
An improved algebra for restricted event detection

Jan Carlson and Björn Lisper
Department of Computer Science and Engineering

Mälardalen University, Sweden
jan.carlson@mdh.se bjorn.lisper@mdh.se

MDH-MRTC-???/2004-?-SE

February, 2004

Abstract

This paper extends the event detection algebra proposed in our previous
work with a temporally restricted sequence that allows a large class of expres-
sions to be detected with limited resources.

1 Introduction

In reactive systems, execution is driven by external events to which the system
should respond with appropriate actions. Such events can be simple, but systems
are often supposed to react to sophisticated situations involving a number of simpler
events occurring in accordance with some pattern. A systematic approach to handle
this type of systems is to separate the mechanism for detecting composite events
from the rest of the application logic.

This paper extends the event detection algebra presented in [3] with a temporally
restricted sequence that allows a large class of expressions to be detected with
limited resources. We also give a formal proof that establishes the relation between
the declarative and operational semantics.

The rest of this paper is organised as follows: Section 2 gives a bried survey of
related work. The algebra is defined in Section 3, followed by a presentation of the
algebraic properties in Section 4. Section 5 presents the algorithm, and Section 6
discusses resource bounds. Finally, Section 7 concludes the paper.

2 Related work

The operators of our algebra, as well as the use of interval semantics and restricted
detection, are influenced by work in the area of active databases. Snoop [5], Ode [8]
and SAMOS [7] are examples of active database systems where an event algebra is
used to specify the reactive behaviour. These systems differ primarily in the choice
of detection mechanism. SAMOS is based on Petri nets, while Snoop uses event
graphs. In Ode, event definitions are equivalent to regular expressions and can be
detected by state automata. In the area of active databases, event algebras are
often not given a formal semantics, and algebraic properties of the operators are
not presented. Also, resource efficiency is not a main concern.

Liu et al. uses Real Time Logic to define a system where composite events are
expressed as timing constraints and handled by general timing constraint monitoring

1

techniques. They present a mechanism for early detection of timing constraint
violation, and show that upper bounds on memory and time can be derived [10].

Common to all these systems is that they consider composite events to be in-
stantaneous, i.e., an occurrence is associated with a single time instant. Galton and
Augusto have shown that this results in unintended semantics for some operation
compositions [6]. For example, an occurrence of A followed by B and then C, is
accepted as an occurrence of the composite event B;(A;C), since B occurs before
the occurrence of A;C. They also present the core of an alternative, interval-based,
semantics to handle these problems. We use a similar semantic base for our algebra,
but we extend it with a restriction policy to allow the algebra to be implemented
with limited resources while retaining useful algebraic properties.

In the area of knowledge representation, similar techniques are used to reason
about event occurrences. Interval Calculus introduce formalised concepts for prop-
erties, actions and events, where events are expressed in terms of conditions for their
occurrence [1]. Event Calculus [9] also deals with the occurrences of events, but, as
in the Interval Calculus, the motivation is slightly different from ours. Rather than
detecting complex events as they occur, they focus on how to express formally the
fact that some event has occurred, and to allow inferences to be made from it.

3 Declarative semantics

We assume a discrete time model. The declarative semantics of the algebra can be
used with a continuous time model as well, under restrictions that prevent primitive
events that occur infinitely many times in a finite time interval.

Definition 3.1 The temporal domain T is the set of all natural numbers. Also, we
define T ∞ = T ∪ {∞}, with i < ∞ for all i ∈ T .

3.1 Primitive events

We assume that the system has a pre-defined set of primitive event types to which
it should be able to react. These events can be external (sampled from the envi-
ronment or originating from another system) or internal (such as the violation of a
condition over the system state, or a timeout), but the detection mechanism does
not distinguish between these categories.

Events are also allowed to carry values. These values are not manipulated in any
way by the detection mechanism, but simply forwarded to the part of the system
that reacts to the detected events. For example, the occurrence of a temperature
alarm might carry the measured temperature value, to be used in the responding
action.

Definition 3.2 Let P be a set of identifiers that represent the primitive event types
that are of interest to the system. For each identifier p ∈ P, let dom(p) denote the
domain from which the values of p are taken.

