

6th ICSE Workshop on Component-Based Software Engineering:
Automated Reasoning and Prediction
Ivica Crnkovic1, Heinz Schmidt2, Judith Stafford3, Kurt Wallnau4

1Mälardalen University, Department of Computer Engineering, Sweden, ivica.crnkovic@mdh.se
2Monash University, Australia, Heinz.Schmidt@csse.monash.edu.au

3Tufts University, Department of Computer Science, USA, jas@cs.tufts.edu
4Software Engineering Institute, Carnegie Mellon University, USA, kcw@sei.cmu.edu

Abstract
This report gives an overview of the 6th ICSE Workshop on
Component-Based Software Engineering held at 25th
International Conference on Software Engineering. The
workshop brought together researchers and practitioners from
three communities: component technology, software
architecture, and software certification. The primary goal of
the workshop was to continue clarifying the concepts,
identifying the main challenges and findings of predictable
assembly of certifiable software components. This report gives
a comprehensive summary of the position papers, of the
workshop, its findings, and its results.

1 Introduction
The sixth CBSE (CBSE6) workshop held at the 25th

International Conference of Software Engineering (ICSE) is a
direct continuation of the previous CBSE workshops [6].

CBSE4 focused on reasoning about properties of assemblies
from properties of components and their interactions.
Researchers from three communities: component technology,
software architecture, and software certification, joined the
workshop, resulting in lively discussion and increased
understanding of how the domains can be mutually informing.
The need for a model problem, to be utilized for further
research of different aspects of predictable assembly, was
identified. The specification of model problems was discussed
at a follow-up workshop held at the Carnegie Mellon
University’s Software Engineering Institute in Pittsburgh,
U.S.A. The objectives of CBSE5 were defined at the SEI
workshop.

The aim of CBSE5 was to more deeply study the problem
of predictable assembly, focusing on the sub-problem of
compositional reasoning, and benchmarks of the effectiveness
of compositional reasoning. Submitters were asked to address
the community model problem, either directly or indirectly by
adopting the vocabulary of its specification. Much of the
discussion during CBSE5 revolved around the nature of
compositional reasoning, resulting in a decision to focus
CBSE6 on this topic.

This rest of this report is organized as follows: Section 2
gives an overview of the workshop purpose and goal. Section 3
describes workshop participation and Section 4 describes the
workshop sessions. The paper concludes with description of
future plans.

2 The Aim of the Workshop
The premise of the CBSE workshop series is that the

long-term success of component-based development depends
on the ability to predict the quality of component-based
systems; however, developers are currently unable to make

such predictions. Further research is needed in the area of
predictable assembly to develop a component composition
theory for reasoning about both the functional and extra-
functional properties of component assemblies based on the
properties of components. Issues related to developing a
composition theory include determining what properties are of
interest to developers and users of components, how to predict
the properties of assemblies, how to measure properties of
components, how to verify the measurements, and how to
communicate the property values to component users.
Resolving these issues requires collaborative work of
researchers in several domains including compositional
reasoning, composition languages, component trust and
certification, software architecture, and software components.

2.1 Workshop Objectives
The primary goal of CBSE6 is to achieve better

understanding of the state of the art in automated
compositional reasoning and prediction. While emphasizing
state of the art, the workshop aims at bridging theory and
practice.

Issues of particular interest included:
- generation and adaptation of component-based systems;
- automatic verification, testing and checking of component

systems;
- automated management of software architectures, product-

lines, variation and configuration;
- algorithms for automated component-based software

engineering;
- compositional reasoning techniques for component

models;
- aspect-oriented models and automated weaving of

component software;
- measurement and prediction models for component

assemblies;
- patterns and frameworks for component-based systems;
- extra-functional system properties of components and

component-based systems;
- static and execution-based measurement of system

properties.

3 Participating in the Workshop and
Workshop Organization

Attendance at the workshop was, in large part, by invitation
based on acceptance of position papers. Papers submitted to the
workshop addressed to following:
- provided an overview of the domain by way of

background

ACM Software Engineering Notes 1 May 2004 Volume 29 Number 4

Measuring Component Reliability, John D. McGregor,
Judith A. Stafford and Il-Hyung Cho

- described a family of components associated with the
problem

- crisply state properties that developers want answered
about components, assemblies, architectures or product
lines

Much of the research on component-based software
engineering assumes that each component has a single service.
This simplifies analyses but it is a significant departure from
actual components. This paper reports on an investigation of
the feasibility of using design constructs as a means of treating
several methods as a single unit. Grouping the services of a
component into a few sets satisfies the goal of simplicity while
still providing the designer with a more usable model of
component reliability.

