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ABSTRACT
It is known that offsets in general are not sustainable, i.e., if offsets
in a system are modified it is not trivial to determine if this affects
schedulability or not. In this paper we investigate if there are situa-
tions where offsets can be deemed sustainable, i.e., situations where
one can safely modify an offset without impairing schedulability.

We introduce, for the approximate Response-Time Analysis, a
concept of a subsumes relation between demand bound functions
and show that if offsets are modified in such a way that the modified
demand bound function is subsumed by the original demand bound
function, then the modification is sustainable.

We show an example of how this information can be used in
an engineering context where all system parameters are fixed but
offsets. We generate all transaction that are subsumed by a schedu-
lable transaction and merge this information in a presentable form
for the engineer. This information can be used to safely modify the
transaction or to investigate the robustness of the schedulability.
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1 INTRODUCTION
The notion of schedulability is well understood within the real
time systems community. A system is specified according to some
formal notation, and is deemed schedulable with respect to a sched-
uling policy if it is guaranteed to meet all its timing requirements
(typically expressed as deadlines). So schedulability implies that
all deadlines are satisfied if the system behaves according to its
parameterized specification.

Response-Time Analysis (RTA) [1, 11] is a powerful and well
established schedulability analysis technique. RTA is a method to
calculate upper bounds on response-times for tasks in real-time
systems. In essence RTA is used to perform a schedulability test,
i.e., checking whether or not tasks in the system will satisfy their
deadlines.
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To be able to calculate less pessimistic response times in systems
where tasks may have dependencies in their release times, Tindell
introduced RTA for a task model with offsets, the transactional task
model, [12]. Palencia Gutiérrez and González Harbour formalized
and extended the work of Tindell in [10]. And in [9] Mäki-Turja
and Nolin introduced a fast-and-tight RTA method based on their
work.

In [3, 4] Burns and Baruah introduced the concept of a schedula-
bility test being sustainable. A given scheduling test is sustainable
if any system that is schedulable under its worst-case specification
remains so when its behavior is "better" than worst-case. Meaning
that if the system behaves better than its parameterized specifica-
tion it will also be schedulable.

They also gave some parameters, such asWorst Case Execution
Time, that typically are sustainable for most schedulability tests.
However, the offset parameter used in [9, 10, 12] is not generally
sustainable. That is, there is no way of knowing how to change
offset parameters "to the better" so that system remain schedulable.
Quoting their paper:

“That is, schedulability tests that do not "ignore" these
parameters are generally not sustainable in that task
systems deemed schedulable cease to be so if not just
these parameters change, but also if other parameters
such as the deadline or period change "for the better".
It seems that the safe way to analyse systems with
offsets and best-case execution times is to ignore them
(i.e., assume that all these parameters are equal to
zero).”

Since then, the sustainability analysis has been studied in e.g. [2,
5].

In this paper we will show that the approximate RTA for task
with offset presented in [10, 12] and especially the fast-and-tight
RTA method [9] can be a base for finding sustainability conditions
for offsets.

2 TASKS WITH OFFSETS RTA
This section revisits the response-time analysis for tasks with off-
sets [9, 10, 12] and illustrates some intuition behind the analysis
and the formulae.

2.1 System model
The system model used is as follows: The system, Γ, consists of a
set of 𝑘 transactions Γ1, . . . , Γ𝑘 . Each transaction Γ𝑖 is activated by a
periodic sequence of events with period𝑇𝑖 (for non-periodic events
𝑇𝑖 denotes the minimum inter-arrival time between two consecu-
tive events). The activating events are mutually independent, i.e.,
phasing between them is arbitrary. A transaction, Γ𝑖 , contains |Γ𝑖 |
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tasks, and each task may not be activated (released for execution)
until a time, offset, elapses after the arrival of the external event.

We use 𝜏𝑖 𝑗 to denote a task. The first subscript denotes which
transaction the task belongs to, and the second subscript denotes
the number of the task within the transaction. A task, 𝜏𝑖 𝑗 , is defined
by a worst case execution time (𝐶𝑖 𝑗 ), an offset (𝑂𝑖 𝑗 ), a deadline (𝐷𝑖 𝑗 ),
maximum jitter (𝐽𝑖 𝑗 ), maximum blocking from lower priority tasks
(𝐵𝑖 𝑗 ), and a priority (𝑃𝑖 𝑗 ). The system model is formally expressed
as follows:

Γ :={Γ1, . . . , Γ𝑘 }
Γ𝑖 :=⟨{𝜏𝑖1, . . . , 𝜏𝑖 |Γ𝑖 |},𝑇𝑖 ⟩
𝜏𝑖 𝑗 :=⟨𝐶𝑖 𝑗 ,𝑂𝑖 𝑗 , 𝐷𝑖 𝑗 , 𝐽𝑖 𝑗 , 𝐵𝑖 𝑗 , 𝑃𝑖 𝑗 ⟩

There are no restrictions placed on offset, deadline or jitter, i.e., they
can each be either smaller or greater than the period.

