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Abstract—Recent advances in the industrial internet of
things (IIoT) and cyber-physical systems drive Industry 4.0 and
lead to advanced applications. The adequate performance of
time-critical automation applications depends on a clock
synchronization scheme used by control systems. Network
packet delay variations adversely impact the clock
synchronization performance. The impact is significant in
industrial sites, where software and hardware resources heavily
contribute to delay variations and where harsh environmental
conditions interfere with communication network dynamics.
While existing time synchronization methods for field IIoT
end-devices, e.g., Simple Network Time Protocol (SNTP),
provide adequate synchronization in good operating conditions,
their performance degrades significantly with deteriorating
network conditions. To overcome this issue, we propose a
scalable, software-based, lightweight clock synchronization
method, called CoSiNeT, for IIoT end-devices that maintains
precise synchronization performance in a wide range of
operating conditions. We have conducted measurements in local
network deployments such as home and a university campus in
order to evaluate the proposed algorithm performance. The
results show that CoSiNeT matches well with SNTP and
state-of-the-art method in good network conditions in terms of
accuracy and precision; however, it outperforms them in
degrading network scenarios. In our measurements, in fair
network conditions, CoSiNeT improves synchronization
performance by 56% and 73% compared to SNTP and
state-of-the-art method. In the case of poor network conditions,
it improves performance by 76% and 74%, respectively.
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I. INTRODUCTION

Internet of Things (IoT) has revolutionized businesses by
changing how data is utilized in order to make products and
services more efficient, reliable, and profitable. While IoT is
mainly used for commercial applications, Industrial Internet
of Things (IIoT) is used for industrial purposes, e.g., plant
operations, manufacturing, and material management. IIoT
promises to achieve improved productivity, reliability, and
revenues in the automation business by connecting
time-constrained embedded devices to “the Internet” [1].

Fig. 1 shows a typical IoT system in an industrial plant.
The bottom layer of the IoT system, ’IoT end-devices,’
comprises physical assets such as robots, drives, motors, and
transformers. Typically, the asset-related data is acquired by

Fig. 1: Typical industrial internet of things architecture

wired and wireless local endpoints in the field and sent to a
local or remote server via a local communication gateway.
Such a server is implemented using industrial-level
computers or cloud-based storage servers. The
communication between sensor devices and the on-field data
acquisition unit is termed local plant communication.
Standard communication technologies used for local plant
communication can be both wired or wireless, e.g.,
Bluetooth, Zigbee, and RFID. The data received at the server
is used to run various analytical services in order to make
informed decisions. The output of analytical services is used
for various plant related intelligent functions such as
enterprise resource planning (ERP), management enterprise
systems (MES), asset management, condition monitoring,
and predictive maintenance.

The advancement of cyber-physical systems and IoT is
expected to enable future industrial automation evolution
through the fourth evolution (Industry 4.0) [2]. Industry 4.0
has enabled the intelligent applications like cloud robotics
and drones for manufacturing through immensely improved
connectivity. Most of the industrial applications are based on
the transfer of time over a network, so the alignment of time
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or time synchronization is critical for successful adaptation
of automation functions in IIoT [3].

Achieving adequate time synchronization for such
applications within the new paradigm is challenging due to
following reasons:
1) The process industries typically use software-based
synchronization methods such as Network Time Protocol
(NTP), Simple Network Time Protocol (SNTP), or
vendor-specific time synchronization protocols, for which
software, as well as hardware resources significantly
contribute to delay variations with network part.
2) The exposure to harsh environmental conditions in the
process industry brings interferes with communication
network resulting in the worst delay conditions.
3) IIoT incorporates hundreds of IoT end-devices across
factory sites to collect data from various subsystems. These
typically are inexpensive devices that have low-cost
oscillators and are low on computation and communication
resources. Given these limitations, IIoT devices often become
a source of additional synchronization errors, e.g., under
extreme temperatures, oscillators introduce significant offset
errors in the synchronization process [4]. Besides this, the
lower memory and communication capabilities limit the
deployment of computationally extensive and hence accurate
time synchronization algorithms.
4) The resource-constrained IIoT end-devices in field
network typically use lightweight SNTP rather than
computation heavy NTP-based clock synchronization and
achieves accuracy and precision in the order of few
milliseconds. However, they cannot maintain the same
performance in the worst-case network behaviors. Their
synchronization performance degrades significantly with
deterioration on networks.

