 2011; Wang et al., 2019; Ayoub et al., 2013) differentiate
between types of arguments based on the intended inference rule, and
for each type of argument define a specific function to compute the
belief in the corresponding conclusion. The calculated belief values
depend on the user-provided belief in evidence, e.g. given a positive
review that a document is correct, what is the belief that the document
is correct. Consequently, the overall belief and its semantics is purely
subjective. Also, because evidence in safety cases are artifacts produced
by verification activities which categorically verify that a certain claim
is true or false, the belief in evidence can only correspond to the
uestion of whether the verification activity, not the result, is flawless.
hile in Cyra and Górski (2011), Wang et al. (2019) and Ayoub et al.

2013) this distinction is not made, in our method this is achieved by
equiring the creation of implicit premises that refer to claims about the
orrectness of the verification activity. Finally, to avoid the issues of
ombining multiple beliefs with the rules of D–S theory, Wang et al.
2019) assumes that each argument within a safety is transformed into
n argument with at most two premises while our approach accepts
rguments with an arbitrary number of premises.

Methods in Denney et al. (2011), Zhao et al. (2012), Bishop et al.
2011), Ayoub et al. (2013), Hobbs and Lloyd (2012) and Rushby
2017) are all based on Bayesian Networks. The work in Denney et al.
2011) outlines a conceptually similar method to the one in the present
aper where a GSN argument is transformed into a Bayesian Network,
nd the belief in each argument conclusion is a function of the belief
n the argument premises. However, the method is introduced through
n example and the procedure to construct the Bayesian Network for
he given safety-case argument is not presented. Also, in the anal-
sis by Graydon, the method in Denney et al. (2011) is insensitive
o drastic drops in belief about critical claims because premises of
rguments are weighted but it is not defined how and when to ad-
ust the weights. The work in Zhao et al. (2012) approaches belief
alculations similarly, with the difference that first an arbitrary GSN
rgument is transformed into a Toulmin argument Toulmin (2003),
nd then into a Bayesian Network. The belief model is based on
ix sources of uncertainty to be quantified for each argument. These
ources of uncertainty come from the informal, argument-assessment
riteria from Hitchcock (2005). However, as Graydon and Holloway
2016, 2017) shows, the method suffers from the same issue as Denney
t al. (2011). The method in Bishop et al. (2011) does not consider

afety-case arguments in general, but a specific scenario where with
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Table 5
Properties of different methods for belief calculation.

Source Def. of safety-case elements Considered arguments Belief-model based on Computed belief function of

Cyra and Górski
(2011)

NOR-STA defs. Five argument patterns Argument structure Belief in evidence

Wang et al. (2019) GSN defs. Eight argument patterns Argument structure Belief in evidence
Denney et al.
(2011)

GSN defs. Specific argument Argument structure Belief in argument premises

Zhao et al. (2012) GSN/CAE defs. Arbitrary argument Hitchcock criteria (Hitchcock,
2005)

Values for criteria
from Hitchcock (2005)

Bishop et al. (2011) NA Specific argument Argument structure Amount of evidence
Ayoub et al. (2013) NA Four argument patterns Argument structure Belief in evidence
Hobbs and Lloyd
(2012)

NA Four argument patterns Patterns from Marsh (1999) Belief in evidence

Rushby (2017) Claim/assumption as
propositions, argument as
implication

Arbitrary arguments Argument structure Belief in evidence

Present paper All elements in model theory Arbitrary argument Argument structure and
content

Belief in inference rules,
process to produce evidence,
matching of evidence and
inference rules
high confidence it is claimed that the component’s probability of failure
on demand is 𝜃. Given such claim, the goal of the method is to develop
a probabilistic model which allows concluding with near certainty a
weaker claim about 𝜃, i.e. that component’s probability of failure on
demand is greater than 𝜃. Obviously, the method has a slightly different
focus than the present paper because the input is not a safety-case but
a specific argument. Also, the computed belief values are a function
of the amount of positive evidence which fits well for the specific claim
being considered. The method in Hobbs and Lloyd (2012) proposes to
express safety-case claims directly as discrete random variables within
a Bayesian Network, where the random variables can be in states
true or false. The method distinguishes between the use of Bayesian
Networks to represent safety-case evidence, and the usage to represent
the safety-case arguments where the possible arguments are defined
through several possible patterns, referred to as idioms. However, the
method is presented through a number of safety and non-safety-related
examples, and no formal foundation for the method is provided. As a
consequence, even reproducing the results is challenging, as shown by
Graydon. The work in Rushby (2015, 2017) introduces the idea that an
argument with non-evidence premises can be formalized in propositional
logic, while arguments with evidence as premises can be formalized
in probability theory, i.e. in as Bayesian Networks. This line of work
has a similar intention as the method in the present paper, but the
formalization uses propositional logic which cannot express the fine-
grained structure of claims, and it does not consider all elements of
safety-case arguments, e.g. inference rules or contextual information.
Furthermore, the integration between the probabilistic reasoning and
the propositional logic is not explicitly defined, thus it is unclear how
to assess if a top safety claim should be accepted or rejected.

10. Conclusion

Because the knowledge about systems is typically imperfect, the
corresponding safety cases are riddled with uncertainties, and there-
fore, safety cases cannot show with absolute certainty that systems are
acceptably safe. To measure the degree of uncertainty, the belief that
safety-case claims are true may be calcualted.

This paper has presented a novel method for probabilistic calculation
of belief in a safety case. The major result is that unlike previous meth-
ods, the produced belief values are realistic for safety cases of different
sizes, structure, and even for incomplete safety cases. This result is
to a good extent the consequence of the first contribution, namely
the formal definitions of safety-case elements, based on the principles of
model theory, and independent of particular safety-case notations. The
significance of these definitions is that the typically omitted, implicit,
or unclear information, e.g. the underlying axioms or the structure of
19

used inference rules, can be made explicit. Guided by these definitions,
the second contribution is a general, probabilistic model of belief in
conclusions of arbitrary safety-case arguments, where the uncertainty is
captured in a consistent and uniform way across the different arguments.
Consequently, the third contribution, namely the application of the
method to typically natural-language safety cases in Goal-Structuring
Notation (GSN), reveals the need for additional well-formedness con-
straints that make a GSN safety case sufficiently complete for reliable
belief calculations. In this sense, the presented method can be seen as a
method to systematically create safety cases, for which the belief is high
by construction.

The benefit of calculating an absolute value of belief in a safety
case is that it can be used to decide whether a system is acceptably
safe. Although the presented method allows calculating the absolute
belief value, defining the threshold value above which a system can
be considered safe is left as future work because such value depends
on the properties of particular systems. The main practical benefit of
the presented method is the ability to analyze the belief in a safety
case relative to different trade-offs. In scenarios when there is no time
to produce all intended evidence, or when a supplier is replaced to
optimize development costs, the presented method allows assessing
the impact of such changes on the belief in safety-case claims. In this
way, a system can be optimized with respect to various business and
engineering criteria, while ensuring a high belief in the corresponding
safety-case claims.
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