Event arrives

time

Earliest possible release Latest possible release

O ij Jij

Figure 1: Relation between an event arrival, offset, jitter and
task release

The relation between event arrival, offset, jitter and task release
is graphically visualized in Fig. 1. After the event arrival, task 𝜏𝑖 𝑗 is
not released for execution until its offset (𝑂𝑖 𝑗 ) has elapsed. The task
release may be further delayed by jitter (maximally until 𝑂𝑖 𝑗 + 𝐽𝑖 𝑗 )
making its exact release uncertain. For a more extensive explanation
of task parameters see [10]. Parameters for an example transaction
(Γ𝑖 ) with two tasks (𝜏𝑖1, 𝜏𝑖2) are depicted in Fig. 2.
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Figure 2: An example transaction Γ𝑖

2.2 Response-time analysis
The goal of RTA is to facilitate a schedulability test for each task
in the system by calculating an upper bound on its worst case
response-time. We use 𝜏𝑢𝑎 (task 𝑎, belonging to transaction Γ𝑢 ) to
denote the task under analysis, i.e., the task which response time
we are currently calculating.

In the classical RTA (without offsets) the critical instant for 𝜏𝑢𝑎
occurs when it is released at the same time as all higher priority
tasks [6, 7]. In a task model with offsets this assumption yields
pessimistic response-times since some tasks cannot be released si-
multaneously due to offset relations. Therefore, Tindell [12] relaxed
the notion of critical instant to be:

At least one task in every transaction is to be released
at the critical instant. (Only tasks with priority higher
or equal to 𝜏𝑢𝑎 are considered.)

Since it is not known which task coincides with (is released at) the
critical instant, every task in a transaction must be treated as a
candidate to coincide with the critical instant.

Tindell’s exact RTA tries every possible combination of candi-
dates among all transactions in the system. This, however, becomes
computationally intractable for anything but small transactions (the
number of possible combinations of candidates is𝑚𝑛 for a system
with 𝑛 transactions and with𝑚 tasks per transaction). Therefore
Tindell provided an approximate RTA that still gives good precision
but uses one single approximation function for each transaction.
Palencia Gutiérrez and González Harbour [10] formalized and gen-
eralized Tindell’s work. And in [9] Mäki-Turja and Nolin further
extended the work of Palencia Gutiérrez and González Harbour
by introducing a fast-and-tight RTA method. We will be using the
formalism presented in [9].

2.3 Interference function
Central to RTA is to capture the worst case interference a higher or
equal priority task (𝜏𝑖 𝑗 ) causes the task under analysis (𝜏𝑢𝑎) during
an interval of time 𝑡 . Since a task can interfere with 𝜏𝑢𝑎 multiple
times during 𝑡 , we have to consider interference from possibly
several instances. The interfering instances of 𝜏𝑖 𝑗 can be classified
into two sets:
𝑆𝑒𝑡1 Activations that occur before or at the critical instant and that

can be delayed by jitter so that they coincide with the critical
instant.

𝑆𝑒𝑡2 Activations that occur after the critical instant
When studying the interference from an entire transaction Γ𝑖 , we
will consider each task, 𝜏𝑖𝑐 ∈ Γ𝑖 , as a candidate for coinciding with
the critical instant.

RTA for tasks with offsets is based on two fundamental theorems:

(1) The worst case interference a task 𝜏𝑖 𝑗 causes to 𝜏𝑢𝑎 is when
𝑆𝑒𝑡1 activations are delayed by an amount of jitter such that
they all occur at the critical instant and the activations in
𝑆𝑒𝑡2 have zero jitter.

(2) The task of Γ𝑖 that coincides with the critical instant (de-
noted 𝜏𝑖𝑐 ), will do so after experiencing its worst case jitter
delay.

