
Fault-tolerant Permanent Storage for Container-based Fog Architectures

Zeinab Bakhshi, Guillermo Rodriguez-Navas, Hans Hansson
Mälardalen University, Sweden, {zeinab.bakhshi, guillermo.rodriguez-navas, hans.hansson}@mdh.se

Abstract— Container-based architectures are widely used for
cloud computing and can have an important role in the imple-
mentation of fog computing infrastructures. However, there are
some crucial dependability aspects that must be addressed to
make containerization suitable for critical fog applications, e.g.,
in automation and robotics. This paper discusses challenges in
applying containerization at the fog layer, and focuses on one of
those challenges: provision of fault-tolerant permanent storage.
The paper also presents a container-based fog architecture
utilizing so-called storage containers, which combine built-in
fault-tolerance mechanisms of containers with a distributed
consensus protocol to achieve data consistency.

I. INTRODUCTION

Fog computing aims to deploy distributed applications
closer to the edge of the system, and can bring important
benefits for time-sensitive applications.

Containerization is a novel technique to implement effi-
cient and adaptive distributed applications, which is widely
used in Cloud computing [1]. Containers are also very
appealing for fog computing because of their flexibility and
self-healing mechanisms. However, the suitability for critical
applications has not been investigated in enough detail. We
are interested in understanding to what extent container-
based fog architectures can be applied to cyberphysical
systems, and to identify the main shortcomings with respect
to dependability, and to propose techniques to overcome
these shortcoming.

In this paper we discuss the integration of a ROS robotics
application [2] with a container-based architecture. We per-
form a preliminary study of the system’s behavior in the
presence of faults and identify the benefits and the limitations
of integrating ROS and containerization at the fog layer. We
also build a Fault Tree Analysis to find the critical points
of failures. As a result, we identify a number of important
limitations of existing container-based virtualization archi-
tectures, including the lack of persistent storage for stateful
applications at the fog layer. To overcome this limitation,
we propose using storage containers to provide persistent
storage at the edge of the network. Additionally, we suggest
a series of improvements, in the form of new services or
adaptation of existing services, in order to build a dependable
containerized fog architecture.

Our main contributions are (1) that we identify key lim-
itations of directly applying existing containerization and
orchestration solutions in the resource constrained fog layer
(presented in Section II), and (2) that we propose remedies
to address related dependability challenges by proposing
a new architecture inspired by Kubernetes (Section IV),

and a persistent storage solution using storage containers,
addressing one of the identified challenges (Section V).

The remainder of this paper is structured as follows: We
study an integration of containerized robotic application and
analyze the behaviour of a container orchestration solution in
presence of faults at the fog layer in Section II. We continue
with a description of the main problem adapting container
orchestration at the fog layer for robotic applications in
Section III. In Section IV, we propose a new container
orchestration architecture inspired by Kubernetes. Persistent
storage solution for container-based architecture is presented
in Section V. Related work to our study are briefly reviewed
in Section VI. Finally, we conclude the study in Section VII.

II. FAULT ANALYSIS OF A CONTAINERIZED ROBOTIC
APPLICATION AT THE FOG LAYER

Our study of container-based architecture for fog comput-
ing is based on a use case that integrates the Robot Operating
System (ROS) [3], Docker Containers [4], and Kubernetes
[5]. We use a robotic application which is developed in ROS
and containerize it using docker containers and then deploy
it at the edge of the network. (The files and instructions
to access the use case are uploaded in a github repository)1.
The implemented robotic application is a navigator robot that
constantly moves towards newly set goals, while avoiding
obstacles. The behavior is illustrated in Fig. 1, the robot first
aims to reach Goal 1, while it should avoid the obstacles. It
plans the optimum path to the goal. This process is repeated
every time the robot reaches the goal and a new goal is set
for it, as shown in Fig. 1B and 1C.

A. ROS and Kubernetes Design

Our ROS application consists of several ROS nodes.
Nodes in ROS are processes that perform computation [2].
We design our ROS application to be decomposed into three
different containers: (A) the ROS Core application; (B) the
navigation application, containing ROS nodes that process
the parts related to navigation and map; and (C) the Simulator
application, containing nodes related to simulation.