- discuss a critical issue or describe a novel approach,
method or tool, for automated reasoning or prediction

- discuss the plausibility and benefits by way of example or
evaluation

Thirty six papers were received, of which eighteen were
accepted. Full papers were reviewed by at least two, most by
three, independent reviewers. Forty-two persons attended the
workshop.

Component Based Performance Prediction, Xiuping Wu,
David McMullan and Murray Woodside

Component Based Software Engineering (CBSE) exploits
re-usability of configurable components to generate software
products more quickly, and with higher quality. CBSE offers
potential advantages for performance engineering. If most of a
new system consists of existing software components, it should
be possible to predict properties like performance more easily,
than if all of the software is new. The performance-sensitive
properties of the components can be extracted and stored in a
library, and used to build a predictive model for the
performance of a proposed product. This paper describes an
approach based on performance submodels for each
component, and a system assembly model to describe the
binding together of library components and new components
into a product. In this work a component can be arbitrarily
complex, including a subsystem of concurrent processes. The
description pays particular attention to identifying the
information that must be provided with the components, with
the bindings, and to providing for parameterization to describe
different configurations and workloads.

4 Workshop Sessions and presented papers
The workshop was divided into eight sequential sessions;

five working sessions held between a welcome session and a
closing session. The opening session included a review of
progress made at CBSE5 and with respect to the JSS special
issue, second in special edition produced by this community.
The closing included reviews of the six working sessions and
discussion of directions for follow-on research.

The following sessions were organized:
- Measurement and Prediction of Extra-Functional

Properties
- Specification and Runtime Verification
- Analysis, Design and Patterns
- Compositionality Issues for Extra-Functional Properties
- Generative Modeling and Synthesis

The abstracts of the papers presented in the sessions are
listed below.

Scenario-Based Prediction of Run-time Resource-
Consumption in Component-Based Software Systems,
Merijn de Jonge, Johan Muskens and Michel Chaudron 4.1 Session I: Measurement and Prediction of

Extra-Functional Properties
A fundamental problem faced when attempting to predict

properties of assemblies is determining what contribution
properties of a component contribute to assembly behavior and
how to identify and package that information for use in
assembly prediction. The papers presented in the first session
of the workshop addressed these issues in the area of
performance analysis, reliability analysis, and run-time
resource consumption.

Towards Component-Based Software Performance
Engineering, Antonia Bertolino and Raffaela Mirandola

Resources of embedded systems, such as memory size and
CPU power, are expensive and (usually) not extensible during
the lifetime of a system. It is therefore desirable to be able to
determine the resource consumption of an application as early
as possible in the design phase. Only then, a designer is able to
guarantee that an application will fit on a target device.
Resource prediction is a technique to estimate the amount of
consumed resources by analyzing the design and/or
implementation of an application. In this paper we concentrate
on predicting memory consumption in component-based
applications. Component-based applications complicate
resource predictions because resource consumption is spread
across individual components. The challenge is to express
resource consumption per component, and to combine them to
do predictions over compositions of components. To that end,
we propose a model in which individual resource estimations
of components can be combined. These composed resource
estimations are then used in scenarios (which model run-time
behavior) to predict memory consumption of applications.

Early and rigorous performance analysis of component-
based systems is a crucial issue in software engineering to
guarantee that the developed components and their assemblies
will satisfy their quality requirements. We propose an original
approach, called the CB-SPE, for component-based software
performance engineering. CB-SPE relies on, and adapts to a
CB framework, the concepts and steps of the SPE technology
and uses for modeling the standard RT-UML profile, reshaped
according to the CB principles. The approach is compositional
in that it is applied first at the component layer for achieving
parametric performance evaluation of the component in
isolation, and then at the application layer for predicting the
performance of the assembled components on the actual
platform. We also outline the architecture of a tool supporting
the automation of the proposed approach, and overview related
work.