In order to determine the amount of 𝑆𝑒𝑡2 interference for a task,
𝜏𝑖 𝑗 , we need to know when the first activation of 𝜏𝑖 𝑗 occurs after
the critical instant. This phasing between a task, 𝜏𝑖 𝑗 , and the critical
instant, which according to theorem 2 occurs at 𝑂𝑖𝑐 + 𝐽𝑖𝑐 , becomes:

Φ𝑖 𝑗𝑐 = (𝑂𝑖 𝑗 − (𝑂𝑖𝑐 + 𝐽𝑖𝑐 )) mod 𝑇𝑖 (1)

Fig. 3 illustrates the four (two transactions and two critical instant
candidates) different Φ𝑖 𝑗𝑐 -s that are possible for our example trans-
action in Fig. 2. Note that the time of origin is set at the critical
instant. The upward arrows denote task releases. The height of the
upward arrows denotes the amount of execution released.
Fig. 3(a) shows, for the case when 𝜏𝑖1 coincides with the critical
instant, the invocations in 𝑆𝑒𝑡1 (arriving at time 0) and the first
invocation in 𝑆𝑒𝑡2. Fig. 3(b) shows the corresponding situation
when 𝜏𝑖2 is the candidate to coincide with the critical instant.
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Figure 3: Φ-s for the two candidates in Γ𝑖

Given the two sets of task instances (𝑆𝑒𝑡1 and 𝑆𝑒𝑡2) and the
corresponding phase relative to the critical instant (Φ𝑖 𝑗𝑐 ), the inter-
ference caused by task 𝜏𝑖 𝑗 can be divided into two parts:

(1) The part caused by instances in 𝑆𝑒𝑡1 (which is independent
of the time interval 𝑡 ), 𝐼𝑆𝑒𝑡1

𝑖 𝑗𝑐
, and

(2) the part caused by instances in 𝑆𝑒𝑡2 (which is a function of
the time interval 𝑡 ), 𝐼𝑆𝑒𝑡2

𝑖 𝑗𝑐
(𝑡).

These are defined as follows:

𝐼𝑆𝑒𝑡1𝑖 𝑗𝑐 =

⌊
𝐽𝑖 𝑗 + Φ𝑖 𝑗𝑐

𝑇𝑖

⌋
𝐶𝑖 𝑗

𝐼𝑆𝑒𝑡2𝑖 𝑗𝑐 (𝑡) =
⌈
𝑡∗

𝑇𝑖

⌉
𝐶𝑖 𝑗 − 𝑥

𝑡∗ = 𝑡 − Φ𝑖 𝑗𝑐

𝑥 =


0 𝑡∗ ≤ 0
0 𝑡∗ mod 𝑇𝑖 = 0
0 𝑡∗ mod 𝑇𝑖 ≥ 𝐶𝑖 𝑗

𝐶𝑖 𝑗 − (𝑡∗ mod 𝑇𝑖 ) otherwise

(2)

The worst case interference transaction Γ𝑖 poses on 𝜏𝑢𝑎 , during
a time interval 𝑡 , when candidate 𝜏𝑖𝑐 coincides with the critical
instant, is:

𝑊𝑖𝑐 (𝜏𝑢𝑎, 𝑡) =
∑

∀𝑗 ∈ℎ𝑝𝑖 (𝜏𝑢𝑎)

(
𝐼𝑆𝑒𝑡1𝑖 𝑗𝑐 + 𝐼𝑆𝑒𝑡2𝑖 𝑗𝑐 (𝑡)

)
(3)

Where ℎ𝑝𝑖 (𝜏𝑢𝑎) denotes tasks belonging to transaction Γ𝑖 , with
priority higher or equal to the priority of 𝜏𝑢𝑎 .

2.4 Approximation function
Since we beforehand cannot know which task in each transaction
coincides with the critical instant, the exact analysis tries every
possible combination [10, 12]. However, since this is computation-
ally intractable for anything but small task sets, the approximate
analysis defines one single, upward approximated, function for the
interference caused by transaction Γ𝑖 [10, 12]:

𝑊 ∗
𝑖 (𝜏𝑢𝑎, 𝑡) = max

∀𝑐∈ℎ𝑝𝑖 (𝜏𝑢𝑎)
𝑊𝑖𝑐 (𝜏𝑢𝑎, 𝑡) (4)

That is,𝑊 ∗
𝑖
(𝜏𝑢𝑎, 𝑡) simply takes the maximum of each interference

function (for each candidate 𝜏𝑖𝑐 ).