To containerise the ROS application, we use so-called
dockerized images of ROS from Open Source Robotic Foun-
dation (OSRF) [6], which simplifies the installation and setup
of the ROS system. We built a Kubernetes cluster (Version
1.16) in our local network without using any cloud platform.
The cluster we implemented has three nodes. One Kubernetes
master node and two worker nodes. The Master node and

1https://github.com/ZeinabBa/Fog-Robotic



Fig. 1. How the Robot works

one worker node are running Linux Ubuntu 18.04. The other
node is a Raspberry Pi (RPi) running Rasbian OS, which is
a Linux based OS.

B. Fault model

The described robotic system might be affected by faults
that in turn might disrupt the whole navigation application. In
our work, we are going to consider the taxonomy of faults
discussed by Parker [7] but we will review the system in
light of the built-in fault tolerance mechanisms provided by
containers. In particular, containerization already tolerates
configuration and task completion faults, both mentioned
in [7], by means of self-healing mechanisms; notably the
ability to restart failed containers. To investigate and analyze
different points of failure we built the Fault Tree shown in
Fig. 2. Since the number of states in which failure of one or
multiple components results in service failure was far more
than the states in which the desired service is delivered, and
due to the intricacy of Kubernetes design, we first depict
the points in which the system will function as desired and
then we use a logic ”NOT” gate to show system failure
states. As shown in Fig. 2, we can see that Volume has an
important role in delivering a correct service; particularly for
applications that exhibit dependencies, require access to files
or are stateful (i.e. should keep memory of the current state).

Fig. 2. Fault Tree Analysis

C. Fault Experiment Scenarios

We evaluate the impact of the failures related to orches-
tration of containerized robot applications over our use case,
which is a containerized robotic application deployed on

Kubernetes nodes. We inject faults to generate the following
failures: 1) Application Execution failure, 2) Kubernetes
Node failure, 3) Application deployment failure, and 4) File
access failure.

Application Execution Failure: To test the impact of ap-
plication failure using Kubernetes and evaluate how Ku-
berenetes can tolerate this type of failures, we killed (termi-
nated) the Pod containing the core ROS application container.
We observed that the Pod was automatically recreated after
injecting this intentional fault and terminating the Pod. The
whole navigation process continued working.

Kubernetes Node Failure: To investigate the impact of
Kubernetes node failure, we disconnected the Kubernetes
node in which the containerized robot application was exe-
cuting, to check how Kubernetes would respond to this type
of failure. We first deployed the Pods to the RPi and then
joined the other worker node (Linux device) to the cluster.
To ensure that at least one instance of the whole application
(three containers of the ROS application) will work together
at the same time, we unplugged the RPi node to inject the
node failure and automatically the Pods were recreated and
deployed in the other available node, the Linux device.

Application Deployment Failure: Deploying an application
or containerized robot application in our scenario means
assigning available resources to the containers for execution.
There are different possible causes that a system fails to de-
ploy an application, for instance, when there are no available
resources, losing communication to available nodes, or im-
proper resource management. We study how Kubernetes does
the resource management and if it is effective for preventing
application deployment failure. To test this, we rejoined
the nodes to check when both the nodes are available, on
which node the Pods will be automatically deployed. The
experiment showed that the Kubernetes scheduler will select
the node which has the maximum resources at deployment.
Therefore the Linux device was selected. This means that,
when an application is ready to get deployed and all the
nodes are free then it will be assigned to the node with
the maximum capacity. If, later on, another application with
higher demand wants to be executed on the system, it is pos-
sible that suitable resources are not available for deployment.
Although this is not a failure per se, it potentially decreases
service availability due to lack of load balancing and resource
management of the system.