4.2 Session II: Specification and Runtime
Verification

The five papers presented in the second session of the first
day of the workshop presented approaches for verifying the
correctness of component-based applications. The papers
presented by Hofmeister, Barnet, and Heineman focus on
specifying component constraints or contracts and verifying

ACM Software Engineering Notes 2 May 2004 Volume 29 Number 4

that these are met at run-time. Jia focus on feature-rich
applications and the runtime detection and resolution of feature
interactions. Dijkman present a method for determining if the
behavior of an application conforms with the behavior of the
enterprise in order to increase user satisfaction.

Specifying Architectural Constraints on Components
Wayne DePrince Jr and Christine Hofmeister

Research to improve component reuse has focused on
providing the specification of various behavior properties. In
this paper we present our approach to this problem, which
focuses not so much on specifying the behavior of the
component, but instead on certain architectural constraints. We
introduce our research project “lips”, a language for formally
capturing these usage constraints and a toolset for
automatically providing for their enforcement at runtime. Our
approach captures the usage constraints that are local to a
particular component. In this way we express these restrictions
on its reuse independent of an actual client or application. We
then embed these constraints within the component’s
specification. Our toolset verifies that the component conforms
to the specification and uses it to generate code which checks if
the constraints are obeyed by clients at runtime.

Serious Specification for Composing Components, Mike
Barnett, Wolfgang Grieskamp, Clemens Kerer, Wolfram
Schulte, Clemens Szyperski, Nikolai Tillmann and Arthur
Watson

We discuss the use of an industrial-strength specification
language to specify component-level contracts for a product
group within Microsoft. We outline how the specification
language evolved to meet the needs of the component-based
approach followed by that group. The specification language,
AsmL, is executable which allows for testing to be done using
runtime verification. Runtime verification dynamically
monitors the behavior of a component to ensure that it
conforms to its specification.

Run-Time Management of Feature Interactions, Yinghua
Jia and Joanne M. Atlee

There is a push to develop feature-rich applications as
collections of interconnected feature modules. The problem is
that these modules are conceived as independent features, but
when strung together, they may interfere with each other
because they modify the same shared data (e.g., two features
may inconsistently update variables that are encapsulated in a
third module). We are studying how to support modular feature
development via a framework that interconnects features and
that automatically detects and resolves feature interactions. In
this paper, we propose a component model for coordinating
features and we describe a prototype framework that
implements this model.

Verifying the Correctness of Component-Based Appli-
cations that Support Business Processes, Remco M.
Dijkman, Joao Paulo Andrade Almeida and Dick A.C.
Quartel

Developing applications that properly support the enterprise
is a difficult task. Failing to perform this task results in
applications that are not accepted by the end-users and that
frustrate daily conduct of business. In this paper we introduce a
formal yet practical method that helps to design component
based applications that properly support the enterprise. The
method can be used to verify whether the behavior of an
application conforms to the behavior of the enterprise, where

the behavior of the enterprise is specified in the form of
business processes. The method helps to avoid applications
being designed that support the enterprise in an incorrect
manner.

Integrating Interface Assertion Checkers into Component
Models, George T. Heineman

Run-time enforcement of behavioral contracts has been
studied extensively in procedural and object-oriented
languages. This research has led to a better understanding of
specific techniques, including pre-processing compilers or
wrappers. However, component-based software engineering
(CBSE) imposes additional restrictions and it is appropriate to
consider how to extend these techniques when the software is
decomposed into independently-developed third-party
components. In this paper we identify some requirements for
integrating run-time enforcement of behavioral contracts into
the component model and illustrate a solution using a scaled-
down component model and example. The primary result is
that a standardized service should be added to component
model implementations to enable application assemblers to
enforce local properties as specified by the components in the
application as well as global properties as specified by the
application.

4.3 Session III: Analysis, Design and Patterns
Session three focused on how to design quality into

component assemblies. The four papers presented during this
session discussed mechanisms to support design and
implementation of component-based systems for which certain
guaranteed can be made about predicted assembly behavior.
Mehlitz and Penix describe a system, D4V, that uses a
combination of design patterns and component verification to
select the sets of components that can be assembled to produce
systems that meet specific quality attribute goals. Sridhar and
Hallstrom propose that component containers be viewed as
parameterized components in order to leverage existing
support for reasoning about properties of parameterized
components. Baresi et al. describe the use of known properties
of architectural styles and graph transformations as a means for
providing continued assurance of system quality when an
assembly is reconfigured at run-time. Vecellio and Thomas
extend component infrastructure to support policy enforcement
mechanisms.

