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Abstract

This paper proposes a systematic three-stage methodology for migrating complex real-time industrial software sys-
tems from single-core to multi-core computing platforms. Single-core platforms have limited computational ca-
pabilities that prevent integration of computationally demanding applications such as image processing within the
existing system. Modern multi-core processors offer a promising solution to address these limitations by providing
increased computational power and allowing parallel execution of different applications within the system. However,
the transition from traditional single-core to contemporary multi-core computing platforms is non-trivial and requires
a systematic and well-defined migration process. This paper reviews some of the existing migration methods and pro-
vides a systematic multi-phase migration process with emphasis on software architecture recovery and transformation
to explicitly address the timing and dependability attributes expected of industrial software systems. The methodol-
ogy was evaluated using a survey-based approach and the results indicate that the presented methodology is feasible,
usable and useful for real-time industrial software systems.
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1. Introduction1

Software evolution has been a continuous process in2

industrial real-time embedded software systems with3

new functionality, performance improvements and bug4

fixes introduced with each new version, revision or re-5

lease [1, 2]. Many of the industrial systems have been6

developed over the decades [3], undergoing major revi-7

sions due to technology shifts, changing customer re-8

quirements, improved development processes, among9

others. One constant factor associated with the evolu-10

tion of such systems is that the software architectures11

and the implementations have focused on single-core12

computing platforms. Integrating new data-intensive13

and computationally demanding applications withing14

the system, however, requires additional computational15

capacity. Moreover, with the decreasing availability of16

the single-core processors, migrating the existing soft-17

ware to multi-core computing platforms is becoming a18
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necessity. By migration, we refer to the modification of19

the existing software to execute on the multi-core plat-20

forms, while ensuring that the performance and quality21

attributes, such as dependability [4, 5], match the cur-22

rent system quality and more optimistically, improved23

much further. Such migration is essential since the long24

life-cycle of existing software systems has resulted in25

the creation of assets that have become critical for a26

business [6] and that a complete redevelopment may not27

be feasible.28

Migrating existing real-time software systems to-29

wards multi-core systems requires (i) Identifying the30

timing requirements of the existing software systems31

and (ii) Identifying the technical solutions that can im-32

prove the performance, resource usage and the timing33

predictability of the software systems [7, 8, 9]. Invari-34

ably, any migration approach should also address the35

extra-functional attributes such as scalability, maintain-36

ability and portability of the software. Furthermore, the37

migration should consider maximum reuse of the ex-38

isting software while minimizing the re-engineering ef-39

forts.40

To address these aspects for the migration of a com-41

plex real-time software system with strict timing and42
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dependability requirements, we used a focus group dis-43

cussion to formulate an open-ended Research Question44

(RQ),45

RQ: How to migrate a complex real-time software46

from a single-core to a multi-core architecture47

with maximum software reuse and minimal re-48

engineering effort?49

We further refined this question into the following sub-50

questions:51

RQ1: Which migration methodology addresses the con-52

cerns of software reuse, dependability and timing53

requirements?54

RQ2: How to evaluate and analyse the applicability of55

different multi-core solutions for embedded con-56

trol software?57

RQ3: What are the tools that facilitate the migration pro-58

cess?59

These questions were motivated by the need for mi-60

grating a configurable robot controller software [4] de-61

veloped at ABB Robotics1, with functionality ranging62

from motion control to cloud connectivity. The con-63

troller software has close to 140 tasks and 71,128 meth-64

ods, integrating real-time and non real-time functionali-65

ties with varying Quality of Service (QoS) requirements66

on a single-core platform.67

To address the discussed questions, we used a mixed68

research methodology utilising discussions within a fo-69

cus group and subject experts, complemented with a70

review of the state-of-the-art literature, to identify key71

concerns and provide a systematic methodology to mi-72

grate industrial software with real-time requirements73

from single-core to multi-core platforms. Concretely,74

the paper provides the following contributions:75

• A systematic methodology for migrating complex76

embedded software from single-core to multi-core77

platforms;78

• A review of tools that facilitate the migration process;79

and80

• A survey-based evaluation of the proposed methodol-81

ogy.82

This paper reinforces the validity of the methodology83

presented in our previous work [10] by including a84

survey-based evaluation of the methodology.85

1https://new.abb.com/products/robotics/

controllers

The rest of the paper is organised as follows. Sec-86

tion 2 provides an overview of a robotic system and87

its controller software. Section 3 reviews the exist-88

ing software migration methods. Section 4 provides an89

overview of the overall methodology. Section 5 includes90

a systematic approach focusing on architecture migra-91

tion, followed by implementation and verification of the92

migration in Section 6 and Section 7 respectively. A93

review of the tools facilitating the migration process is94

discussed in Section 8. Section 9 presents the evalua-95

tion of the proposed methodology. Finally, Section 1096

concludes the paper.97

2. System Overview98

The system corresponds to a typical robotic system99

consisting of a manipulator arm, a controller, and a100

graphical controller interface. The paper focuses on101

the software functionality of the controller, which can102

be divided into functions concerning (i) configuration,103

(ii) communication, and (iii) control. The configuration104

functions provide the robot programming interface that105

allows a user to configure and specify the runtime be-106

haviour of the manipulator. The user is also able to de-107

fine the robot environment such as additional sensors108

and actuators. The real-time communication functions109

allow the controller to interactThe communication func-110

tions provide a real-time networking capability to en-111

able the controller to interact with devices such as Pro-112

grammable Logic Controllers (PLCs). It also includes a113

non-real-time communication capability that allows the114

controller to interact with enterprise network including115

PCs and the cloud. The control functions generate the116

path the manipulator has to follow based on the user-117

defined configuration. The output of the control func-118

tions is used to drive controllers that manage the low-119

level motor actuation.120

The controller software has different runtime modes121

and the available functions vary between the modes.122

The main modes include the “Initialisation mode”,123

“Safe-init mode”, “System update and configuration124

mode”, “Normal operation mode”, and “Fail-safe125

mode” [11]. The different modes and the transition be-126

tween the modes is shown in Fig. 1. At startup, the con-127

troller transitions into the initialisation mode. Here all128

the tasks are initialised with values based on the pre-129

viously saved configuration settings. The controller130

software is in the initialisation mode during startup. It131

enters the safe-init mode if there are errors during the132

startup. The behaviour of the controller software can133

be configured in the system update and configuration134

mode. ItOnce the required configuration has been set,135
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Figure 1: Main Modes in the System