File Access Failure: ROS applications require access to



files, states and other necessary data to continue working. In
Kubernetes, files are stored in volumes of each Pod. When
an application needs to access a file, it directly accesses
the files from the volume inside the Pod. However, since
the Pods are mortal, the volume inside the Pods are also
volatile (ephemeral). This is because Pod Volumes transiently
store the files if their local system spaces (not mounted to
clouds). Therefore, data and information of the applications
is not accessible once the Pod is terminated. In a pure
ROS system implementation, there is a mechanism named
Parameter server [8], through which system parameters are
saved for further references and decision makings upon
failure. Parameter server is always implemented in the ROS
master node. When a ROS master node is containerized it
shares its state, files and data in the Pod volume. When a Pod
is terminated, its volume will no longer exist. Therefore, the
parameter server would not be accessible for fault recovery
or reconfiguration purposes when a ROS application fails.

III. PROBLEM STATEMENT

Our case study provides us with two interesting findings,
(1) Docker and Kubernetes are suitable as a distributed
platform for execution of ROS applications; (2) by injecting
faults to our use-case we identified that using the Docker
and Kubernetes platform for ROS applications suffers from
limitations that are threats to dependability as discussed in
Section II-C.

Putting the experiment beside the fault tree analysis we
find that the most important issue that requires further atten-
tion in our use case is lack of persistent storage for stateful
applications. Kubernetes has already implemented support
for stateful application by providing Persistent Volume (PV)
and stateful set to improve relaiability [5]. However, Vayghan
et al. [9] identified two main issues with the stateful set
and PV. First, when a pod fails, recreation time plus access
time to PV may be too large for applications requiring high
availability. Second, node failure cannot be recovered in
stateful set, hence if a node fails in this type of deployment
(stateful set) then the pod will not be recreated until the node
is back in the network. It is possible to manually recreate and
redeploy the pods suffering from node failure but the access
to the PV will be lost in this case.

In addition, PV can only be implemented using cloud
storage and our interest is to investigate what can be done
at the network edge in the fog layer to reduce data latency
and provide immediate response to data access requests.

As a remedy, we take advantage of the lightweight, self-
healing characteristics of containers and propose container-
based storage applications which can implement a dis-
tributed, fault-tolerant and persistent storage system. How-
ever, to fully realize the potential of the storage container
that we are going to propose, we need to extend Kubernetes
error-handling capabilities. Therefore, we first propose an
improved fault-tolerant container orchestrator architecture,
inspired by Kubernetes, and then we explain how the storage
system we propose can fit into this new architecture.

IV. A CONTAINER-BASED ARCHITECTURE FOR FOG

In this section we propose an architecture that extends
Kubernetes to achieve better dependability properties by de-
livering the following services: (a) Configuration and Appli-
cation Deployment, (b) Monitoring, (c) Failure Detection and
Recovery, (d) Communication, and (e) Persistent Storage.
These services are delivered using different components in
the proposed architecture, illustrated in Fig. 3.

A cluster in our architecture consists of nodes, called Fog
node or Node, with each node having the following attributes:
Nodei =

{
CPU,RAM,Storage, Cost,
App List on Node, Status,Desired Status

}
Thus specifying the resources of the fog node as CPU,

RAM and Storage capacities, the cost of execution on the
node as Cost, the list of applications currently running on the
node as App List on Node, current status of a node as Status
and the desired status of a node as Desired Status. Both,
Status and Desired Status, are used for checking whether a
node is up and running.

Fog nodes host containerized applications, which are
called application or App in our architecture.

Let A =
⋃n

a=1 Appa be a set of applications to be
deployed in fog nodes. Each application is characterised by
its specification:
Appa =

{
CPU,RAM,Storage,Data, Storage Tag,
Run,Label, Status,Desired Status

}
These specifications indicate the resources the application

requires as CPU, RAM and Storage capacities, the data
and states of an application as Data, the persistent storage
requirement of an application as Storage tag, where if an
application is stateful then its storage tag will be equal to
persistent. It also indicates the run time of an application as
Run and the label of the applications as Label, where the
latter identifies the type of the application and is used for
grouping containerized applications. Finally, the specification
indicates the current status of the application as Status and
the desired status of the application as Desired Status. Status
and Desired Status of the applications are used to check
whether the application execution process has its desired sta-
tus. We also define storage containers (SC) for delivering per-
sistent storage for stateful applications as SC =

⋃n
j=1 SCj .