In order to address these challenges, this paper proposes a
lightweight, scalable yet accurate, and precise clock
synchronization algorithm for IIoT end-devices called
CoSiNeT that can maintain its performance even in poor
network conditions. Typical industrial networks are
heterogeneous comprising wired and wireless sub-networks
at field level. Considering the network heterogeneity at field
level networks, for CoSiNeT evaluation, we conducted data
measurements in real wired and wireless network
deployments, home and a university campus. The results
demonstrated that CoSiNeT outperforms SNTP and
state-of-the-art methods by showing more than 23%
improved performance.

The contributions of this paper are as follows:
1) We propose a lightweight, scalable and precise clock
synchronization algorithm for inexpensive, less resourceful
IIoT end-devices that provides precise synchronization over a
wide range of harsh environmental conditions in a factory.
2) State-of-the-art methods typically use simulated network
data or data from controlled environments, e.g., laboratories.
The proposed algorithm is evaluated based on the data from
real wired and wireless networks with different degrees of
network qualities - from good to poorly performing networks.
3) The algorithms’ performance was benchmarked against
widely used in-practice time synchronization protocol in IIoT

end-devices from field network such as SNTP as well as
state-of-the-art method SPoT [5] available in the literature.
The proposed algorithm’s superior performance with methods
from practice and literature strengthens the new algorithm’s
positioning.

The paper is organized as follows: First, we present related
work in Section II. In Section III, we describe the
measurements from local area networks and characterize
them. Section IV introduces the CoSiNeT algorithm, and
Section V evaluates its performance based on the measured
network data. We provide conclusions at the end.

II. RELATED WORK

Many methods have been described in the literature
addressing the clock synchronization performance.

In simple clock synchronization methods, the raw clock
offset measurements can be averaged or filtered by a
low-pass filter. Within these methods, the raw offset
measurements are clipped to the empirical 3σ level before
passing through the filter to reduce the effect of delay
outliers. However, such simple approaches result in lower
synchronization precision and do not guarantee the same
performance in networks with different quality of
communication channels. While IoT devices are typically
constrained in Wireless Sensor Networks (WSNs), there
have been several time synchronization methods developed in
the WSN context. The flooding time synchronisation protocol
is a common time-sync protocol in WSNs. In the flooding
protocols [6], [7], [8] all the network nodes synchronize with
the reference when the synchronization is convergent.
However, the clock drift on the flooding path degrades the
synchronization quality in such methods.

P. Jia et al. [9] proposed a digital-twin-enabled
model-based scheme to achieve an intelligent clock
synchronization in fast-changing IIoT environments.
However, the success of this scheme depends on accurate
clock modelling so that its behavior under dynamic operating
environments is predictable.

Sridhar et al. presented the CheepSync time synchronization
protocol [10] for Bluetooth Low Energy (BLE) devices. It
utilizes the broadcast MAC to deal with network issues causing
time synchronization errors.

Kalman filters have been used for time synchronization in
order to model time offset and frequency offset and to handle
missing information [11]. Such algorithms are computationally
extensive and hence may not be suitable for field devices in
IoT deployments.

S. K. Mani et al. [5] developed a synchronization system,
including a lightweight client, a new packet exchange protocol
called SPoT, and a scalable reference server. However, this
method was not found efficient in dealing with packet errors
and spikes in offsets introduced during bad network conditions.