time
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C
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Figure 4: A simple example transaction
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Figure 5: Interference imposed on 𝜏𝑢𝑎 by our example trans-
action

As an example, consider transaction Γ𝑖 depicted in Fig. 4 (Jitter
is set to 0). Fig. 5 shows the interference functions (𝑊𝑖1 and𝑊𝑖2)
for the two candidates, and it shows how𝑊 ∗

𝑖
is derived from them

by taking the maximum of the two functions at every 𝑡 . Given the
interference (𝑊 ∗

𝑖
) each transaction causes, during a time interval

of length 𝑡 , the response time of 𝜏𝑢𝑎 (𝑅𝑢𝑎) can be calculated. The
complete set of RTA formulae, and how𝑊 ∗

𝑖
is used, can be found

in in [9].

3 SUSTAINABILITY IN RTAWITH OFFSETS
Before defining the criterion for sustainability in RTA with offsets
we will recapitulate the "subsumes" relation introduced in [9], since
this relation is also used to define if a transaction Γ𝑎 is sustainable
w.r.t. another transaction Γ𝑏 .

3.1 Subsumed points and calculation of
approximation function

When calculating response times, the function𝑊 ∗
𝑖
(𝜏𝑢𝑎, 𝑡) will be

evaluated repeatedly. However, since𝑊 ∗
𝑖
(𝜏𝑢𝑎, 𝑡) has a repetitive

pattern, a lot of computational effort could be saved by represent-
ing the interference function statically, and during response time
calculation use a simple lookup function to obtain its value. In [9]
they showed how to create and use such a lookup function.

[9] defined a set of points, 𝑝𝑖 , where each point 𝑝𝑖 [𝑎] has an 𝑥

(representing time) and a 𝑦 (representing interference) coordinate,
describing how the interference from transaction 𝑖 grows over time.
The points in 𝑝𝑖 correspond to the convex corners of𝑊 ∗

𝑖
(𝜏𝑢𝑎, 𝑡) of

eq. 4.
In order to determine the points in 𝑝𝑖 corresponding to the con-

vex corners of𝑊 ∗
𝑖
(𝜏𝑢𝑎, 𝑡), [9] defined a subsumes relation: A point
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Figure 6: The subsumes relation

𝑝𝑖 [𝑎] subsumes a point 𝑝𝑖 [𝑏] (denoted 𝑝𝑖 [𝑎] ≻ 𝑝𝑖 [𝑏]) if the pres-
ence of 𝑝𝑖 [𝑎] implies that 𝑝𝑖 [𝑏] is not a convex corner. Fig. 6 il-
lustrates this relation graphically for a point 𝑝𝑖 [𝑎] with a shaded
region, and the formal definition is:

𝑝𝑖 [𝑎] ≻ 𝑝𝑖 [𝑏] iff
𝑝𝑖 [𝑎] .𝑦 ≥ 𝑝𝑖 [𝑏] .𝑦 ∧

(
𝑝𝑖 [𝑎] .𝑥 − 𝑝𝑖 [𝑎] .𝑦 ≤ 𝑝𝑖 [𝑏] .𝑥 − 𝑝𝑖 [𝑏] .𝑦

)
In [9] they showed that storing the convex corners of𝑊 ∗

𝑖
(𝜏𝑢𝑎, 𝑡)

for one period (or two periods if tasks have jitter) suffices to repre-
sent𝑊 ∗

𝑖
(𝜏𝑢𝑎, 𝑡).

3.2 Subsumed demand bound functions
In this paper we define a subsumes relation for a demand bound func-
tion (𝑑𝑏𝑓 ) represented by its set of convex corners. Since𝑊 ∗

𝑖
(𝜏𝑢𝑎, 𝑡)

is a demand bound function for transaction Γ𝑖 which can be repre-
sented by its convex corners we define:

convex (dbf ) ≡𝑊 ∗
𝑖 (𝜏𝑢𝑎, 𝑡) (5)

Following the reasoning of subsumed points (𝑝𝑎 ≻ 𝑝𝑏 ) in the
previous section, a demand bound function 𝑑𝑏𝑓𝑎 subsumes another
demand bound function 𝑑𝑏𝑓𝑏 if and only if all convex corners of
dbfb are subsumed by some convex corner of 𝑑𝑏𝑓𝑎 . The formal
definition is as follows:

𝑑𝑏𝑓𝑎 ≻ 𝑑𝑏𝑓𝑏 iff
∀𝑝𝑏 ∈ 𝑐𝑜𝑛𝑣𝑒𝑥 (𝑑𝑏𝑓𝑏 )∃𝑝𝑎 ∈ 𝑐𝑜𝑛𝑣𝑒𝑥 (𝑑𝑏𝑓𝑎) : 𝑝𝑎 ≻ 𝑝𝑏

Intuitively, this definition means that in a subsumed 𝑑𝑏𝑓𝑏 all its
points are in the shaded area of some point in 𝑏𝑑 𝑓𝑎 in Fig. 6. This
also means that 𝑑𝑏𝑓𝑏 is lower (or equal) than 𝑑𝑏𝑓𝑎 for times 𝑡 .

3.3 Sustainable replacement or modification of
a transaction

Assuming that a task 𝜏𝑢𝑎 is schedulable with 𝑊 ∗
𝑖
(𝜏𝑢𝑎, 𝑡). Then

replacing Γ𝑖 (and its𝑊 ∗
𝑖
(𝜏𝑢𝑎, 𝑡)) with any Γ𝑗 (with𝑊 ∗

𝑗
(𝜏𝑢𝑎, 𝑡)) still

renders 𝜏𝑢𝑎 schedulable if the new𝑊 ∗
𝑗
(𝜏𝑢𝑎, 𝑡) is not greater than

𝑊 ∗
𝑖
(𝜏𝑢𝑎, 𝑡) for any time 𝑡 .
This is the equivalent to testing if the demand bound function

of Γ𝑗 is subsumed by that of Γ𝑖 . Formally:
A transaction Γ𝑖 can be replaced by another transac-
tion Γ𝑗 without rendering 𝜏𝑢𝑎 unschedulable if 𝑑𝑏𝑓𝑖 ≻
𝑑𝑏𝑓𝑗 .

Informally, this means that we can modify parameters of a trans-
action Γ𝑖 and create any transaction Γ𝑗 without affecting schedu-
lability adversely if 𝑑𝑏𝑓𝑖 ≻ 𝑑𝑏𝑓𝑗 . In this case we say that Γ𝑗 is
sustainable w.r.t. Γ𝑖 .

Table 1
Transaction

Task C O J
𝜏1 3 0 0
𝜏2 2 5 0
𝜏3 1 10 0

T = 15

4 EXAMPLE SECTION
In this section we will show how to use the subsumes relation for
demand bound functions in order to determine how offsets can
change and the transaction still be deemed sustainable.

We have investigated the impact of jitter. However, in this paper
we will assume zero jitter for tasks in a transaction. The main result
of this paper is still valid under non-zero jitter assumption. Non-
zero jitter, results in a computational complexity that still needs to
be further investigated

Most common application for the transactional task model (tasks
with offsets) is the one for distributed systems and holistic schedul-
ing. However, another use is to use it in a hybrid, static and dynamic,
scheduling context as in [8]. Thus the zero jitter assumption is valid
in such an engineering context. We will also assume integer values
for task parameters.

We will, as an example use the transaction of table 1.
The three resulting 𝑊𝑖𝑐 (𝜏𝑢𝑎, 𝑡) can be seen in Fig. 7, where

𝑊 ∗
𝑖
(𝜏𝑢𝑎, 𝑡) is obtained by taking the maximum at each 𝑡 .

Figure 7: The three𝑊𝑖𝑐 (𝜏𝑢𝑎, 𝑡) of our example transaction

In order to determine all possible offsets (which is a generic
combinatorial problem) that result in a sustainable transaction we
generate all unique transactions where we keep all system parame-
ters fixed besides offsets. With unique we mean that a transaction
just shifting offsets, while retaining their relative distance between
the tasks in the transaction, will not be considered unique. Just shift-
ing offsets, while keeping their relative distance, will not change the
resulting𝑊 ∗

𝑖
(𝜏𝑢𝑎, 𝑡). As an example take offsets 𝜏1 .𝑜 = 1, 𝜏2 .𝑜 = 6,

𝜏3 .𝑜 = 11, the resulting individual𝑊𝑖𝑐 (𝜏𝑢𝑎, 𝑡) and thus𝑊 ∗
𝑖
(𝜏𝑢𝑎, 𝑡)

will not change because the relative order between tasks is kept.
For every new transaction we apply the subsumes relation in

order to determine if it is sustainable w.r.t. the original transaction.
We generate every possible offset combination such that:(