Occurrences of primitive events are assumed to be instantaneous and atomic.
Formally, we represent a primitive instance as a singleton set, to allow primitive
and complex instances to be treated uniformly.

Definition 3.3 If p∈P, υ∈dom(p) and τ ∈T , then the singleton set {〈p, υ, τ〉} is
a primitive event instance.

The occurrences of a certain event type form an event stream. We assume that
there are no simultaneous occurrences of the same primitive event.

2

Definition 3.4 A primitive event stream is a set of primitive event instances all
of which have the same identifier, and different times.

In order to provide a semantic meaning to the algebra, there must be an associ-
ation between the identifiers of the algebra and the real-world. This is supplied by
an interpretation function as follows:

Definition 3.5 An interpretation is a function that maps each identifier p ∈ P to
a primitive event stream containing instances with identifier p.

Example: Let P = {A,B} with dom(A) = N and dom(B) = {high, low}. Now
S = {{〈A, 12, 2〉}, {〈A, 14, 3〉}, {〈A, 8, 5〉}} and T = {{〈B, low, 4〉}} are examples
of primitive event streams, and I such that I(A) = S and I(B) = T is a possible
interpretation.

3.2 Composite events

Composite events are represented by expressions built from the identifiers and the
operators of the algebra.

Definition 3.6 If A ∈ P, then A is an event expression. If A and B are event
expressions, and τ ∈T ∞, then A∨B, A+B, A−B, and A;τB are event expressions.

Next, we extend the concepts of instances and streams to composite events as well
as primitive.

Definition 3.7 An event instance is a union of n primitive event instances, where
0 < n.

Informally, an instance of a composite event represents the primitive event oc-
currences that caused an occurrence of the composite event. Since we want the
detection to be interval-based, we associate each instance with an interval, through
the following definition.

Definition 3.8 For an event instance a we define

start(a)= Min〈i,υ,τ〉∈a (τ)
end(a) = Max〈i,υ,τ〉∈a (τ)

The interval [start(a), end(a)] can be thought of as the smallest interval which con-
tains all the occurrences of primitive events that caused the occurrence of a. Note
that a primitive event instance is an event instance, and if a is a primitive instance
then start(a) = end(a).

Example: Let a = {〈A, 12, 2〉, 〈B, low, 4〉, 〈A, 8, 5〉}, then a is an event instance,
and we have start(a)=2 and end(a)=5.

We also need a definition of general event streams. These will be used to repre-
sent all instances of a composite event. By this definition, a primitive event stream
is an event stream, just as the names suggest.

Definition 3.9 An event stream is a set of event instances.

3

S = res(S) = rem(S) ={ } { } { }

Figure 1: The effect of applying res and rem to an event stream S

3.3 Semantics

The role of the semantics is to associate, for a given interpretation, with each event
expression an event stream. We will define two versions of the semantics. A simple,
unrestricted version which is infeasible for resource-conscious applications, and a
restricted version which can be efficiently implemented.

The following functions over event streams form the core of the algebra seman-
tics, as they define the basic characteristics of the four operators.

Definition 3.10 For event streams S and T , and τ ∈ T ∞, define:

dis(S, T) = S ∪ T
con(S, T) = {s ∪ t | s∈S ∧ t∈T}
neg(S, T) = {s | s∈S ∧ ¬∃t(t∈T ∧ start(s)≤start(t) ∧ end(t)≤end(s))}
seq(S, T, τ) = {s ∪ t | s∈S ∧ t∈T ∧ end(s)<start(t) ∧ end(t)−start(s)≤τ}

The main task of the restriction policy is to make the algebra effectively im-
plementable, while retaining important algebraic properties. As these goals are
somewhat contradictory, finding a suitable restriction policy has been a key issue
when developing the algebra.

The following restriction function, or family of restriction functions to be more
precise, does not allow instances that are fully overlapping, and removes all but one
innermost instance.

Definition 3.11 Let res denote an arbitrary unary function over event streams
such that the following holds. For an event stream S, res(S) is a minimal subset
of S for which ∀s(s∈S ⇒ ∃s′(s′ ∈ res(S) ∧ start(s)≤ start(s′) ∧ end(s′)≤ end(s)))
holds.