III. LANS: TIME DATA MEASUREMENT AND ANALYSIS

We conducted time data measurements in wired and wireless
(wi-fi) networks deployed at home and university campus. We
selected four different network traces that represented different
network conditions ranging from good to bad.
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A. Network data capture method
We used a Java-based client/server application and two

computers to capture time-related network data. The Java
program running on the static host or client computer sends
periodic timing requests containing the start time T1, to the
static server computer via a communication network. The
server acknowledges the request at the local time T2. The
server then sends a reply at the time T3 using the same
timing packet with timestamps T2 and T3. The host receives
the timing packet back at time T4. Thus, the host machine
accumulates T1, T2, T3, and T4 timestamps corresponding to
all periodic timing requests and responses over the same
network for a particular period in a log file. The timestamps
were used to calculate time offset and round trip delays
(RTD) between host and server machines. The effect of java
implementation on measurements was not considered in this
study.

B. Trace 1: Wired home network
A typical home network was analyzed; the network

included multiple devices such as laptops, TV, printer, and
smartphones. The network was substantially occupied since
all these devices were active during measurement. The server
and client computers were found to be apart by a single hop.

Fig. 2 shows time offset and RTD values for the home
network where the devices were connected using network
cables. The offset between host and server device is linearly
decreasing from 70ms without any variations. RTD values
range from a minimum of 0.3ms to a maximum of 1.15ms.
There is a small variation in RTD values with an average of
0.8ms and a standard deviation of 0.134ms.

Fig. 2: Time data measurement: Wired home network

C. Trace 2: Wireless home network
When the devices were communicating using wireless links,

the time offset and RTD values measured from a home network
are shown in Fig. 3. The offset between host and server device
shows multiple spikes due to errors (shown by red circles)
related to timing requests and responses. RTD values range

from a minimum of 0.5ms to a maximum of 2000ms. There
are few spikes in RTD data with an average of 7ms and a
standard deviation of 85ms. The offset and RTD data from the
wireless home networks are higher in magnitude and variation
than its wired counterpart.

Fig. 3: Time data measurement: Wireless home network

D. Trace 3: Wired campus network
The university campus network that was analyzed included

various departments, laboratories, libraries, offices, and
students/staff accessing the wired and wireless (wi-fi)
network for various activities. The server and client
computers were found to be apart by 3 to 5 hops.

Fig. 4 shows time offset and RTD values for the campus
network where the devices were connected using network
cables. The offset between host and server device is linearly
increasing with minor variations. RTD values range from a
minimum of 0.86ms to a maximum of 24.82ms. There is a
slight variation in RTD values, and RTD has an average of
1.98ms and a standard deviation of 1.70ms. The offset and
RTD data from the campus network is higher in magnitude
and variation than the wired home network, mainly due to
the bigger network size.

Fig. 4: Time data measurement: Wired campus network
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E. Trace 4: Wireless campus network
When the devices were communicating using wireless

links, the offset and RTD values measured from a campus
network are captured in fig. 5. The offset between host and
server device shows multiple spikes due to errors (shown by
red circles) related to timing requests and responses. RTD
values range from a minimum of 1ms to a maximum of
5000ms. There are few spikes in RTD data with an average
of 50.44ms and a standard deviation of 205.99ms. The offset
and RTD data from the wireless campus network is higher in
magnitude and variation than its wired counterpart due to
multiple packet exchange errors.

Fig. 5: Time data measurement: Wireless campus network

F. Summary: Network time data measurement
All the measured network traces by their network types, and

communication medium have been summarized in Table I.

TABLE I: Measured network traces

Trace
Nr

Communication
medium

Network
type

TRER* Network
Condition**

1 Wired HAN 0 Good

2 Wireless HAN 0.0057 Fair

3 Wired CAN 0 Good

4 Wireless CAN 0.0923 Poor
* Timing request error rate (TRER) =

Timing requests with errors
Total no. of timing requests

** Good: TRER = 0; Fair:0.05 > TRER > 0; Poor: TRER > 0.05

The timing request error rate (TRER) is 0 in the wired
network for home and campus. Typically, wireless networks
are non-deterministic and susceptible to various noise
sources, often missing and delaying packets. Thus, wireless
networks have finite TRER indicating one or more failures in
exchanging timing requests and responses. We develop
criteria to define network conditions (good, fair, or poor)
based on that network’s TRER value. Using this criterion, we
define traces 1 and 3 as from a ’good’ network, trace 3 as
from a ’fair’ network, and trace 4 as from a ’poor’ network.