We explain the detailed specifications that characterise each
SC in Section V.

To have a complete and working cluster, these services
are delivered through various components. Fig. 3 depicts a
block diagram of our architecture.

Figure 4 is an illustration of the overall functionality
of each components of the proposed architecture. We will
briefly explain the functionality of the whole architecture
and the role of each components. All the internal commu-
nications in the fog layer are done through the agents, but,
for simplicity, we do not explain the interaction of agents
while describing the connection between modules of fog
nodes and the administrator node. Here we also assume that
communications through agents are reliable and fault-free.

When application requests are received in the fog layer
through the communication module, they will be listed



Fig. 3. Proposed Container Orchestration Fog Architectures

Fig. 4. Overall Functionality of the Architecture

and sent to the Resource Manager, which then discovers
the network to update the list of available resources and
performs a validity check for each of the resources R =
{CPU,RAM,Storage}, as shown in Equation 1:

”V alidity Check” = (RNi − µRAa) ≥ 0 (1)

R indicates the resources capacities of Nodes and Appli-
cations. Therefore RN and RA denote CPU , RAM and
Storage capacities of fog nodes and applications respec-
tively. µ is a percentage added to guarantee that application
resource consumption on a node does not exceed a given

threshold µ. Validity check is performed for each application
a in the Appa subset which are the applications waiting for
deployment. If a node passes the validity check for all the
resources, its specifications will be sent to the Scheduler
along with the list of applications to be deployed on the node.
The Scheduler will perform a feasibility check as shown in
Equation 2 and then if the deployment is feasible the appli-
cation will be copied on the node for deployment. k denotes
the number of applications currently running in a node and
are members of the App List on Node subset for each node.
The remaining available resources considering the running



application(s) on each node is calculated in feasibility check.
If the current available resources on the node suffice the new
application request in terms of resources then the application
will be copied on the node for deployment. If the application
a in the Appa requires persistent storage, (indicated in its
specifications as Storage Tag) the Scheduler will assign a
storage container as well. The details of storage container
assignment are given in Section V-B.

”feasibility check” = (RN −
k∑

i=1

RA(i)) > 0 (2)

Afterwards, it is the role of the Internal Application
Controller (IAC) to do the deployment. IAC is located inside
each node and another responsibility of IAC is to check the
status of each application to verify that they are working
as desired. If they are not, IAC will re-execute the non-
working applications inside the node without notifying the
Administrator node for taking action for application re-
deployment. This works is as an internal audit and control for
checking if applications inside a node are always working as
desired. The Monitoring module will also monitor the status
of both the nodes and the applications running on the nodes,
and in case of node failure it will call the Resource Manager
to find a new suitable node. In case an application fails
and IAC cannot re-execute the application, the monitoring
module will call the Global Application Controller to do the
application re-execution.

Equation 3 shows how the Monitoring module calculates
the remaining resources of each node, which is needed
in order to update the node resource information. The
Monitoring module send this information to the Resource
Manager. The variable RrN is the remaining capacity of
each fog node, again calculated for each resource R =
{CPU,RAM,Storage}.

RrN = RN − µ
k∑

i=1

RA(i) ∀k ∈ App List on Node (3)

Figure 4 illustrates the overall functionality of our archi-
tecture, with the number 1-21 representing the sequence of
actions in normal (non-faulty) operation. Steps number 1 to
5 represent receiving application request and sending it to
Resource manager and Validity check in the Resource man-
ager. Steps number 6 to 12 show the application deployment
process. Steps number 13 to 18 indicate the process in which
an application from the Appa subset (applications waiting for
deployment) are removed from application list and added to
the App List on Node list. Steps number 19 to 21 show the
functionality of monitoring module that constantly checks the
status of applications and nodes in the cluster. Steps (i) and
(ii) represent the behaviour of IAC when an application fails
and IAC recovers it internally inside the node. Steps a-1 to
a-3 followed by steps 3, 4, etc. show the process in which
a node failure is detected and recovered whereas steps b-1
to b-4 followed by steps 18, 19, etc. show the case in which
the monitoring and GAC components recover an application
failure that could not be recovered internally.