For some operators of the algebra, it suffices to use a weaker restriction, where
overlapping instances are accepted, as long as they have different end time. From
instances with the same end time, all but one innermost is removed. This is for-
malised by the following family of functions.

Definition 3.12 Let rem denote an arbitrary unary function over event streams
such that the following holds. For an event stream S, rem(S) is a minimal subset
of S for which ∀s(s∈S ⇒ ∃s′(s′ ∈ res(S) ∧ start(s)≤ start(s′) ∧ end(s′)= end(s)))
holds.

Figure 1 illustrates the difference between the two restriction functions. Each event
stream is represented graphically by the instance intervals, with time flowing from
left to right in each picture.

Using the semantic functions, and the two types of restriction functions, we can
define the two versions of the algebra semantics.

Definition 3.13 The unrestricted and the restricted meaning of an event expres-

4

sion for a given interpretation I is defined as follows:

[A]I = I(A) if A∈P
[A∨B]I = dis([A]I , [B]I)
[A+B]I = con([A]I , [B]I)
[A−B]I = neg([A]I , [B]I)
[A;τB]I = seq([A]I , [B]I , τ)

[[A]]I = I(A) if A∈P
[[A∨B]]I = rem(dis([[A]]I , [[B]]I))
[[A+B]]I = rem(con([[A]]I , [[B]]I))
[[A−B]]I = neg([[A]]I , [[B]]I)
[[A;τB]]I = res(seq([[A]]I , [[B]]I , τ)

Note that, in the restricted version, we do not require that the same rem (and res)
function is used for all subexpressions, only that all functions fulfill the criteria of
definitions 3.11 and 3.12. To simplify the presentation, we will use the notation [A]
and [[A]] instead of [A]I and [[A]]I when the choice of I is obvious or arbitrary.

4 Properties

The restriction policy should allow an efficient implementation of the algebra while
retaining algebraic properties. However, there are additional, implicit, requirements
on the restriction policy, as these two would be trivially satisfied by a restriction
policy that simply removes every instance. Informally, we want a restricted version
that removes as few instances as possible, and never detects occurrences that are
not detected by the unrestricted version. In particular, we want a formulation of
the conditions under which an instance is detected by the unrestricted version but
not by the restricted version. In this section, proofs have been left out due to space
limitations, but the proofs in [3] are easily extended to cover temporally restricted
sequence as well.

The following theorem justifies the proposed restriction policy. The subset result
is not trivial, since with a different restriction policy [[B]] ⊂ [B] could easily result
in [[A−B]] ⊃ [A−B]. The second statement ensures that every removed instance
leaves some trace in the restricted version, as the interval between the start and
end time of the removed instance must be non-empty.

Theorem 4.1 For any event expression A, the following holds:

i) [[A]] ⊆ [A]

ii) a ∈ [A] ⇒ ∃a′(a′∈ [[A]] ∧ start(a)≤start(a′) ∧ end(a′)≤end(a))

The following corollary is useful when only the first occurrence of an event,
rather then every occurrence, is of interest to the application. For example, in
a system where a temperature alarm followed by a pressure alarm should result
in an immediate emergency shutdown, there is no reason to consider subsequent
occurrences of this composite event.

Corollary 4.1 For any event expression, the end time of the first unrestricted de-
tection is the same as that of the first restricted detection.

The previous theorem allows reasoning, both formally and informally, about
the restricted semantics without a complete understanding of the restriction policy.
Similarly, we should be able to compare expressions, for example to perform sim-
plifications, without having to consider the details of the restriction policy. For this
purpose, we define a weaker concept of equivalence, as ordinary set equivalence is
not always achieved in the restricted version.

For example, if we have an occurrence of A followed by two occurrences of B and
one occurrence of C, the set [[(A;τB);τC]] contains a single instance built from the
A instance, the first B instance and the C instance. The instance in [[A;τ (B;τC)]],
however, is built from the A and C instances and the second B instance. Evidently,

5

the two sets [[A;τ (B;τC)]] and [[(A;τB);τC]] are not equal for all interpretations, but
we can show that they always contain instances with the same start and end times.
This is formalised by the following definition of expression equivalence.