Design for Verification: Using Design Patterns to Build
Reliable Systems, Peter C. Mehlitz and John J. Penix

In commercial software development, components are
mainly used to reduce time to market. While some effort has
been spent on formal aspects of components, most of this was
done in the context of integration into programming languages
or operating system frameworks. As a consequence, increased
reliability of composed systems is merely regarded as a side
effect of a more rigid testing of pre-fabricated components. In
contrast to this, Design for Verification (D4V) puts the focus
on component-specific property guarantees, which are used to
design systems with high reliability requirements. D4V
components are domain specific design pattern instances with
well-defined property guarantees and usage rules, which are
suitable for automatic verification. The guaranteed properties
are explicitly used to select components according to key
system requirements. The D4V hypothesis is that the same
general architecture and design principles leading to good
modularity, extensibility and complexity/functionality ratio can
be adapted to overcome some of the limitations of

ACM Software Engineering Notes 3 May 2004 Volume 29 Number 4

conventional reliability assurance methods, such as too large a
state space or too many execution paths.

Generating Configurable Containers for Component-Based
Software, Nigamanth Sridhar and Jason O. Hallstrom

Existing container-based development strategies provide
solutions to the problem of encapsulating cross-cutting
concerns in component-based software systems. These
approaches fall short, however, in enabling tractable reasoning.
To extend existing work in reasoning about parameterized
components to container-based approaches, we view containers
as parameterized components. We present a model of
component containers based on Service Facilities (Serfs) [18]
— a design pattern framework that supports the construction of
parameterized components that supports dynamic binding. To
ease the transition to this new approach, we present the design
of a tool that automatically generates Serf containers for
existing component libraries.

Modeling and Analysis of Architectural Styles Based on
Graph Transformation, Luciano Baresi, Reiko Heckel,
Sebastian Thöne and Dániel Varró

Modern architectural styles, like the service-oriented style
underlying web services, are highly dynamic. This complicates
not only their practical application, but also the modeling and
prediction of their behavior. To account for this problem, we
propose to model architectures as graphs, represented as
instances of UML class diagrams, and to describe their
reconfigurations by graph transformation rules. Based on a
sample model for service-oriented architectures, we discuss
what properties are interesting to be analyzed and how such
analysis could be performed.

Infrastructure Support for Predictable Policy
Enforcement, Gary Vecelli and William Thomas

Component and service-based application infrastructures
provide mechanisms for efficiently composing a system from a
diverse collection of components and services. However,
because of the lack of insight into the components and services
within the application, integrating changes can be challenging.
One class of change that we perceive as being both common
and necessary is in the area of policy adherence (i.e., the
constraints on a system’s behavior that are imposed across the
system). Unless the mechanisms that implement the policy are
well isolated from the core application logic, any upgrade to
the policy can have a ripple effect through the system. For
systems that require robust certification, this ripple effect
hampers the ability to rapidly deploy changes in policy. In this
paper we highlight some patterns for separating policy
adherence from application core logic, and discuss how these
patterns can be mapped to commercially available
infrastructures. By realizing these patterns as common
infrastructure extensions, we allow applications to be
developed in a manner consistent with the commercial
infrastructure, provide the power of policy enforcement
mechanisms to the system developers, and separate the policy
enforcement logic from core application

4.4 Session IV: Compositionality Issues for Extra-
Functional Properties

Both papers in this session discuss the need to provide
languages and reasoning frameworks that support usage-
context sensitive description of component properties. Hamlet
et al. apply prior work, based on identification of usage

subdomains for components, in predicting assembly reliability
to assembly runtime prediction. Sitaraman et al. argue the
need for more expressive languages for expressing properties
and for mathematical models that support reasoning in an
environment in which the component properties depend on
their usage.

Experiments with composing component properties,
Dick Hamlet, Milan Andric and Zheng Tu

A detailed, microscopic theory of software component
composition into systems was presented in this workshop in
2000 and subsequently at ICSE 2001. The essential idea of this
theory is that by decomposing the input domain of a
component into appropriate subdomains, its properties can be
measured so that a system developer can later use the
measurements, factoring in usage and system-structure
information when such system-defined information is
available. In principle, the theory could be the basis for a CAD
tool supporting system design, which would take as input: (1)
the black-box components, (2) their developers’ subdomains
and property measurements, and (3) a proposed system
structure. The CAD tool could then calculate the system
properties to be expected. This compositional theory was
originally proposed for the reliability property, but it was soon
recognized that it applies to almost any component/system
property that is input- and structure-dependent. In particular,
the run-time property is an ideal one for experimentation,
because it is easier to measure than reliability, and does not
depend on the somewhat dubious background theory of
software reliability. While reliability measurements require
random testing, run time measurements can be made
systematically, since there is no issue of failure correlation.
Thus run times can be measured with fewer evenly distributed
test points. We report on initial validation experiments for this
theory, using a rudimentary CAD tool that does calculations of
run times. These experiments address the basic validity of the
theory and the efficiency of the system-design calculations.