V. FAULT-TOLERANT PERSISTENT STORAGE IN
CONTAINER-BASED FOG ARCHITECTURES

The state data of a stateful application is the memory
content that needs to be kept from one invocation to the
next. The objective of our fault-tolerant persistent distributed
storage is to guarantee that correct and up-to-date state data
is available at each execution of any stateful application
supported by our fog architecture. This means ensuring that
any state data stored during an invocation must be readily
available for the subsequent invocation of said application,
and this holds even if the application was restarted, for
example due to a failure, or deployed on a different node.

Additionally, our solution must adhere to the basic prin-
ciples of containerization: it has to be scalable on demand,
support migration between different nodes in the cluster and
implement self-healing whenever a fault occurs. This will
be realized by means of a container-based mechanism that
creates and handles consistent replicas of stateful data across
the fog layer.

A. Design rationale

In a container-based architecture, state data is normally
stored in a local volume that can be read in every invocation,
but which is lost after re-initialization of the container. Our
solution still uses storage in the local volume but extends
it by means of a specific container, called the Storage
Container (SC). The SC keeps a copy of the state data and
also shares it within a cluster of synchronized SCs, such
that several consistent copies of the data exist and can be
retrieved if needed. The consistency within the SC cluster is
guaranteed by means of a consensus protocol. In our case,
we rely on RAFT, but other consensus protocols might be
applicable as well [10] .

Therefore, we can distinguish two processes concerning
storage in the SC. There is a process called Internal syn-
chronization in which the application container reads (fetch)
or writes (commit) from/to the shared environment in the
node which is a local storage space on the node created by
the Storage Container, and a process called External syn-
chronization in which the Storage Container reads (fetch) or
writes (commit) from/to the shared environment in the node.
When SC fetches the states from the shared environment
which are related to the applications working inside the same
node it sends the states to the SC cluster (leader in the
cluster) in a consistent manner. The states from applications
running on other nodes in the cluster are received from the
SC cluster (leader in the cluster) to be committed to the
shared environment by the local SC in the node.

The Storage Container is deployed transparently like any
other container, but there are some specific steps that need to
be taken by the Scheduler. These will be described next. Note
that SC also benefits from the fault-handling mechanisms
discussed in Section IV.

B. Architecture and operation

Like any containerised application, a storage container is
characterised by its specification:



Fig. 5. Proposed Storage Container Schema

SCj =
{
CPU,RAM,Storage,RAFT Status,Run,
Label, Status,Desired Status

}
A specification indicates the resources that a SC requires

in terms of CPU, RAM and Storage. It also indicates the
status of the SC in every time unit of the RAFT protocol,
which can be one of the following: (1) follower, (2) candidate
and (3) leader. The Label of a SC is vital for grouping
containerized storage and applications correctly and it takes
two parameters, (1) SC label and (2) App label. Finally,
Status and Desired Status are used to check whether SC
execution process has the desired status.

The number of SCs in a node depends on the number of
different application labels in the node. Figure 5 depicts a
system of fog nodes with the containers (applications and
SCs) inside them. Note that one or more SC have been as-
signed to the applications. It is the role of Scheduler to assign
SCs with the same labels to the corresponding applications.
For instance, in Node 1 there are three applications. Two
of them have a label ”Nav” (navigation application) and one
has a label ”Obst” (Obstacle detection application), thus, two
different SCs are deployed in this node.

Each instance of a containerized application generates a
state and updates it after each execution. First, the state data
is stored locally in the application container volume and
then the data is duplicated to be stored and committed in
the shared environment created by the SC. The duplicated
state is accessible by SC, means that only when SC is
not in the external synchronization mode it can fetch the
state from shared environment. When SC fetches the state
created by local applications inside the node from the shared
environment it goes to external synchronization mode and
send the states to the SC leader in the SC cluster. This is
the role of SC leader to send and commit the states in a
consensus manner to/from all SC members in the cluster.