IV. COSINET ALGORITHM

The proposed clock synchronization algorithm CoSiNeT is
designed for IIoT devices that are inexpensive and low on
computational and communication resources. Hence, it is
lightweight in terms of an exchange of timing messages, e.g.,
time requests and responses over network and algorithm
complexity. Since it is a software-based synchronization
approach, it can be scaled easily for large IIoT deployments.
The algorithm is executed on the client device and includes
periodical exchanges of timing messages with the server
device. Based on these messages, it computes an offset and a
RTD between client and server devices. Further, the
algorithm takes raw offset and RTD values as inputs and
estimates new offset by removing jitters introduced by
oscillators, device stacks, switches, and other entities as
described in Algorithm 1. It uses a special spike detection
and removal module that compares the difference between
estimated and raw offset values with a threshold to detect a
spike in raw offset values due to errors and replaces it with a
previous valid offset. Thus, the estimated time offset is free
from most offset errors and is further used to correct the
client device’s clock to synchronize with the server device.

Algorithm 1 CoSiNeT algorithm
Inputs: Packet delays RTT, Measured offset Raw Offset, Offset data size N,
Window size W
Outputs: Filtered time offset Time Offset, Filtered frequency offset
Freq Offset
1: for i←W + 1 : 1 : N do
2: Calculation of minimum offset and 1-sigma offset tolerance:
3: Offsetmin ← minimum(Raw Offset(1) :

Raw Offset(W ))
4: RTTmin← minimum(RTT (1) : RTT (W ))
5: Offsetthr ← stddev(Raw Offset(1) : Raw Offset(W ))
6: Time offset estimation:
7: if (Raw Offset(i) ≥ Offsetmin) then
8: Updated Offset(i) ← Raw Offset(i) + (RTT (i) −

RTTmin)/2
9: else

10: Updated Offset(i) ← Raw Offset(i) − (RTT (i) −
RTTmin)/2

11: end if
12: Spike detection and removal:
13: if (Updated Offset(i)−Raw Offset(i)) ≥ Offsetthr) then
14: T ime Offset(i)← Updated Offset(i− 1)
15: else
16: T ime Offset(i)← Updated Offset(i)
17: end if
18: Frequency offset estimation:
19: Freq Offset ← (T ime Offset(i) − T ime Offset(i −

1))/(measurement duration)
20: end for

V. COSINET EVALUATION

We evaluated the CoSiNeT algorithm’s performance using
the above-mentioned four network traces of varying degrees
of operating conditions. We also compared the performance of
the proposed algorithm with SNTP and state-of-the-art method
SPoT [5] to derive the baselines.
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A. Trace 1: Wired home network
The measurements from trace 1 were fed to CoSiNeT,

SNTP, and SPoT algorithms. Fig. 6 shows
estimated/corrected offset outputs from different methods
when evaluated using trace 1. Since this measurement trace
is from a ’good’ wired home network, the raw offset does
not significantly vary. The performance of SNTP, SPoT, and
CoSiNeT differs negligibly for this trace.

Fig. 6: Algorithm evaluation: Wired home network

B. Trace 2: Wireless home network
The new algorithm along with SNTP and SPoT were

evaluated using trace 2 and the resulting estimated offsets are
shown in Fig. 7. Given that this measurement trace is
classified as ’fair’, the raw offset has significant variations
represented by spikes due to timing message failures. The
magnified view shows that CoSiNeT effectively curbs the
spikes in offset, whereas SNTP and SPoT are ineffective.