Expressiveness Issues in Compositional Performance
Reasoning, Bruce W. Weide, William F. Ogden and Murali
Sitaraman

Compositional reasoning about any behavioral property of a
system depends, first, on the ability to express that property for
both individual components and systems constructed from
them. Expressiveness problems arise when considering
compositional reasoning about performance in the presence of
complex user-defined types (as opposed to simpler built-in
types). There are interesting implications not just for
compositional reasoning but for language design and for
formal specification.

4.5 Session V: Generative Modeling and Synthesis
In the fifth and final presentation session of the workshop

three papers describing technologies that support system
generation and adaptation were presented. Cervantes and Hall
described a system that is capable of monitoring assembly
behavior and managing service dependencies, Inverardi and
Tivoli describe connector synthesis to support assembly
evolution, and Zhao et al. generate implementations from
architectures using components.

Automating Service Dependency Management in a Service-
Oriented Component Model, Humberto Cervantes and
Richard S. Hall

ACM Software Engineering Notes 4 May 2004 Volume 29 Number 4

This paper describes a mechanism to automate service
dependency management in a service-oriented component
model. The impetus behind this mechanism is not merely to
eliminate complex and error-prone code from component-
based applications, but also to deal with the phenomena of
application building blocks that exhibit dynamic availability,
i.e., they may appear or disappear at any time and this is not
under the control of the application. This intense focus on
dynamic availability of building blocks is the result of the
belief that applications of the future will become context aware
in order to deal with building block proliferation. Such
applications will employ context-aware architectures that use
context (e.g., location, environment, user task) as a filter for
including/excluding building blocks in/from their
compositions. In this vision, automatic handling of
dynamically available building blocks and their impact on
application composition is critical. The service dependency
management mechanism described in this paper is a starting
point for such research and is implemented on top of the Open
Services Gateway Initiative (OSGi) framework. The concepts
and solutions it provides are sufficiently general for application
in other service-oriented component models.

5 Working Sessions
There were two working sessions during the afternoon of

the second day of the workshop, which provided a forum for in
depth discussion of issues that had been raised during the paper
sessions. These issues covered a wide range of topics related to
trusted components, runtime verification, container generation,
component generation, and the general state of research in the
area. During the first working session a top ten list of questions
was created and then reduced to three broad issues that were
subject of discussion during the final working session.

1. Abstraction versus encapsulation

2. Trusted predictions—how does abstraction affect our
ability to predict properties?

3. Why do we believe that a “compositional theory of ‘X’ is
possible (X denotes different properties)? And do we need
a theory in order to produce useful predictions?

a. Does it matter what ‘X’ is? Are some properties more
compositional than others?

b. Are there a standard set of component properties
(component “measures of merit”) for each X or for all X
?

A compositional synthesis of failure-free connectors for
correct components assembly, Paola Inverardi and Massimo
Tivoli

4. How is the prediction of system properties from
components different in CB/not-CB way?

Correct automatic assembly of software components is
considered an important issue of CBSE (Component-Based
Software Engineering). It is related to the ability to establish
properties on the assembly code by only assuming a relative
knowledge of the single components properties. In our
precedent works, we have provided our answer to this problem
by discussing a software architecture based approach in which
the software architecture imposed on the assembly allows for
detection and recovery of COTS (Commercial-Off-The-Shelf)
integration anomalies. One of the crucial aspects of our
assembly technique is related to the ability to synthesize a
specification-satisfying assembly code (i.e. the failures-free
connector) in such a way that the synthesis results
compositional with respect to system evolutions. That is every
time the system evolves, in order to automatically synthesize
the failures-free connector for the new version of the
specification-satisfying system it is enough to repeat the
synthesis only for the part of the system related to its evolution.