Reintegration of SCs occurs every time the SC is executed
for the first time, which can happen after the first deployment
or as a consequence of a restart due to failure. In such a case,
the SC first collects the states from the applications with the
same labels and later, in the first external synchronization, it
reconciles its data with the synchronized set of states kept
by the cluster.

Fig. 6. RAFT Consensus Network for SCs

Figure 6 shows the RAFT network created by a set of
SCs and shows how each SC contributes to form the whole
state set. All the storage containers having the label SC are
members of this RAFT network.

The aforementioned RAFT Status determines how SCs
have different status in the RAFT network and how they
interact to synchronize in the network. A newly created SC
has the Raft status follower. As it is a new entity in the SC
RAFT network, it must follow the leader SC to be consistent
with the state changes. The details of the RAFT protocol are
explained in [11].

C. Achieved fault tolerance

Let us now review how faults will be handled in this new
architecture.
Omission and Crash Failures: Omission and crash failures
both in application and at node level can be detected and
recovered in this architecture.

• Omission and Crash in application: When an application
fails, IAC restarts the application. If the application
restart fails, the monitoring module will notify GAC to
redeploy the application. The application redeployment
mechanism works also in case the IAC fails.

• Omission and Crash in node: Whenever a node does not
provide a response (also if caused by a communication
failure), the monitoring tool will detect this failure and



notify the Resource Manager. The Resource Manager
will find an alternative to the node, normally a new
node, and then the applications from the faulty node
will be deployed on the new available node.

Response Failure: This failure occurs in a distributed system
when an incorrect response is provided. It can be caused by
a problem with the value or because of an error in the logical
flow control. Regardless of cause, the error manifests as a
State failure and will be discussed in the next point.
State failure: State failure can be caused by two issues: i)
application malfunctioning that changes the value of the state
data and ii) state failure due to incorrect initialization of the
application after restart. The first type of failure cannot be
detected nor tolerated by our architecture, and would require
redundancy of the application containers. An example of
this type of failure in the context of our ROS application
is if the function responsible to process some sensor, like
e.g. the camera or the lidar, fails, resulting in the generation
of incorrect values. The same would happen if the sensor
itself is faulty. This can be tolerated with traditional spatial
redundancy, either with replicated nodes or with replicated
application containers.

The second type of failure, improper application restart, is
prevented by the existence of our permanent storage. In our
architecture, the application containers synchronize with the
corresponding SC after restart, and obtains the correct state
from the SC cluster.

VI. RELATED WORK

Existing solutions for distributed fault-tolerant distributed
storage systems in fog, edge and cloud computing have pri-
marily focused on two fundamental problems in distributed
systems: providing fault-tolerant, permanent data storage
[12] and achieving a decentralised consensus. The first set
of solutions focuses on distributed data storage systems
and optimal allocation of redundancy, to reduce utilization
and techniques for error detection and reconfiguration upon
failure and the latter one is applying consensus protocols
based on system requirements [10].

An instance for optimal allocation of redundancy in dis-
tributed storage systems is provided by Jonathan et al. [13].
The issue in leveraging the method proposed in [13] is that it
is only efficient when the failure rate is low. For large scale
fog applications and container-based architecture we cannot
directly apply such a method as redundancy mechanism.

For error detection in distributed storage system, Cher-
vaykov et al. [14] propose a reconfigurable data storage sys-
tem based on Redundant Residue Number System (RRNS).
This work provides a theoretical basis to calculate probability
of information loss, data redundancy and configure parame-
ters, but the efficiency and effectiveness of their solution is
not measured for large scale systems.

Shahaab et al. [10] investigates 66 consensus protocols
such as RAFT [11], Byzantine Fault Tolerance [15], Sieve
[16], etc. are studied and analysed based on different ob-
jectives, like, sustainability, efficiency, etc. The conclusion
is that, there is no single consensus protocol to apply as

a solution for all the requirements in a distributed system.
A consensus solution must be leveraged on the network,
types of nodes, and the whole system requirements. In our
proposed solution, we use the RAFT protocol to achieve
consensus in our distributed storage system.