the controller enters the normal operation mode. This is136

the operational mode of the controller, where the phys-137

ical movement of the robot arm is enabled. It is in this138

mode that the controller executes the motion planning139

algorithms with real-time communication enabled dur-140

ing the normal operation modefor data exchange with141

external sensors and actuators. It transitions into a fail-142

safe mode from the normal operation mode if an unex-143

pected error such as an unresponsive sensor, or detec-144

tion of possible collision with unexpected objects oc-145

curs. During normal operation, the user-defined instruc-146

tions from the robot programming interface provide in-147

put to the motion generation components of the soft-148

ware, which in turn generate the path to be followed by149

the manipulator. Simultaneously, the sensor informa-150

tion and actuator commands are read and written by the151

communication components based on the user configu-152

ration. as well as system configuration.153

Timing related properties of a subset of the tasks154

that make up the robot controller is provided in the Ta-155

ble. 1. The RT communication component is responsi-156

ble for ensuring real-time communication between the157

controller and the sensors and actuators. It consists of158

a network driver task along with a runtime middleware159

task that provides the necessary interface for data ex-160

change with other tasks.There are two tasks, namely161

TS Ethercat and TS RT, that are responsible for real-162

time communication between the controller and the sen-163

sors and actuators. The TS Ethercat task comprises164

the network driver, whereas the TS RT task encapsu-165

lates the runtime middleware that provides the nec-166

essary interface for data exchange with other compo-167

nents. The two tasks are activated by periodic timers of168

10 ms period each and their worst-case execution times169

(WCETs) are 120 µs and 80 µs respectively. The prior-170

ities of TS Ethercat and TS RT are 12 (highest) and 11171

(second highest) respectively. Furthermore, the utiliza-172

tion of these two tasks are 0.012 and 0.008 respectively.173

The utilization of a task represents the portion of CPU174

time required by the task and is calculated by dividing175

the WCET of the task by its period. The Non RT com-176

munication component provides web-based connectiv-177

ity for communication with enterprise network and for178

uploading robot programs and managing and updating179

the controller configurations. It consists of a network180

driver task, a non real-time middleware task and the web181

server task, with the web-server task providing the inter-182

face for data exchange between the controller and ex-183

ternal devices.The TS Ethernet, TS NRT and TS Web184

tasks are responsible for non real-time communication185

such as web-based connectivity for communication with186

enterprise network and for uploading robot programs187

and managing and updating the controller configura-188

tions. These tasks encapsulate the network drivers, non189

real-time middleware and web server providing an in-190

terface for data exchange between the controller and191

external devices respectively. The robot program in-192

terpreter component is responsible for converting the193

robot program into controller data structures that act as194

inputs for the trajectory generation component of the195

controller. It consists of two tasks, the TS RPI and196

the TS RPI Transform.The robot program interpreta-197

tion is performed by the TS RPI and TS RPI Transform198

tasks. These tasks are responsible for converting the199

robot program into controller data structures that act200

as inputs for the trajectory generation functionality of201

the controller. The TS RPI task parses the robot pro-202

gram and validates its syntactical correctness. The203

TS RPI Transform task then converts the robot program204

into a data structure that can be used as input for the205

trajectory generation functionality, which allows plan-206

ning of the robot motion and generating the required set-207

points for the controller task (TS Control). The trajec-208

tory generation functionality is realised with the tasks209

TS IPL Path and TS IPL JointPath. Further, the con-210

troller software includes the system state manager tasks,211

namely TS Sys Events and TS Sys Backup, that are re-212

sponsible for managing different system level signals213

and generating events that define the behaviour of other214

tasks. For example, the system state manager task can215

observe a change in the state of the safety switch signal216

and generate an event that will trigger a mode change217

from normal operation mode to a fail-safe mode.218

3. Related Work219

Software migration is usually carried out when adopt-220

ing a different architectural paradigm than the existing221

one, such as changing the programming language [12]222
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System
Functions

Task
functionality Task Task

Trigger Type
Task

Priority
Task

Period (ms)
WCET

(us) Utilization

RT Comm. Network driver TS Ethercat timer 12 10 120 0.012
RT Comm. Network middleware TS RT timer 11 10 80 0.008
Non RT Comm. Network Driver TS Ethernet timer 5 10 75 0.0075
Non RT Comm. Network Middleware TS NRT timer 4 50 800 0.016
Non RT Comm. Application TS Web timer 2 100 200 0.002
Robot Program
Interpreter Parse robot program TS RPI

event from
TS NRT 3 50 4000 0.08

Robot Program
Interpreter

Format data for
trajectory generation TS RPI Transform

event from
TS Sys Events 6 20 200 0.01

System State
Manager

Monitor and handle
system state events TS Sys Events periodic 10 10 60 0.006

System State
Manager Create system backup TS Sys Backup

event from
TS WEB 1 100 200 0.002

Trajectory
Generation

Interpolate
Cartesian Path TS IPL Path timer 7 20 2000 0.1

Trajectory
Generation

Interpolate
Joint Space Path TS IPL JointPath timer 8 20 200 0.02

Controller
Create setpoints
and receive feedback
for motor drivers

TS Control timer 9 2 100 0.05

Table 1: Subset of the tasks in the Robot Controller.

or when moving from native server deployments to223

cloud-based deployments [13, 14]. Sneed [15] proposed224

a five-step re-engineering planning process for legacy225

systems, covering Project Justification, Portfolio Analy-226

sis, Cost estimation, Cost-benefit analysis and Contract-227

ing. The author highlights the need for creating measur-228

able metrics to justify the effort and the improvements229

achievable with the migration. Erraguntla et al. [16]230

discussed a three phase migration method consisting of231

analysis, synthesis and transformation phases to migrate232

single-core to multi-core parallel environments. During233

the analysis and synthesis phase, the design of the ex-234

isting software is recovered while recommendations for235

the multi-core environment are made during the trans-236

formation phase of the migration method. They also237

provided a reverse engineering toolkit called RETK for238

the analysis and synthesis phases. Battaglia [17] pre-239

sented the RENAISSANCE method for re-engineering a240

legacy system. The method focuses on planning and241

management of the evolution process.242

Menychtas et al. [18] presented a framework called243

ARTIST, a three-phase approach for software mod-244

ernization focusing on migration towards the cloud.245

They categorised the migration into three main phases,246

Pre-migration, Migration and Modernisation and Post-247

migration. During the pre-migration phase, they pro-248

posed a feasibility study to address the technical and249

economic points of view. During the migration and250

modernisation phase, the actual migration is carried out251

and finally during the Post-migration phase, the system252

is deployed and validated. Forite et al. [19] proposed253

the FASMM approach to better manage the migration254

and to record and reuse the knowledge gained during255

the migration in other projects. More recently, Reuss-256

ner et al. [2] and Wagner [20] proposed model-driven257

approaches to software migration. The focus in these258

approaches is to reverse engineer the system using au-259

tomated tools and capture the information in modelling260

languages and then use the model-driven approach for261

further maintenance of the system.262

Most of the works discussed so far focused on reverse263

engineering the existing system to get an understand-264

ing of the system, and then to use this information to265

model and transform the system based on the technical266

requirements. However, an important aspect we found267

lacking was emphasis on verification and validation of268

the reverse engineering processes. Additionally, while269

many of these works focused on architecture transfor-270

mation and implementation changes, emphasis on mi-271

gration of the testing methods was negligible. During272

our discussions in the focus group, testing was identified273

as an important domain which required investigation as274

multi-core architectures are more prone to concurrency275

issues, e.g., livelock, deadlock, race-conditions and data276

corruption along with the interference due to the con-277

tention for shared resources such as the caches affecting278
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Figure 2: Proposed migration workflow.

the timing predictability of the overall software system.279

4. Migration Methodology280

Based on the reviewed methods and the extra-281

functional requirements, we create a migration work-282

flow as depicted in Fig. 2 and apply the Analyze, Verify,283

Transform and Validate approach to this workflow. Es-284

sentially, during analysis, the requirements for the mi-285

gration process are established and the existing system286

behaviour is recovered. Then the results of the analy-287

sis are verified by the subject experts. New solutions288

are identified and evaluated during the transformation289

phase. Finally, the applicability of these solutions, along290

with the migration process, is validated during the val-291

idation phase. Additionally, we consider the migration292

process to be iterative in the sense that each stage can293

be revisited and decisions can be roll-backed or modi-294

fied to address issues that may have been missed or if295

they do not meet the objective of the migration. A brief296

overview of the different stages of the proposed work-297

flow is as follows:298

1. During the first stage, we focus on the migration299

of software architecture. In this stage, the goal is300

to synthesize an abstract system model, validate its301

accuracy and transform the model for the multi-302

core environment.303

2. In the second stage, the implementation and veri-304

fication migration, the goal is to analyse the sys-305

tem source code to identify potential concurrency306

issues within the code and transform the code ac-307

cording to the new multi-core architecture model.308

Additionally. the existing verification techniques309

are augmented with methods relevant for a multi-310

core architecture.311

3. In the third stage, we validate the migration process312

by identifying the validation parameters and mea-313

suring these parameters and then comparing them314

with the values obtained before migration.315

Architecture
Requirement
specification

Architecture
Recovery

Architecture
Verification

Architecture
Abstraction and
Representation 

Architecture
Tranformation

Figure 3: Various phases in the software architecture migration.