5. Can the specified/certified values of component properties
be acquired independent of a specific use context?

6. How do we “measure” component properties (logical and
empirical) is traditional software measurement theory
adequate? e.g;. GQM

7. The perennial question: what is a component, what is
component- based?

8. Do we understand (what is) the relationship between
system, “architecture” and “components”

a. Where is our abstraction level for components? and
b. Where does composition occur – at which “level” and

is it different in kind at different levels, and what are
its mechanisms? A Generative and Model Driven Framework for

Automated Software Product Generation, Wei Zhao,
Barrett R. Bryant, Jeffrey G. Gray, Carol C. Burt, Rajeev R.
Raje, Andrew M. Olson and Mikhail Auguston

9. Are there common composition principles across levels?

10. What services do component models “add” to components,
at runtime, and why isn’t it overt in our takes? Component-based Software Engineering (CBSE) and

related technologies have demonstrated their strength in recent
years by increasing development productivity and parts reuse.
Recently, the Model Driven Architecture (MDA) has raised the
abstraction level of programming languages to modeling
languages that can be compiled by downward model
transformations. Correspondingly, the goal of Generative
Programming (GP) is to automate concrete software product
generation from a domain-specification and reusable
components. This paper describes the UniFrame framework,
which is built on the foundation of CBSE while leveraging the
capabilities offered by MDA and GP. UniFrame provides
theories and implementation for steps of model transformations
for a concrete software product based on domain development
in various Generative Domain Models.

This list was “boiled down” into three broad issues to which
the remainder of the working sessions was devoted. During
each session there was lively discussion and sometimes heated
debate, each resulting in a new list of questions that provide
fertile ground for future writing and research in the area. The
three topics were:

1. Is it possible to develop a composition theory for some
assembly property?

Issues have been raised at this workshop and past
workshops that lead one to the ability to predict assembly
reliability and performance: Can we define them sufficiently to
define composition operators? Are some properties inherently
non-compositional while others are? We recognize the need for
compositionality for analyzing systems that are open and
dynamically growing but perhaps, if we can close the system,

ACM Software Engineering Notes 5 May 2004 Volume 29 Number 4

then we can do global analysis, and scale through abstraction.
This led to the identification of the need to produce or find a
technical definition of compositionality upon which the
community could agree. This was left as an open issue.

2. What is the relationship among components, architecture,
and system?

Software architecture papers clearly define the world in
terms of component and connectors, Acme is the meta
language of ADLs and looks like a language for describing
assemblies of components. Objects/Classes are also clearly
defined – and are not components. Architecture is the
compositional bridge between the desired properties of a
system and the empirical properties of components, and
component implementations. Questions arose as to why we are
introducing levels of abstraction t? If there are a variety of
levels of abstraction, at what level do components live? Where
does composition occur – at which “level” and is it different in
kind at different levels, and what are its mechanisms? Are
there common composition principles across levels? What
characteristics of an architecture are required for
composability? Different types of components exist at different
levels of the hierarchy. Component is of itself ‘empty’ without
the modifier ‘software,’ ‘architectural’, ‘performance spec,’.

3. How is system property prediction affected by the black-
box nature of components? Or put another way, Can the
specified/certified values of component properties be
acquired independent of a specific use context?

Dick Hamlet pointed out that components are inherently
input dependent; if they are composed they acquire
composition-specific dependencies; how can we reason about
all the possibilities? It was suggested that invariants imposed
by a component model provide bounds on assemblies that will
result in assemblies that are ‘well formed’ about which
reasoning is possible. It was suggested that defining a closure
on the effects a component behavior can have (impact radius)
might produce benefits. The need for more expressive
notations and tools was agreed. All non-trivial composition
must respect its context, because composition will take place in
multiple contexts; therefore, the context must be made explicit.
On an operational level, users want a description in a CAD
style tool, with parts (boxes) and links among them, this is
reminiscent of the Acme development environment and
resurfaces the fact that there is a duality between sw
architecture – how things can be plugged, their topologies, etc
– and how we define components, when a software component
is a component in an architecture. This last observation led to
the final question of whether ‘wiring’ is the same as
‘composition’?