⟨{𝜏1, 𝜏2, . . . 𝜏𝑛},𝑇 ⟩ | 𝜏1 .𝑜, 𝜏2 .𝑜, . . . 𝜏𝑛 .𝑜 ∈ [0..𝑇 ]
)
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If precedence relations should be kept among the tasks the pos-
sible offset combinations reduces to:(

⟨{𝜏1, 𝜏2, . . . 𝜏𝑛},𝑇 ⟩ | 𝜏1 .𝑜, 𝜏2 .𝑜, . . . 𝜏𝑛 .𝑜 ∈ [0..𝑇 ]∧
(𝜏1 .𝑜 ⩽ 𝜏2 .𝑜 ⩽ . . . ⩽ 𝜏𝑛 .𝑜)

)
The following table shows the result of our example transaction

(only the new offsets of the tasks are shown):

Table 2
Resulting unique transactions

# 𝑂1 𝑂2 𝑂3
1 0 5 10
2 0 6 10
3 0 6 11
4 0 6 12
5 0 7 10
6 0 7 11
7 0 7 12
8 0 9 5
9 0 9 6
10 0 9 7
11 0 10 5
12 0 10 6
13 0 10 7
14 0 11 6
15 0 11 7
16 4 9 0

Table 2 shows all the possible unique variations of offsets that
are sustainable w.r.t. the original transaction.

Take for instance the offset combination 𝜏1 .𝑜 = 0, 𝜏2 .𝑜 = 7, 𝜏3 .𝑜 =

12. Fig. 8 shows the three𝑊𝑖𝑐 (𝜏𝑢𝑎, 𝑡), whereas Fig. 9 shows that the
resulting𝑊 ∗

𝑖
(𝜏𝑢𝑎, 𝑡) overlaid with our original𝑊 ∗

𝑖
(𝜏𝑢𝑎, 𝑡). One can

see that the original𝑊 ∗
𝑖
(𝜏𝑢𝑎, 𝑡) subsumes the new𝑊 ∗

𝑖
(𝜏𝑢𝑎, 𝑡).

Figure 8: The three𝑊𝑖𝑐 (𝜏𝑢𝑎, 𝑡) of 𝜏1 .𝑜 = 0, 𝜏2 .𝑜 = 7, 𝜏3 .𝑜 = 12

We finally look at an example combination of 𝜏1 .𝑜 = 0, 𝜏2 .𝑜 = 7,
𝜏3 .𝑜 = 13. Its resulting𝑊 ∗

𝑖
(𝜏𝑢𝑎, 𝑡) can be seen not to be subsumed

by our original𝑊 ∗
𝑖
(𝜏𝑢𝑎, 𝑡) in Fig. 10

In order to have a better overview on how offsets can be changed
wemerge the resulting transactions. This will result in the following
information:

Figure 9: Subsumes relation with orginal𝑊 ∗
𝑖
(𝜏𝑢𝑎, 𝑡)

Figure 10: Subsumes relation with orginal𝑊 ∗
𝑖
(𝜏𝑢𝑎, 𝑡)

Table 3
Merged unique transactions

# 𝑂1 𝑂2 𝑂3
1 0 5 10
2-7 0 6-7 10-12
8-13 0 9-10 5-7
14-15 0 11 6-7
16 4 9 0

The interpretation of table 3 is as follows: 𝜏3 can have an offset
of 10 as long as 𝜏1 has an offset of 0 and 𝜏2 has an offset of 5. 𝜏3 can
have an offset between 10 and 12 as long as 𝜏1 has an offset of 0
and 𝜏2 has an offset that lies between 6 and 7. As an example one
can shift the row one of the merged transaction by two resulting in
offsets 2, 7, and 12 respectively and that is also a transaction.

One should note that the order one merge the transactions will
result in different information. More on that in the discussion sec-
tion.

5 DISCUSSION
In this section we will discuss the engineering context of the sus-
tainability analysis and some interpretation details of our example
transaction of the previous section.

The main use of the analysis presented in this paper is that it can
be used as a sensitivity analysis at design time. That is, the engineer
will be able to see how sensitive the system is to changes, in system
parameters, at run-time and still be schedulable. Another use is, in
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the hybrid scheduling context, to elaborate and make changes in a
static schedule without doing a full rescheduling of the system.

In the example section we only considered unique transactions.
We do it to make a more compact representation of information to
the user.