5. Software Architecture Migration316

Many of the real-time systems including the robot317

controller software have a strong focus on timing, safety318

and dependability requirements. Therefore, we need a319

well-defined software architecture to support such re-320

quirements. As there are significant differences in the321

single-core and multi-core platforms, the existing soft-322

ware architecture should be modified to address the con-323

straints of multi-core platforms and make the best use324

of the available resources. To approach this modifica-325

tion systematically, the software architecture migration326

stage is divided into five well-defined phases as shown327

in the Fig. 3. The five phases are :328

1. Architecture requirements specification;329

2. Architecture abstraction and representation;330

3. Architecture recovery;331

4. Architecture transformation; and332

5. Architecture verification.333

5.1. Architecture Requirements Specification334

The architecture requirements specification is the335

first phase of the architecture migration process. The336

requirements are essentially high-level and the extra-337

functional requirements of scalability, performance and338

timing guarantees are the guiding principles for the339

complete migration process. The more concrete re-340

quirements are defined during the architecture recov-341

ery phase of the migration process. We also include the342

identification of a requirements specification and man-343

agement process in this phase to better manage the re-344

quirements for the rest the migration process.345
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5.2. Architecture Abstraction and Representation346

In this phase, we seek to identify an abstraction level347

that can accurately represent the system behaviour. An348

abstraction level close to the implementation may be349

too detailed, while a higher abstraction level can miss350

critical information that may be necessary for assur-351

ing correct system behaviour. Therefore, to identify the352

right abstraction, we need to identify the system prop-353

erties that can be affected when moving to the multi-354

core architectures. Further, a representation model that355

can sufficiently capture the system properties should be356

identified. The representation model should be easy to357

comprehend, and should act as a communication tool358

between different stakeholders such as the system archi-359

tects and developers. To address these issues, we rely on360

expert interviews and the review of state-of-the-art liter-361

ature related to multi-core in the real-time systems do-362

main and the model-driven engineering domain to guide363

the selection of the abstraction level and for the identi-364

fication of the representation tools.365

Software Architecure, Real-time Task Models and Rep-366

resentation Tools. The system we considered provides367

multiple functionalities ranging from embedded control368

to cloud connectivity. Therefore, we relied on infor-369

mal and open-ended interviews with the system soft-370

ware architects and domain architects to identify possi-371

ble abstraction levels. From these discussions, we were372

able to identify that the task-level abstraction provides373

the necessary semantics to capture the system properties374

and therefore, can be used during the later stages of the375

migration process. Moreover, most of the literature in376

real-time systems uses the task-level abstraction for the377

system representation [21, 8].378

Many modelling languages support the task level ab-379

straction to represent the architecture of real-time sys-380

tems.There are several modelling languages that al-381

low modelling of software architectures and task-level382

abstraction models of real-time systems. The UML383

MARTE2 profile [22], Rubus Component Model [23,384

24], UPPAAL [25], MechatronicUML3 [26], AU-385

TOSAR [27], ART-ML Framework [28], are some of386

the possible modelling languages and frameworks that387

can be used to represent the system under discussion.388

It is worthwhile to mention that although many of389

these languages, frameworks and supporting tools of-390

fer detailed semantics for capturing multiple viewpoints391

which are essential for managing real-time systems,392

2https://www.omg.org/omgmarte/
3http://www.mechatronicuml.org/en/index.html

the learning curve for many of these tools is however,393

rather steep, especially when being used for represent-394

ing task-level abstraction of existing systems.To demon-395

strate the software architecture abstraction in the pro-396

posed methodology, we model the software architec-397

ture of the robot controller using the Rubus Component398

Model as shown in Fig. 4. Note that the Rubus Com-399

ponent Model and its runtime environment consider a400

one-to-one mapping between a software component and401

a task. A software component is the lowest-level hier-402

archical element in a component model that is used to403

model the software architecture of a system. The soft-404

ware component is a design-time entity that may cor-405

respond to one or more tasks at runtime. For example,406

the model of a software component that conforms to the407

Rubus Component Model (RCM) [23, 24] is shown in408

Fig. 5. A software component communicates with other409

components by means of input and output data and trig-410

ger ports. The trigger ports indicate when the task (cor-411

responding to the software component) is activated for412

execution. A software component can be triggered by413

an independent source (e.g., a periodic clock) or by an-414

other software component. The properties of the soft-415

ware component such as their execution times, activa-416

tion periods and priorities are specified using the values417

from Table 1. Note that there are two timing constraints,418

namely Age (50ms) and Reaction (50 ms), that are spec-419

ified on a chain of software components within the soft-420

ware architecture in Fig. 4. These timing constraints421

conform to the AUTOSAR standard and are supported422

by several other modelling languages and methodolo-423

gies for real-time systems [29].424

5.3. Architecture Recovery425

We need to have a better understanding of existing426

architecture to be able to modify and adapt it to new427

platforms. However, in many cases,the documented ar-428

chitecture or the intended architecture does not repre-429

sent the actual implementation. Such deviations can be430

attributed to multiple reasons. For example, many of431

the software systems are developed using a top-down432

development approach. As a result, implementation433

level changes are not propagated back to the architec-434

tural documents resulting in inconsistencies. Recover-435

ing the architecture, therefore, is an essential step for the436

migration. While many useful architecture visualisa-437

tion tools such as CodeSonar4 and Imagix5 analyse the438

4https://www.grammatech.com/products/

code-visualization
5https://www.imagix.com/index.html

6
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Figure 4: Software Architecture Representation.
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Figure 5: Properties of a Software Component.

source code to provide architecture visualisation, they439

only provide information on the logical structure of the440

software and additionally, they may not be able to detect441

faulty architectural patterns within the recovered archi-442

tecture.443

In this phase,Since the transition to multi-core plat-444

forms in general affects the timing behaviour of the445

system, we focus primarily on extracting the temporal446

properties of the system. , which can manifest them-447

selves in different forms such as deadlines or message448

buffer sizes.For example, a timing requirement can be449

derived based on the communication between TS IPL450

Path and the TS IPL JointPath. Here, one job of the451

TS IPL Path generates data for n jobs of the TS IPL452

JointPath. The next instance of the TS IPL Path task453

should complete its execution before the nth job of454

the TS IPL JointPath is executed. Further, we con-455

sider the system to be modelled with cause-effect task456

chains [30, 31], which implicitly consider maintaining457

the causality in the underlying communication. These458

chains are constrained by the timing constraints similar459

to that of the AUTOSAR standard.460

At the task-level abstraction, each task can be repre-461

sented in terms of its period, worst-case execution time462

and various types of timing requirements such as dead-463

line, data age, and data reaction constraints [32]. Note464

that the tasks and their corresponding software compo-465

nents at the software architecture abstraction have the466

read-execute-write semantics, which allow them to be467

adapted to comply with the Logical Execution Time468

(LET) model [33]. In addition to these, there can be469

indirect temporal requirements such as the number of470

messages in a message queue should not be less than a471

specific value during a certain operating mode, which472

then requires that the task producing the messages for473

the queue can be blocked only for a duration that does474

not violate this requirement. Therefore, we need a com-475

prehensive multi-dimensional software comprehension476

and reverse engineering approach to extract such infor-477

mation from the existing software architecture, specifi-478

cally, the timing properties and constraints, which are479

crucial in verifying timing predictability of the sys-480

tem [32].481
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To extract the necessary timing requirements, such as482