Fig. 7: Algorithm evaluation: Wireless home network

C. Trace 3: Wired campus network
Fig. 8 shows estimated/corrected offset outputs from

CoSiNeT, SNTP and SPoT when evaluated using trace 3.
Although this measurement trace is characterized as ’good’,
the raw offset does have a small variation, and this is visible

through multiple short spikes. The performance of SNTP,
SPoT, and CoSiNeT is identical; however, CoSiNeT performs
better in dealing with spikes than others.

Fig. 8: Algorithm evaluation: Wired campus network

D. Trace 4: Wireless campus network

The network timestamp measurements from trace 4 were
applied to inputs of CoSiNeT, SNTP and SPoT algorithm as
if they were deployed in those networks. Fig. 9 shows
estimated/corrected offset outputs from different methods
when evaluated using trace 4. Since this measurement trace
belongs to the ’poor’ group, the raw offset has significant
variations in multiple long spikes due to timing message
failures. The magnified view shows that CoSiNeT
successfully smoothens the spikes in offset, whereas SNTP
and SPoT were ineffective in such cases.

Fig. 9: Algorithm evaluation: Wireless campus network

E. Summary

The clock synchronization algorithm’s essential function is
reducing the variability in raw offset introduced by packet
delay variation in a network. A better-performing clock
synchronization algorithm is the one that curbs this
variability effectively. For performance comparison of
different clock synchronization methods, we use corrected
offset statistics in terms of mean, standard deviation, and
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TABLE II: Performance comparison of synchronization
protocols using corrected offset statistics (ms)

Trace
Nr

Performance
parameter

SNTP SPoT CoSiNeT

1 Mean 32.731 32.327 32.903
Std Dev 18.983 18.98 18.985

2 Mean 989.79 998.43 991.75
Std Dev 48.214 77.061 20.787

3 Mean 30.415 29.417 29.932
Std Dev 15.18 15.164 15.176

4 Mean 4017.4 4048.2 4010.2
Std Dev 114.28 102.76 26.656

Fig. 10: Wireless campus network

median as together they effectively describe the variability in
data.

Table II summarizes the performance of different
synchronization methods using estimated/corrected offset
statistics. The mean and standard deviation values are nearer
to each other for trace 1 and 3 from ’good’ networks. In
trace 2, from a ’fair’ network, CoSiNet shows the lowest
standard deviation and, hence, variability. In ’fair’ network
conditions, CoSiNeT improves the synchronization
performance by 56% and 73% over SNTP and SPoT. For
trace 4, from a ’poor’ network, CosiNeT again shows the
lowest standard deviation. In ’poor’ network conditions,
CoSiNeT improves the synchronization performance by 76%
and 74% over SNTP and SPoT. The same can be seen from
Fig. 10, which shows median and interquartile range (IQR)
for trace 4. The lowest IQR for CoSiNeT indicates a
minimum statistical spread of corrected offset compared to
others. Thus, CoSiNeT matches well with SNTP and
state-of-the-art methods in good network conditions;
however, it outperforms them in degrading network
scenarios.

VI. CONCLUSION

Time and frequency alignment is essential for ensuring
QoS for automation functions. It has become critical for the
resource-constrained field devices due to the introduction of
new technologies like drones, cloud robotics following
advances in CPS and IIoT. Since existing software-based
synchronization means such as SNTP and vendor-specific

solutions fail to maintain the performance in field networks
with poor channel qualities, we propose a scalable,
lightweight clock synchronization algorithm called CoSiNeT
for less resourceful and inexpensive IIoT devices. Our
evaluation, based on networks of varying degrees of
operating conditions, shows that the CoSiNeT algorithm in
our evaluations performs better than SNTP and
state-of-the-art method SPoT by 56% and 73% in a fair
network environment and by 76% and 74% respectively in
poor network conditions. The algorithm can successfully deal
with offset changes due to step changes in RTD and multiple
consecutive or random errors in timing messages due to
network deterioration, leading to improved system reliability
and safety.
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