There are also a number of recent works proposing the
leverage of persistent storage solutions for container-based
architectures in cloud platforms. For instance, Shrama et
al. [17] proposed a distributed storage system using storage
application deployment on Kubernetes, however, they did not
address the transient storage issue on the Pods in Kubernetes
orchestration solution. This work also lacks a consideration
of any consensus algorithm. In our solution we focus both
on data persistent storage locally on the node and also we
consider a consensus protocol to recover data in case a
storage container in a node fails. Kristiani et al. [18] also
proposed persistent volume for container-based architectures
using Openstack and Kubernetes. Although in this work the
container-based applications are running on the edge devices
in the network, the persistent storage solution is still located
in the clouds which increases delay in response for each data
access request by the application.

To ensure that operations are executed on all the containers
and their replicas, state-machine replication in containers is
proposed by Netto et al. [19]. Authors in this work, use a
protocol which uses shared memory to project communica-
tion and persist data. The main focus of this work is on
latency and authors did not consider resource consumption
in this work.

In another recent work by Netto et al. [20] the incorpora-
tion of RAFT protocol in Kubernetes has been proposed. In
this work, execution requests can be sent to any replicated
container, matching the cloud nature in regard to load bal-
ancing. However, the overhead of this solution on containers
change the light weight nature of using containers and
increase the container image size. Compared to other works,
for instance, [9] and [21], the level of protection provided
in the work by Netto et al. [19] is stronger. However, this
comes at the price of increasing the resource usage. In this
work handling one failure, for each container that provides
a service requires two extra containers. In our solution,
however, one extra container is enough for recovering the
service after a single failure.

Studying the literature provided us with a better view of
the possible existing solutions as well as broadening our
knowledge about our system requirements. The need for
persistent storage comes from the stateful application we
are dealing with in our use case. In addition, we needed
to investigate what could be done at the network edge in
the fog layer, to reduce data latency and provide immediate
response to data access requests in the fog layer. To the
best of our knowledge data recovery/reintegration upon node
failure in Kubernetes had not been investigated yet for fog
architectures. Our work extends current state of the art by
taking advantage of the light weight and self-healing charac-
teristics of containers and proposing a novel container-based
applications that provides consistent distributed storage.



VII. CONCLUSION

This article proposes a novel container-based architecture
for fog layer orchestration, especially suited for dependable
cyberphysical systems. Our architecture adapts a cloud-
native solution for container-based application orchestration
and management, and extends it to tackle a number of
dependability limitations that were identified in a case study
involving a containerized robotics application. This includes
improved error-handling mechanisms and a container-based
subsystem for fault-tolerant permanent storage. We see this
architecture as a first step towards the design of a complete
fault-tolerant fog architecture, which will have to be extended
as new dependability limitations are revealed in other appli-
cations domains. The next steps of our work are to build
a formal model of the architecture to formally verify the
storage subsystem, and to evaluate our first prototype on a
more complex use case.

ACKNOWLEDGMENT

This research has received funding from the European
Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No
764785, and by the Swedish Foundation for Strategic Re-
search (project FiC).

We thank Dr. Johan Relefors for providing us with the
ROS application used for the experiments in this work.

REFERENCES

[1] C. Pahl, “Containerization and the paas cloud,” IEEE Cloud
Computing, vol. 2, no. 3, pp. 24–31, 2015. DOI: 10.1109/
MCC.2015.51.

[2] J. M. O’Kane, A gentle introduction to ROS, 2014.
[3] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J.

Leibs, E. Berger, R. Wheeler, and A. Ng, “Ros: An open-
source robot operating system,” in Proc. of the IEEE Intl.
Conf. on Robotics and Automation (ICRA) Workshop on
Open Source Robotics, Kobe, Japan, May 2009.