the periodicity, execution times and deadlines, we re-483

quire analysis of multiple data sources. We identified484

that the architecture documentation, the run-time exe-485

cution logs and expert validation of the analysis are es-486

sential resources for the architecture recovery phase of487

the migration process, also shown in Fig. 6.488

Documentation Analysis. The architecture of large489

software intensive systems is normally documented ac-490

cording to the “4+1” architectural view model [34] or491

an enhanced variant. The format for architecture doc-492

umentation can vary depending on the internal pro-493

cess and industry-relevant certification requirements.494

SysML [35] and UML models are some of the formal495

description formats for documentation used in the in-496

dustry. Complementing such formal description formats497

are the textual documents explaining the architecture in498

natural language as a part of the documentation. These499

high-level architectural models and documents identify500

the different components of the system and the inter-501

action between components, summarise the design pat-502

terns and technologies employed in the implementation503

and provide a concise overview of the functions of these504

components. By analysing the documentation, it should505

be possible to identify chains of dependent components,506

the tasks associated with these components and the ex-507

pected timing behaviours. The system we considered508

was documented both in UML models, as well as tex-509

tual documents.However, during our analysis, we found510

that existing documentation did not contain any infor-511

mation mapping different tasks to their respective com-512

ponents and there was limited information on expected513

timing behaviours either unavailable or was incomplete514

available in the architecture documents, necessitating515

other analysis approaches such as run-time analysis and516

expert validation.517

Run-time Analysis. While the high-level documents518

are good sources of information, the information pro-519

vided by such documentation may either be incomplete520

or may not reflect the actual implementation. One rea-521

son for such an inconsistency is due to the structure of522

the development process, where the information flow523

is usually top-down, and the changes made at the im-524

plementation level are not propagated back to the ar-525

chitecture documents [36]. Additionally, these indus-526

trial software systems have been incrementally devel-527

oped over many years with the addition of new func-528

tionality, bug fixing, and other optimisations in each529

increment. Therefore, due to the accumulation of un-530

documented changes made during implementation over531

the years, relying solely on high-level documentation as532

the only source of information for modelling the sys-533

tem can result in an inaccurate representation of the ex-534

pected system behaviour. This makes it necessary to535

consider the run-time logs as complementary sources536

of the system information. One approach to under-537

standing the run-time behaviour of the system is the538

tracing and measurement-based approach [37]. Using539

this approach, information such as number of context540

switches, response times, execution times, number of541

task instances, periodicity of the tasks, among others542

can be collected. By using dynamic analysis and visual-543

isation tools such as Tracealyzer [37], additional infor-544

mation such as the communication flow between differ-545

ent tasks, identification of shared resources, task chains546

and precedence constraints between the tasks can be ob-547

tained. The information gained from the run-time anal-548

ysis can be used to refine and enhance the model.549

The run-time analysis comes with its own set of co-550

nundrums. As the system under consideration is config-551

urable, i.e., the user can configure and specify the run-552

time behaviour, it is difficult to identify a configuration553

that can be a single representative of possible config-554

urations for run-time analysis. One possible approach555

to address this issue is to use the “maximum load” ap-556

proach. We consider the system to be in “maximum557

load” state, if under normal operation mode, all sys-558

tem tasks are active and that each task is executing its559

most computationally heavy or memory intensive jobs.560

Relying on a single configuration, however, is not suffi-561

cient to make any statistically reliable conclusions about562

the measurements. Therefore, another argument would563

be to gather run-time behaviour from as many possi-564

ble configurations as feasible. Again, identifying this565

“feasible” number is not straight forward. This is made566

even more complicated by the continuous development567

process, where code is modified and new builds gener-568

ated daily. Identifying a fixed version of the software569
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for analysis becomes non-trivial for such cases. Fur-570

ther, since the controller software operates under differ-571

ent modes, the “maximum load” approach could be pes-572

simistic. Depending on the system under migration, we573

will need to identify an appropriate configuration and574

analyse the run time behaviour of each mode indepen-575

dently. For the controller software considered, the “nor-576

mal operation mode” had the highest resource demand577

and since all the other modes run only a subset of the578

“normal operation mode” tasks, we use the maximum579

load configuration of the “normal operation mode”and580

ensure that all the required system software components581

are active during the trace period. Note that we rely on582

the latest released version of the software.583

During the run-time analysis of our system, we found584

that there were inconsistencies between the expected585

and observed behaviours. A few of the inconsistencies586

were a result of incorrect configuration of the instru-587

mented code, while others were actual deviations from588

the expected behaviour. For example, the incorrect con-589

figuration resulted in the trace logs showing multiple in-590

stances of the jobs of a task as a single job of the same591

task. This observation highlights the fact that relying592

on a single source for information is not only ineffec-593

tive but also error-prone. This necessitates the need for594

expert validation of the collected information to create595

a sufficiently accurate system model.596

Expert Validation. Architectural design decisions are597

made by analysing multiple factors such as domain re-598

quirements, dependencies on services provided by the599

operating systems and the underlying hardware plat-600

form, among others. However, the high-level archi-601

tectural models and documents do not describe the ra-602

tionale behind the design decisions and even if they603

do, such information is limited. Moreover, in legacy604

systems, such documents do not completely reflect the605

implementation [36]. Furthermore, as the information606

from the run-time analysis is quantitative and statisti-607

cal in nature, it is possible to misinterpret any devia-608

tion from a commonly occurring pattern as an inconsis-609

tency whereas this could have been a design decision.610

To avoid such misinterpretations and improve system611

model accuracy, discussions with domain experts are612

mandatory during the architecture analysis. These dis-613

cussions will be used to understand the rationale behind614

the design decisions, and to validate the observations615

of the documentation and the run-time analysis phases.616

In our work, we were able to validate the inconsisten-617

cies such as the deviation from a commonly occurring618

pattern as a design decision and also mark some of the619

observed results as an outcome of incorrect code instru-620

mentation configuration. For example, due to incor-621

rect configuration of the code instrumentation library,622

the periodicity of the TS RPI observed during run-time623

analysis phase did not match the values expected by the624

experts. the functional behaviour however, was accu-625

rate, prompting a separate analysis. This analysis identi-626

fied incorrect configuration of the code instrumentation627

as the root cause for observed deviation in the periodic-628

ity.629

5.4. Architecture Transformation630

As discussed earlier, the architecture transformation631

phase focuses primarily on evaluating potential solu-632

tions and identifying the most appropriate ones for the633

final implementation. Before we evaluate any solution,634

we need to identify the system requirements that need to635

be considered to identify, evaluate and qualitatively rank636

possible solutions. Since in our case, the migration to637

multi-core will primarily affect the runtime behaviour,638

we focus on the explicit temporal requirements, implicit639

requirements such as the number of messages in a queue640

and assigned QoS levels to different functional domains.641

An important requirement here is to ensure that this642

transformation results in improved system predictabil-643

ity, performance and that the architecture is scalable in644

terms of the number of cores and new functionality that645

needs to be integrated into future versions of the soft-646

ware. Since the terms predictability, performance, and647

scalability are generic in nature, we need to ensure that648

we have measurable definitions for these terms. For ex-649

ample, we use scalability to refer to the capability of the650

controller software to control more than one manipula-651

tor on the same hardware platform. Once we define the652

evaluation criteria, we then move towards the evaluation653

process itself. The evaluation can be carried out in var-654

ious ways depending on the evaluation metric and the655

solution being considered, such as simulation, model-656

checking and analytical calculations. Once the evalua-657

tion of possible solutions is complete, we rank these so-658

lutions based on an agreed evaluation metric and based659

on these rankings, we select the solutions for the final660

implementation phase. To ensure that this transforma-661

tion is systematic, we divide the transformation phase662

into the following steps:663

1. identification of potential solutions;664

2. evaluation of the solutions;665

3. ranking of the solutions;666

4. selection of the solutions.667
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Identification of potential solutions. Identification of668