Consider a sustainable transaction. Then, by just shifting offsets
and keeping their relative distance will, trivially, result in a valid and
sustainable transaction since the shiftingwill not change𝑊 ∗

𝑖
(𝜏𝑢𝑎, 𝑡).

Therefore, the resulting transactions, as well as, the offsets of the
merged transactions can be shifted, as long as their relative distance
is retained.

In our example we chose to generate and merge the tasks in the
following order, 𝜏3, 𝜏2, 𝜏1. The resulting table of merged transac-
tions will look different depending of the order on generation and
merging. However, since the task offsets can be shifted, the same
information will be in that table, regardless what order one gener-
ates and merges transaction. As an example consider the following
order instead, 𝜏2, 𝜏3, 𝜏1, then we get the merged transactions of
table 4.

Table 4
Merged unique transactions

# 𝑂1 𝑂2 𝑂3
1 0 5 10
2 0 9-10 5
3 0 9-11 6-7
4 0 5-7 11
5 0 6-7 12
6 8 0 3
7 9 0 4

Note that the information in table 3 and table 4 look very dif-
ferent. However, they represent the same sustainable transactions
where one has just shifted offsets. For example row 2-7 in table 3
is represented by rows 4-7 in table 4 in the following manner: The
transaction with offsets 0, 6, 10 in table 3 is represented by row 7, in
table 4, where all tasks are shifted by T-9 time units. The transaction
with offsets 0, 6, 11 in table 3 is represented by row 4, in table 4. The
transaction with offsets 0, 6, 12 in table 3 is represented by row 5, in
table 4. The transaction with offsets 0, 7, 10 in table 3 is represented
by row 6, in table 4, where all tasks are shifted by T-8 time units.
The transaction with offsets 0, 7, 11 in table 3 is represented by row
4. Transaction with offsets 0, 7, 12 in table 3 is represented by row
5.

From an engineering point of view one can focus on one task
and represent the circumstances how its offset can change.

However, one can use the order as wanting to visualize the most
important task first. In our example we chose 𝜏3 as the one that was
most important and thus it exhibits most variability in the resulting
merged transactions.

As can be seen we have placed no restrictions how to change
offsets. In a distributed system context, for example, one would
normally have precedence relations between the tasks. This will just
yield in fewer (or equally many) valid transactions since one has to
prune away those offsets that breaks the precedence relation. Thus,

introducing precedence relations will result in a more restrictive
analysis.

We chose to have zero jitter in our example just to highlight
the effect of changing offsets. However, the analysis presented
in this paper does not require zero jitter. In fact, the subsumes
demand-bound function relation can be used for changing any
system parameters. However, having non-zero jitter means that
one must use the subsumes relation of the demand-bound function
over two periods. The reason for this is that𝑊 ∗

𝑖
(𝜏𝑢𝑎, 𝑡) differs in

first and subsequent periods. See [9] for further explanations.

6 CONCLUSIONS
Offsets in general are not sustainable, i.e., if offsets, or other system
parameters, deviate from specification there is no way of guarantee-
ing schedulability for a given schedulability analysis. In this paper
we investigate under what conditions offsets can be sustainable.

We show that the approximate RTA, for task with offsets, can be
a base for finding sustainability conditions for offsets. We define
a subsumes relation for a demand bound function (𝑑𝑏𝑓 ) in order
to define sustainability conditions for changed system parameters.
Assuming that a transaction is schedulable with 𝑑𝑏𝑓𝑎 , then any
𝑑𝑏𝑓𝑏 (with changed system parameters) is also schedulable if the
latter is subsumed by the former.

We exemplify how the subsumes relation can be used in an
engineering context to perform sustainability analysis of a system
where all system parameters, except offsets, are constant.

The main use of the sustainability analysis is that it can be used
as a sensitivity analysis at design time. Another use is, in the hybrid
scheduling context, in the sense that it can be used to elaborate and
make changes in a static schedule without doing a full rescheduling
of the system.

The proposed sustainability analysis, presented in this paper,
is now being implemented in a commercial tool suite. The tool
suite is being used to develop state of the art control systems such
as heavy construction equipment. The intention of the tool is to
support developers, at design time, by generating new𝑊 ∗

𝑖
(𝜏𝑢𝑎, 𝑡)

when system parameters change. With such changes in𝑊 ∗
𝑖
(𝜏𝑢𝑎, 𝑡)

the tool can perform an automatic sustainability control.
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