[4] Docker Hub, Docker Description, https : / / www .
docker.com/resources/what-container.

[5] Kubernetes Foundation, Kubernetes Documentation,
https://kubernetes.io/.

[6] R. White and H. Christensen, “ROS and Docker,” in Robot
Operating System (ROS): The Complete Reference (Volume
2), A. Koubaa, Ed. Cham: Springer International Publishing,
2017, pp. 285–307, ISBN: 978-3-319-54927-9.

[7] L. E. Parker, “Reliability and fault tolerance in collective
robot systems,” Handbook on Collective Robotics: Funda-
mentals and Challenges, 2012.

[8] Parameter Server, ROS, http : / / wiki . ros . org /
ParameterServer/.

[9] L. Abdollahi Vayghan, M. A. Saied, M. Toeroe, and F.
Khendek, “Microservice based architecture: Towards high-
availability for stateful applications with kubernetes,” in
2019 IEEE 19th International Conference on Software Qual-
ity, Reliability and Security (QRS), 2019, pp. 176–185.

[10] A. Shahaab, B. Lidgey, C. Hewage, and I. Khan, “Applica-
bility and appropriateness of distributed ledgers consensus
protocols in public and private sectors: A systematic review,”
IEEE Access, vol. 7, pp. 43 622–43 636, 2019.

[11] D. Ongaro and J. Ousterhout, “In search of an under-
standable consensus algorithm,” in 2014 {USENIX} An-
nual Technical Conference ({USENIX}{ATC} 14), 2014,
pp. 305–319.

[12] M. Itani, S. Sharafeddine, and I. ElKabani, “Dynamic mul-
tiple node failure recovery in distributed storage systems,”
Ad Hoc Networks, vol. 72, pp. 1–13, 2018.

[13] A. Jonathan, M. Uluyol, A. Chandra, and J. Weissman,
“Ensuring reliability in geo-distributed edge cloud,” in 2017
Resilience Week (RWS), Sep. 2017, pp. 127–132.

[14] N. Chervyakov, M. Babenko, A. Tchernykh, N. Kucherov,
V. Miranda-López, and J. M. Cortes-Mendoza, “AR-RRNS:
Configurable reliable distributed data storage systems for
internet of things to ensure security,” Future Generation
Computer Systems, vol. 92, pp. 1080–1092, 2019.

[15] M. Castro and B. Liskov, “Practical byzantine fault tolerance
and proactive recovery,” ACM Transactions on Computer
Systems (TOCS), vol. 20, no. 4, pp. 398–461, 2002.

[16] C. Cachin, S. Schubert, and M. Vukolić, “Non-determinism
in byzantine fault-tolerant replication,” arXiv preprint
arXiv:1603.07351, 2016.

[17] A. Sharma, S. Yadav, N. Gupta, S. Dhall, and S. Rastogi,
“Proposed model for distributed storage automation system
using kubernetes operators,” in Advances in Data Sciences,
Security and Applications, Springer, 2020, pp. 341–351.

[18] E. Kristiani, C.-T. Yang, Y. T. Wang, and C.-Y. Huang,
“Implementation of an edge computing architecture using
openstack and kubernetes,” in International Conference
on Information Science and Applications, Springer, 2018,
pp. 675–685.

[19] H. V. Netto, L. C. Lung, M. Correia, A. F. Luiz, and L. M. S.
de Souza, “State machine replication in containers managed
by kubernetes,” Journal of Systems Architecture, vol. 73,
pp. 53–59, 2017.

[20] H. Netto, C. Pereira Oliveira, L. d. O. Rech, and E. Alchieri,
“Incorporating the raft consensus protocol in containers
managed by kubernetes: An evaluation,” International Jour-
nal of Parallel, Emergent and Distributed Systems, vol. 35,
no. 4, pp. 433–453, 2020.

[21] H. Kang, M. Le, and S. Tao, “Container and microservice
driven design for cloud infrastructure devops,” in 2016 IEEE
International Conference on Cloud Engineering (IC2E),
IEEE, 2016, pp. 202–211.