potential solutions can be done in many different ways.669

Although we don’t make any specific recommendations,670

we would like to point out that the number of po-671

tential solutions could be infinitely many and we hy-672

pothesize that evaluating each solution will be impossi-673

ble. Especially in the case of real-time systems, where674

the search space in terms of near-optimal solutions is675

large [8, 9, 38, 39]. Therefore, a good starting point in676

this stage are the domain experts. Also, the information677

from the architecture abstraction and recovery phases678

can be a useful guide in reducing the search space. In679

our case, we use expert interviews and review the state-680

of-art in the real-time systems domain to identify poten-681

tial solutions. Another important consideration is that682

since application developers are focused primarily on683

the application functionality, they rely on the operat-684

ing systems to provide support for real-time properties.685

This implies that in many cases, only those mechanisms686

supported by an operating system can be considered as687

part of the potential solution set.688

As highlighted earlier, the purpose of an abstract sys-689

tem model is to capture all the relevant properties of the690

system but without the functional complexity. This en-691

ables creation of synthetic tasks for simulation and veri-692

fication of new design solutions. These abstract task sets693

can be modified and verified in short time spans when694

compared to modification of the actual implementation695

of the system. Many of the real-time workload models696

such as those reviewed in [21] have been successfully697

used to represent practical systems such as in the avion-698

ics domain as well as in the automotive domain. While699

many of these workload models consider the tasks to be700

independent, we found that the system under study vi-701

olates this assumption and that new jobs of tasks are702

triggered by jobs of other tasks. Also, the presence703

of event triggered components within the system along704

with multi-rate task chains implementing a single func-705

tionality, requires that the precedence constraints as well706

as task chains be considered when considering potential707

solutions [30].708

Some of the relevant issues that should be addressed709

by the potential solutions for transitioning from sin-710

gle core to multi-core platforms were highlighted by711

Macher et al. [40], and Nemati et al. [41]. For exam-712

ple, use of single-core hardware implies that the system713

tasks execute in sequential manner. If run on multi-core,714

the task precedence constraints may not be maintained715

affecting system dependability. Additionally, systems716

designed for single-core do not require any mapping717

of software and multiple compute resources. However,718

predictable execution on multi-core is provided by parti-719

tioned scheduling approaches [39]. Ad hoc partitioning720

can affect system performance and scalability. Multi-721

level caching can cause data inconsistencies when tasks722

sharing a variable are executing on different cores [42].723

In the case of fixed-priority scheduling, priority assign-724

ment can impact response times [38].725

Evaluation of the solutions. Once the potential solu-726

tions have been identified, the next step is to evaluate727

these solutions. By evaluation, we refer to the applica-728

tion of the potential solutions from the previous step to729

the abstract model from the architecture recovery stage730

and measurement of the identified metrics. The eval-731

uation can be done in different ways as already high-732

lighted earlier such as simulation in the case of ART-733

ML framework [28] or the Cheddar tool [43], analytical734

calculations if using techniques such as those identified735

in [39], or model-checking if using the timed automata736

approach specified in [44]. For the system described in737

Section 2, one strategy could be to allocate the parts of738

the system that are constrained by the timing constraints739

to one core and rest of the software components to740

other cores (e.g., TS IPL Path, TS IPL JointPath, and741

TS Control to one core and the rest of the components742

to the other core(s)). Another strategy could be to allo-743

cate the software components to the cores such that the744

specified age and reaction delays are minimized. An-745

other strategy could be based on precedence constraints746

between the software components, which should be on747

the same core (e.g., TS Web and TS Sys Backup have748

an implicit precedence constraint as the latter is trig-749

gered by the former, hence both should be on the same750

core). Similarly, another allocation strategy could be751

based on the criticality levels associated to the software752

components so that non safety-critical software cannot753

interfere with the safety-critical software as proposed754

in [45]. We would like to point out that given the safety-755

critical nature and complexity of the system, we hypoth-756

esise that the potential solution identification and eval-757

uation steps are rather time consuming and are critical758

in the migration process. The time spent during these759

phases can potentially result in practical solutions that760

ensure that the migration process is successful in meet-761

ing the extra-functional requirements.762

Moving forward, we return to the question of iden-763

tifying the best solution among the many evaluated so-764

lutions. To guide in this direction, we use the ranking765

approach as follows.766

Ranking of the solutions. The ranking step of the767

transformation phase orders the evaluated solutions in768

terms of certain criteria. For example, the evaluated so-769
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lution may be required to adhere to safety and security770

requirements of the domain. Further it may be possi-771

ble that the extra-functional properties such as portabil-772

ity between different hardware platforms may be priori-773

tised over performance improvement on a single hard-774

ware device. To address such requirements in a system-775

atic manner, we propose to use the following multi-step776

approach:777

• identify parameters to rank potential solutions;778

• provide measurable definitions to the identified pa-779

rameters;780

• arrive at a consensus on measurement methods for the781

parameters;782

• prioritize or assign weights to the parameters for783

trade-off analysis;784

• rank the evaluated solutions.785

We believe that this approach provides a systematic786

way to measure effectiveness of the evaluated solutions787

and guide in selection of the final solution. By identi-788

fying measurable parameters, the methods to measure789

them, and prioritize them if a trade-off is necessary, we790

can remove any ambiguity associated with the perceived791

effectiveness. To identify these parameters, we propose792

focus group discussions involving the different domain793

experts.794

Selection of the solutions. Once the potential solutions795

have been evaluated and ranked, the selection of final796

solutions should be rather straight forward. However797

we would like to point out the fact that there could be798

solutions that may optimize one requirement while neg-799

atively affecting another requiring a trade-off analysis to800

select a final solution.801

5.4.1. Architecture Verification802

The last step in the architecture transformation phase803

is the verification of the transformed architecture. Here804

we essentially verify if the transformed architecture805

complies with requirements from the architecture re-806

quirements specification phase and the recovery phase.807

The verification stage is rather simple and straight for-808

ward since the different steps in the transformation809

phase involve verification in the evaluation stage with810

the systematic ranking and selection approach.811

6. Implementation Migration812

So far, we discussed the transformation at the archi-813

tecture level of the system in our migration process. We814

now discuss the processes necessary to implement the815

transformed architecture at the source code level. Al-816

though not directly related to the migration process it-817

self, we consider that some form of refactoring at the818

source-code level may be necessary prior to the mi-819

gration process. Depending on the existing logical ar-820

chitecture and the quality of the software, the refactor-821

ing may address different concerns. For example, re-822

moval of duplicate and dead code, creating components823

based on functionality, adoption of a layered architec-824

ture among others. For further discussion, we assume825

that the system has a layered architecture with well-826

defined components, that the logical architecture is ca-827

pable of handling new components and modifications in828

the abstraction layers, and that the source code is sepa-829

rated according to the components.830

Further, we classify the architecture solutions as ab-831

stract component level or functional component level832

solutions. For example, if the solution is a new priority833

order for the tasks, then it is functional component level834

solution if the tasks are associated with the component835

and that the priorities can only be changed in the compo-836

nent files. If it is a new synchronisation protocol, then it837

is an abstract level solution, which is used by all compo-838

nents and may need a new implementation. Therefore,839

before we make the changes, we identify components840

that need to be modified, map solutions that need new841

components and then implement the changes.842

6.1. Component Identification and Creation843

The solutions selected during the transformation844

phase may require that changes be made to the exist-845

ing components in the system. For example, if the com-846

ponents use nested semaphores and if the identified so-847

lution does not support nested semaphores, then such848

nested semaphores need to be removed. To do this in a849

systematic manner, we index and categorise the trans-850

formed solutions, review the solutions with the domain851

experts and component owners and associate each com-852

ponent with the solution that requires that component853

to be modified. For example, the trajectory generation854

component may require that its source code be modi-855

fied to accommodate the changes necessary to migrate856

to multi-core platform. We then review the solution with857

the owners of the trajectory generation component. Fur-858

ther, if there are solutions that are classified as abstract-859

level solutions or which could not be mapped to exist-860

ing components, we create new components for such861

changes. For example, if a new real-time middleware,862

that will provide a common inter-task communication863

mechanism is to be implemented, then a new compo-864

nent will be created.865
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6.2. Implementation866