6 Workshop Results and Future Plan
Participants left the workshop stimulated with new ideas

about issues that require attention if predictable assembly is to
become a reality. Some old questions were closed, some new
ones were raised to add to the only slightly smaller list that
existed at the opening of the workshop. It was determined that
the system must be designed with reasoning about specific
properties in mind and that is important to consider the type of
component (specification, COTS, etc.) before reasoning
frameworks can be developed. New questions that arose during
the workshop include whether we can define the norms for
component models that support predictability? Is reflection
antithetical to predictable component models? And what are
requirements to compositionality in the face of feature-oriented

extension such as services provided by component containers?
Is feature-oriented extension the “way to go” to attain
predictability?

While the workshop opened more issues than it closed there
were many interesting points to take away about progress in
research and practice in component-based development. We
have seen that the notion of component trust is finding its way
into industry, the use of design rules has gained the interest of
researchers, support for reasoning about performance issues his
improved, primary objectives of CBSE still: reuse of
components?, productivity, ease of maintenance, the notion of
connector is fundamental to the work of this community, and
parameterized component models are receiving increasing
interest.

Not only did the workshop show us that many positive
strides have been made during the last twelve months but also
that certain topics that we expect to come up less often in the
future including the question of ‘how do we define the term
component? We expect to see fewer attempts to create generic
approaches to reasoning about components and assemblies.

6.1 Publication of Results
The proceedings of the workshop are available on the web

at both the Software Engineering Institute [2] and Monash
University [3].

6.2 Future Plans
The workshop was deemed a great success and suggestions

for future directions were discussed. It was suggested that each
workshop should begin with a mini-workshop on what has
been accomplished and agreed upon in the past so that new
attendees can be brought up to speed and veterans will be
reminded. It was decided to that the topic is attracting
sufficient attention that we should consider a larger event for
2004, perhaps a federated event with other related workshops.
It was also suggested and agreed that the status of the
proceedings be improved, perhaps by publishing through the
IEEE digital library or perhaps having longer versions of
papers published in a special proceedings such as LNCS.

7 Acknowledgement
We would like to thank you the program committee who
contributed greatly to the success of the workshop.

The program committee:
Judith Bishop, University of Pretoria, South Africa
Jan Bosch, University of Groningen, The Netherlands
Ivica Crnkovic, Mälardalen University, Sweden
Jacky Estublier, LSR-IMAG, France
Kathi Fisler, WPI, USA
Dimitra Giannakopoulou, NASA Ames, USA
Richard Hall, Imag/Lsr, France
Dick Hamlet, Portland State University, USA
George Heineman, WPI, USA
Paola Inverardi, University of L'Aquila, Italy
Shriram Krishnamurthi, Brown University, USA
Otto Preiss, ABB/CRC, Switzerland
Heinz Schmidt, Monash University, Australia
Judith Stafford, Tufts University, USA
Clemens Szyperski, Microsoft Research, USA
Kurt Wallnau, Software Engineering Institute, Carnegie
Mellon University, USA

ACM Software Engineering Notes 6 May 2004 Volume 29 Number 4

Dave Wile, Teknowledge, Corp., USA
Christian Zeidler, ABB Research, Germany

8 References
[1] I. Crnkovic, H. Schmidt, J. Stafford, K. Wallnau, 5th

ICSE Workshop on Component-Based Software
Engineering: Component Certification and System
Prediction, Software Engineering Notes, 2001. Nov

[2] http://www.sei.cmu.edu/pacc/CBSE6

[3] http://www.csse.monash.edu.au/~hws/cgi-
bin/CBSE6/Proceedings/proceedings.cgi

[4] http://www.sei.cmu.edu/pacc/CBSE5/CBSE5-
Proceedings.html

[5] http://www.csse.monash.edu.au/~hws/cgi-bin/JSS-
ACBSE/

[6] http://www.sei.cmu.edu/pacc/events.html

ACM Software Engineering Notes 7 May 2004 Volume 29 Number 4

http://www.sei.cmu.edu/pacc/CBSE5/CBSE5-Proceedings.html
http://www.sei.cmu.edu/pacc/CBSE5/CBSE5-Proceedings.html

	Introduction
	The Aim of the Workshop
	Workshop Objectives

	Participating in the Workshop and Workshop Organization
	Workshop Sessions and presented papers
	Session I: Measurement and Prediction of Extra-Functional Properties
	Session II: Specification and Runtime Verification
	Session III: Analysis, Design and Patterns
	Session IV: Compositionality Issues for Extra-Functional Properties
	Session V: Generative Modeling and Synthesis

	Working Sessions
	Workshop Results and Future Plan
	Publication of Results
	Future Plans

	Acknowledgement
	References