Once all components have been identified for mod-867

ification and new components created, the necessary868

changes are implemented in the source code. Although869

the concurrency related issues are addressed during the870

architecture transformation phase, it is possible that they871

could manifest during the implementation stage. There-872

fore, coding guidelines that address these issues are pro-873

vided to the developers to minimise the manifestation of874

these issues during the implementation.875

7. Verification Migration876

The system verification and validation stage is the fi-877

nal stage of the migration process. Typically, for the878

system such as the one being considered, a reliable879

verification process is already in place. This includes880

the usual verification approaches such as unit testing,881

functional testing, and system integration tests. Since882

the architectural transformation is primarily related to883

the runtime behaviour and performance, we expect that884

most, if not all existing tests related to functional be-885

haviour to be valid. Therefore, we hypothesise that any886

failures here could be related to the concurrent execu-887

tion of the system tasks. To maintain the quality of the888

system software, we focus on augmenting the existing889

tests with concurrency related testing approaches along890

with performance verification. Again, to approach this891

enhancement in a systematic way, we divide the veri-892

fication migration process into concurrency testing and893

the migration validation phase.894

7.1. Concurrency Testing895

The goal during this phase is to augment the exist-896

ing verification process to identify concurrency related897

issues. These include race conditions, atomicity viola-898

tions and deadlocks. A comprehensive review can be899

found in the work by Bianchi et al. [46]. We propose900

the analysis of solutions during the architecture trans-901

formation phase to identify scenarios that could lead to902

potential concurrency issues. This way, it will be pos-903

sible to create tests for those specific scenarios. Addi-904

tionally, static code analysis that identifies concurrency905

bugs is added to enhance the verification process.906

7.2. Migration Validation907

During this phase, we focus on validation of the mi-908

gration process itself. We begin by identifying the pa-909

rameters to qualitatively validate the outcome of the910

process. We use two metrics for this purpose: (i) results911

of the functional and system integration tests, and (ii)912

performance related parameters such as response times.913

In the first case, no new failures should be introduced914

after the migration. In the second, the values of the per-915

formance parameters should not be less than those mea-916

sured with the pre-migration version. We point out here917

that although the validation is the last step, depending918

on the development process, this validation can be ap-919

plied to each build prior to release. By using the results920

of the validation with each build, the pace of the migra-921

tion process can be measured.922

8. Tools for Migration923

Software migration from single-core to multi-core ar-924

chitectures is a complex process and requires the use of925

different tools at different stages of the migration pro-926

cess. Here, we review some of the tools that can be used927

during the different phases of the migration process.928

8.1. Architecture Representation929

Software requirements and the architecture can be de-930

scribed in natural language and as models using differ-931

ent modelling languages such as the UML. For embed-932

ded systems with timing requirements, there exist many933

tools that allow modelling and specification of different934

views of the system. The APP4MC tool6, allows mod-935

elling and specification of the hardware as well as soft-936

ware components and provides support for scheduling937

algorithms. Another tool is the MARTE [47] profile for938

UML. The MARTE profile extends the UML models to939

include description of timing requirements. The MAST940

tool-suite7 allows for modelling as well as performing941

automatic schedulabilty analysis and supports many of942

the common scheduling algorithms for single-core as943

well as multi-core architectures. UPPAAL [25] is an-944

other tool for modelling the software as timed-automata945

and it supports model checking for formal analysis and946

verification. A few concerns with many of these tools947

are that some have steep learning curves, while others948

such as UPPAAL are not scalable to large systems and949

almost all lack support for automatic conversion of ex-950

isting source code to abstract models.951

8.2. Architecture Recovery952

For architecture recovery, static code visualization953

tools such as CodeSonar and Imagix could be used. For954

dynamic analysis, tools which provide visualization of955

6https://www.eclipse.org/app4mc/
7https://mast.unican.es/
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the run-time behaviour along with statistical informa-956

tion on timing properties can be effective. For exam-957

ple, Tracelyzer allows visualization of the run-time be-958

haviour and provides different views to analyse this in-959

formation.960

9. Evaluation961

We chose a survey-based approach to evaluate the962

proposed methodology. We followed the guidelines963

provided by Kitchenham et al. [48] for survey-based re-964

search and the discussion of the results. We begin by965

describing the design of the survey and then discuss the966

results of the survey.967

9.1. Survey Design968

As a first step in the survey-based evaluation, we969

identified (i) feasibility, (ii) usability and, (iii) use-970

fulness as the evaluation objectives for the migration971

methodology. Next, we identified the target population972

for the evaluation to be those organisations that develop973

complex real-time software systems such as industrial974

automation systems and construction vehicles. We iden-975

tified a sample from the target population in a non-976

probabilistic manner through convenience and judge-977

ment based sampling. We created the survey instrument978

in the form of online questionnaire that included both979

close and open ended questions. The close ended ques-980

tions were designed to verify the generalisation of the981

observations and the applicability of the different steps982

in the methodology. The open ended questions required983

the respondents to provide their opinion in a textual for-984

mat on feasibility and usefulness of the methodology.985

The complete questionnaire was piloted by requesting986

colleagues not involved in the study to ensure clarity of987

language before it was shared with the respondents. The988

questionnaire was made available digitally and included989

a brief overview of the purpose of the questionnaire.990

The respondents were requested to read about the pre-991

sented methodology before they answered the survey.992

The received responses were then analysed to evaluate993

the methodology.994

9.1.1. Evaluation Objectives995

As previously mentioned, we identified three key ob-996

jectives for the evaluation, namely feasibility, usability997

and usefulness of the methodology. For each of these998

objectives, we adopt the definitions used by Adesola999

et al. [49] to evaluate their business improvement pro-1000

cess methodology. Briefly, we use feasibility to imply1001

that all the steps in the methodology can be followed in1002

practice. We use the term usability to refer to the ease1003

of applicability of the methodology steps and the tools1004

mentioned therein. We use usefulness to refer to the1005

outcome of applying the methodology to relevant sys-1006

tems by an organisation. Furthermore, we also included1007

the objective of validating the possibility of generalising1008

key observations in the methodology.1009

9.1.2. Target Population and Sampling Strategy1010

To address the evaluation objectives, the target popu-1011

lation was identified as organisations developing com-1012

plex real-time systems. As for the sample, we iden-1013

tified 2 different departments within the same organi-1014

sation working on independent and unrelated products1015

and also two other organisations. We then identified 91016

expert practitioners from the sample group as the most1017

relevant for the evaluation. The participants were cho-1018

sen based on their experience in managing and develop-1019

ing software(10+ years) for industrial systems and for1020

background in multi-core technologies and their knowl-1021

edge of the application domains.1022

9.1.3. Instrument Design1023

The survey was designed in the form of a question-1024

naire, combining nominal, close-ended questions, and1025

the open-ended questions requiring textual input from1026

the respondents. The questionnaire was designed to ad-1027

dress two different aspects, (i) problem relevance and1028

(ii) methodology evaluation. For the problem relevance,1029

we developed six questions to verify if the respondents1030

were considering multi-core platforms for their prod-1031

ucts. The rest of the questionnaire was focused on1032

methodology evaluation. We classified the evaluation1033

related questions as either implicit or explicit. The im-1034

plicit questions required the respondents to reflect on1035

the overall feasibility, usability and usefulness of the1036

methodology. The explicit questions were designed to1037

validate the generalisation of some of the observations1038

made in the methodology. Table 2 shows the mapping1039

among the different steps of the methodology, the eval-1040

uation type for each of the step and the associated ques-1041

tion IDs. Appendix A.3 shows the questionnaire.1042

9.2. Survey Results and Discussion1043

As mentioned previously, the questionnaire was1044

shared with nine carefully identified participants from1045

the sample population. Of the nine participants invited,1046

five respondents participated in the survey. We use the1047

labels A,B,C,D and E to refer to each of the respondent1048

individually. We discuss the results for the objectives1049

of problem relevance, generalisation, overall feasibility,1050

overall usability and the overall usefulness.1051
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Table 2: Mapping among the different steps of the methodology, the evaluation type for each of the step and the associated question IDs.

Methodology Stage (Step) Evaluation Type/ Question
No. Of Questions ID

Architecture Abstraction and Representation (General)
Explicit : 1
Implicit : 6

11
27-32

Architecture Abstraction and Representation
(Expert Interviews)

Implicit : 6 27-32

Architecture Abstraction and Representation (State-of-art in Real-time Systems) Implicit : 6 27-32
Architecture Abstraction and Representation (State-of-art in Model-Driven Engineering) Implicit : 6 27-32

Architecture recovery (Documentation Analysis)
Explicit : 3
Implicit : 6

13-15
27-32

Architecture recovery (Runtime Analysis)
Explicit : 7
Implicit : 6

12, 16- 21
27-32

Architecture Recovery (Expert Validation) Implicit : 6 27-32
Architecture Transformation (Identification of Potential Solutions) Implicit : 6 27-32
Architecture Transformation (Evaluation of the Solutions) Implicit : 6 27-32

Architecture Transformation (Ranking of the Solutions)
Explicit : 3
Implicit : 6

22- 24
27-32

Architecture Transformation (Selection of the solutions) Implicit : 6 27-32
Architecture Verification Implicit : 6 27-32
Implementation Migration (Component Identification and Creation) Implicit : 6 27-32
Implementation Migration (Implementation) Implicit : 6 27-32
Verification Migration (Concurrency Testing) Implicit : 6 27-32

Verification Migration (Migration Validation)
Explicit : 2
Implicit : 6

25-26
27-32

Tools for Migration (Architecture Representation) Implicit : 6 27-32
Tools for Migration (Architecture Recovery) Implicit : 6 27-32

Problem Relevance. From the problem relevance per-1052

spective, 4 of the 5 the respondents, (A,B,C and E) said1053

that their applications were not designed for multi-core.1054

Respondent D said that their applications were designed1055

for multi-core but they have been developed from the1056

scratch with only limited reuse of existing code. Re-1057

spondents C and E confirmed that they are planning1058

to migrate to a multi-core platform while the rest of1059

the respondents did not provide any information. Ad-1060

ditionally, the same four respondents chose the option1061

of redesigning the application while reusing the exist-1062

ing code over developing the application from scratch.1063

The responses indicate that migration to multi-core plat-1064

forms is being considered in the industry and at the same1065

time, the respondents prefer reusing the existing code1066

over the development of the applications from scratch.1067

Generalisation and Feasibility. Since the methodol-1068

ogy was developed based on observations of one sys-1069

tem, we created the questionnaire to verify if the ob-1070

servations made in different steps can be generalised1071

for other complex real-time software systems as well.1072

This was done by asking directed nominal questions fo-1073

cused on architecture representation, architecture recov-1074

ery (runtime analysis and documentation), architecture1075

transformation (ranking of solutions), and verification1076

migration. For the architecture representation, the re-1077

sults indicate that only parts of the application can be1078

described by timing properties such as worst-case exe-1079

cution times, periods and deadlines.1080

Similar to the observations about lack of information1081

in the documentation, 4 of the 5 the respondents, (A,B,C1082

and E) said that the application design was not fully doc-1083

umented. Further, only one respondent said that the tim-1084

ing properties were discussed in the design documenta-1085

tion while the rest of the respondents said that the timing1086

properties of only a few critical parts of the application1087

were discussed in the documentation.1088

The methodology relies on the presence of diagnos-1089

tic information such as execution times and periodicity1090

for architecture recovery. All the respondents said that1091

their systems provide such diagnostic information. Fur-1092

thermore, all the respondents mentioned that their ap-1093

plications had multiple configurations and that the run-1094

time behaviour depended on the configuration. None of1095

the respondents said that they tested all possible config-1096

urations but only a few. Four out of five respondents1097

(A, B,C and D) said they tested average-case configura-1098

tions. Furthermore, respondents A and E said that they1099

test the worst-case configurations while respondent D1100
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said that they test the best-case, average-case as well as1101

the worst-case configurations. This indicates that iden-1102

tifying a representative configuration for architecture is1103

not straight forward and can depend on individual ap-1104

plication requirements.1105

Evaluation and ranking of solutions is an important1106

step in the methodology. Here we assumed that it will be1107

possible to identify and provide measurable metrics for1108

ranking possible multi-core solutions. To verify if the1109

assumptions are valid, the respondents were explicitly1110

asked if they can provide measurable parameters and1111

also prioritise them. Four out of five respondents (A, B1112

D and E) agreed that they can define as well as prioritise,1113

while respondent C answered negatively.1114

For the verification migration stage of the method-1115

ology, a key assumption is that the complex real-time1116

systems such as the one discussed in this paper have a1117

robust testing mechanism in place for verifying func-1118

tional correctness. All the respondents agreed that they1119

do have such a mechanism in place. Further, all respon-1120

dents agreed that they will reuse the existing tests to ver-1121

ify the behaviour of the systems after migration, which1122

is consistent with the assumptions made in the proposed1123

methodology.1124

The results of the questionnaire so far indicate that1125

much of the observations can be generalised to other1126

complex real-time systems. One key observation how-1127

ever, is that describing all of the application components1128

with timing properties may not be possible. For the1129

steps not discussed in generalisation, we address them1130

from the overall feasibility perspective discussed next.1131

Overall Feasibility. In order to validate the feasibility1132

of the methodology, i.e., to verify if all the steps of1133

the methodology can be followed, the respondents were1134

asked to answer if they found the methodology feasible1135

and to describe the rationale behind their choice. Four1136

out of five respondents (A B D and E) considered the1137

methodology to be feasible while respondent C consid-1138

ered otherwise. When describing the rationale, respon-1139

dent C said that they needed more information and the1140

correct answer would actually be that they are not sure.1141

Respondents B and E did not explain the rationale. Re-1142

spondent A and D agreed that it is possible to repre-1143

sent the architecture at a feasible abstraction level and1144

that the methodology covered all the critical steps. One1145

concern however was that the industrial applications are1146

rather big, and therefore we need to address the migra-1147

tion in parts and avoid a “big bang” approach.1148

Overall Usability. The survey also included questions1149

to evaluate the overall usability of the methodology, i.e.,1150

to verify if the steps in the methodology are workable1151

and are easy to apply in practice. Similar to the question1152

of feasibility, four out of five respondents (A B D and E)1153

answered positively while respondent C said no. When1154

describing the rationale, respondent C said that their1155

correct answer would actually be that they are not sure.1156

Respondent A and B said that the transformation phase1157

was uncertain but the steps are general enough to be fol-1158

lowed and that the difficulty in following the steps may1159

depend on the “architecture, requirements and availabil-1160

ity of tools”. Similar response was provided by respon-1161

dent D who said that the level of modelling may vary1162

depending on the company. Based on the responses it1163

can be observed that the steps in the proposed methodol-1164

ogy can be followed in general but the overall usability1165

is dependent on individual applications.1166

Overall Usefulness. Another objective of the evalua-1167

tion is to assess overall usefulness of the methodol-1168

ogy for the target population. To address this, the re-1169

spondents were asked to evaluate “Usefulness: if the1170

methodology can produce results that the organisation1171

will find useful?”. Two out of five respondents (A and1172

B) consider the methodology to be useful for the indus-1173

try, whereas the remaining three respondents consider1174

the methodology to be “partially” useful. Respondent B1175

justified their choice by highlighting the general appli-1176

cability of the steps and respondent A said that having1177

such a methodology will create a “common understand-1178

ing” between the different stakeholders and the devel-1179

opers, thus increasing the possibility of success and de-1180

creasing risks. Respondent C said the it may not be1181

possible to follow the steps completely, but the ideas1182

can be “useful”. A similar observation was made by re-1183

spondent D who said it will be necessary to consider the1184

product to see if the methodology fits the product being1185

considered for migration. Although it is not possible1186

to draw a straight forward conclusion about the useful-1187

ness of the methodology, we can observe from the re-1188

sponses that having a methodology can reduce the risks1189

of migration projects but the methodology will have to1190

be adapted to suit individual application needs in the in-1191

dustry.1192

Discussion. The proposed methodology was evaluated1193

for feasibility, usability and usefulness by expert prac-1194

titioners via a questionnaire. From the feasibility per-1195

spective, the analysis of the questionnaire responses in-1196

dicate that the methodology covers the critical steps1197

necessary for a software migration. From the usability1198

perspective, the analysis of the responses shows that the1199

different steps can be applied in practice but depending1200
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on the application, the abstraction level and the mod-1201

elling requirements will depend on individual applica-1202

tions. From the usefulness perspective, the responses1203

show that following the methodology steps can decrease1204

the risks associated with the migration. From the Gen-1205

eralisation perspective, the response show that the ob-1206

servations made in the methodology can be extended to1207

systems other than the robotic system considered, while1208

highlighting the fact that it may not always be possible1209

to describe the timing properties for all of the applica-1210

tion components.1211

Threats to Validity. Since the evaluation of the method-1212

ology has been carried out using a survey, we include a1213

discussion on the validity of the results. Kitchenham et1214

al. [48] advocates that a survey is reliable if it has been1215

administered multiple times and if we get similar results1216

each time. In our case, the survey was administered1217

only once. This implies that the results may vary if the1218

respondents were to answer questionnaire at different1219

times. However, much of the questionnaire had nomi-1220

nal questions and the number of options provided were1221

binary but with an additional option to provide textual1222

information thereby limiting the possibility of variabil-1223

ity in the responses. Furthermore, although the sample1224

group was carefully chosen in a non-probabilistic man-1225

ner, it is possible that a different sample of respondents1226

may have provided different responses, affecting the va-1227

lidity of the conclusions drawn from the survey results.1228

While the survey included questions relating to general-1229

isation of the observations, not all of the methodology1230

steps were explicitly considered but were included un-1231

der the general questions of overall feasibility, usability1232

and usefulness. Explicit questions may have lead to a1233

different conclusion from the one discussed in the pa-1234

per.1235

10. Conclusion1236

Migration of complex embedded software from1237

single-core to multi-core computing platforms is non-1238

trivial. To ensure a successful migration of these soft-1239

ware systems, a systematic approach is needed that1240

takes multiple software engineering perspectives into1241

account such as software processes, software architec-1242

tures, requirements engineering, reverse engineering,1243

model-based development, real-time scheduling and1244

schedulability analysis. In this paper, we presented a1245

systematic multi-stage methodology for migrating real-1246

time industrial software systems from single-core to1247

multi-core computing platforms. In this regard, we stud-1248

ied a complex real-time software system from the au-1249

tomation industrial domain that requires such a migra-1250

tion. We used focus group discussions, expert inter-1251

views and reviewed the literature to guide the develop-1252

ment of the migration strategy. We identified the soft-1253

ware architecture transformation as the main phase in1254

the migration process and presented a systematic ap-1255

proach to perform the transformation with emphasis on1256

the architecture recovery and an evaluation mechanism1257

for possible multi-core solutions. We used task-level ab-1258

straction of the system to drive the transformation and1259

associated timing properties to task-level models and1260

proposed their use as input for the evaluation of multi-1261

core solutions. To select suitable solutions from the set1262

of evaluated approaches we proposed ranking of these1263

solutions based on measurable parameters for the final1264

implementation and we reviewed some of the tools that1265

can be used during the migration process. We evalu-1266

ated feasibility, usability and usefulness of the method-1267

ology using a survey-based approach. Majority of the1268

respondents agreed that the methodology is feasible, us-1269

able and useful in general for the industrial applications.1270

The evaluation also revealed that the methodology will1271

have to be individually adapted to each system under1272

migration.1273
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ware Evolution, Springer Nature Switzerland AG, 2019.1293

[3] J. Kraft, Y. Lu, C. Norström, A. Wall, A Metaheuristic Approach1294

for Best Effort Timing Analysis Targeting Complex Legacy1295

Real-Time Systems, in: 2008 IEEE Real-Time and Embedded1296

Technology and Applications Symposium, pp. 258–269.1297

16
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Table A.3

No. Methodology Stage/ Purpose Question
1 Participant information Before you proceed, please take the time to read the paper describing the methodology.
2 Participant information Name of the organization:
3 Participant Relevance Does your application have real-time components?
4 Participant Relevance Is your application designed to run on multi-core platforms?
5 Participant Relevance Have you in the past, migrated your application to a multi-core platform?
6 Participant Relevance Are you considering migrating the application to a multi-core platform?
7 Exploratory Did you follow any specific methodology or guidelines to migrate the application to a multi-core platform?
8 Exploratory Will you recommend the existing approach to others?
9 Exploratory If you’d like to provide more information about the used methodology, please do so here.

10 Problem relevance
Select the preferred option :
a) I prefer to redesign and redevelop the application from scratch for a multi-core platform.
b) I prefer to redesign but also reuse the existing code for a multi-core platform.

11
Architecture Abstraction

and Representation
Can your application be described with timing properties such as
“worst case execution times”, “period”, “deadlines”?

12
Architecture Recovery

(runtime analysis)

Is it possible to identify a particular build of the application that can be used to recover the
timing requirements of the application and can such timing requirements be used to create
a model of the application?

13
Architecture recovery

(documentation) Is the design of your application documented?

14
Architecture recovery

(documentation) Does the application design documentation contain timing properties?

15
Architecture recovery

(documentation)

The behaviour of your application can be:( choose one)
a) accurately inferred from the design documentation
b) cannot be accurately inferred from the design documentation

16
Architecture Recovery

(runtime analysis) Does your application provide diagnostic logs of runtime behaviour?

17
Architecture Recovery

(runtime analysis) The code instrumentation : a) is fully reliable. b) may not be fully reliable.

18
Architecture Recovery

(runtime analysis) Does your application have multiple configurations?

19
Architecture Recovery

(runtime analysis) Does the runtime behaviour of the application depend on the configuration?

20
Architecture Recovery

(runtime analysis) Do you test all possible configurations of the applications?

21
Architecture Recovery

(runtime analysis) Which configuration do you test

22
Architecture Transformation

(Ranking of solutions)
Do you have any existing process/guidelines in place to evaluate and choose between
different solutions that may be specific to multi-core platforms?

23
Architecture Transformation

(Ranking of solutions)
Is it possible to define measurable parameters that will suit your application’s
timing requirements to choose one solution over the other?

24
Architecture Transformation

(Ranking of solutions)
Is it possible to prioritize the measurable parameters that will suit your
application requirements to choose one solution over the other?

25 Verification Migration Does your application have a verification and validation process in place for checking functional correctness?
26 Verification Migration Will you reuse the existing tests to verify the behaviour on multi-core platforms?
27 Feasibility Feasibility: Can the methodology described be followed?
28 Feasibility Please briefly describe the reason behind your answer here:
29 Usability Usability: Is the methodology workable? Are the steps and tools easy to use and apply?
30 Usability Please briefly describe the reason behind your answer here:

31 Usefulness
Usefulness: Is the methodology worth following? Does the methodology produce results
that the business will find helpful?

32 Usefulness Please briefly describe the reason behind your answer here:
33 Overall comments Which part of the methodology will you like to improve? (you can choose multiple options)
34 Overall comments Please provide any suggestions and improvements you want to see in the methodology here:

20


	Introduction
	System Overview
	Related Work
	Migration Methodology
	Software Architecture Migration
	Architecture Requirements Specification
	Architecture Abstraction and Representation
	Architecture Recovery
	Architecture Transformation
	Architecture Verification


	Implementation Migration
	Component Identification and Creation
	Implementation

	Verification Migration
	Concurrency Testing
	Migration Validation

	Tools for Migration
	Architecture Representation
	Architecture Recovery

	Evaluation
	Survey Design
	Evaluation Objectives
	Target Population and Sampling Strategy
	Instrument Design

	Survey Results and Discussion

	Conclusion
	