Definition 4.1 For event expressions A and B we define A ∼= B to hold if for any
interpretation I we have

{〈start(a), end(a)〉 | a∈ [[A]]I} = {〈start(b), end(b)〉 | b∈ [[B]]I}

Trivially, ∼= is an equivalence relation, and the following theorem states that it in
fact defines structural congruence over event expressions.

Theorem 4.2 If A ∼= A′ and B ∼= B′ then we have (A∨B) ∼= (A′∨B′), (A+B) ∼=
(A′+B′), (A−B) ∼= (A′−B′) and (A;τB) ∼= (A′;τB′).

Now, the following algebraic laws can be formulated.

Theorem 4.3 For any event expressions A, B and C, and τ ∈ T , the following
laws hold:

A∨B ∼= B∨A A;τ (B;τC) ∼= (A;τB);τC
A∨A ∼= A A+(B∨C) ∼= (A+B)∨(A+C)

A∨(B∨C) ∼= (A∨B)∨C (A∨B)+C ∼= (A+C)∨(B+C)
A+B ∼= B+A (A∨B)−C ∼= (A−C)∨(B−C)
A+A ∼= A (A−B)−B ∼= A−B

A+(B+C) ∼= (A+B)+C A−(B∨C) ∼= (A−B)−C

5 Operational semantics

Next, we will present an imperative implementation of the algebra, and prove that
it is equivalent to the declarative semantics presented previously. The algorithm
is executed once every time instant, and computes the current instance of a given
composite event from the current instances of the primitive events.

Let E be the event expression that is to be detected. Assign the numbers 1 . . .m
to the subexpressions of E in bottom-up order, and let Ei denote subexpression
number i.

Each operator occurrence in the expression requires its own state variables, and
thus variables are indexed from 1 to m. The variable ai is used to store the current
instance of Ei, and the variables li, ri, ti and qi are auxiliary variables to store
information about the past needed to detect Ei properly. In li and ri, a single
event instance is stored, ti stores a time instant and qi contains a set of event
instances. The symbol 〈〉 represents a non-occurrence, and we use τ c to access the
current time.

The algorithm is presented in Figure 2. The rest of this section describes the
implementation of each operator in more detail, including a correctness lemma for
each operator. Finally, the correctness of the whole algorithm is addressed.

The following predicate will be used in the analysis of the algorithm. Informally,
P (i, τ) states that the variable ai contains the correct instance of Ei at time τ .

Definition 5.1 For 1≤ i≤m and τ ∈T , we define P (i, τ) to hold if:

(ai∈ [[Ei]] ∧ end(ai)=τ) ∨ (ai =〈〉 ∧ ¬∃e(e∈ [[Ei]] ∧ end(e)=τ))

6

for i from 1 to m
if Ei ∈ P then

ai := the current instance of Ei, or 〈〉 if there is none.
if Ei = Ej∨Ek then

if aj = 〈〉 or (ak 6= 〈〉 and start(aj) ≤ start(ak)) then ai := ak

else ai := aj

if Ei = Ej +Ek then
if aj 6= 〈〉 and (li = 〈〉 or start(li) < start(aj)) then li := aj

if ak 6= 〈〉 and (ri = 〈〉 or start(ri) < start(ak)) then ri := ak

if li = 〈〉 or ri = 〈〉 or (aj = 〈〉 and ak = 〈〉) then ai := 〈〉
else if aj 6= 〈〉 and (ak = 〈〉 or start(ak) ≤ start(aj))

then ai := aj ∪ ri

else ai := li ∪ ak

if Ei = Ej−Ek then
if ak 6= 〈〉 and ti < start(ak) then ti := start(ak)
if aj 6= 〈〉 and ti < start(aj) then ai := aj else ai := 〈〉

if Ei = Ej ;τ ′Ek then
ai := 〈〉
if ak 6= 〈〉 then

foreach e in qi

if end(e) < start(ak) then
qi := qi − {e}
if ai = 〈〉 or start(ai) < start(e) then ai := e

if ai 6= 〈〉 then ai := ak ∪ ai

if aj 6= 〈〉 and ti < start(aj) then
qi := qi ∪ {aj}
ti := start(aj)

foreach e in qi

if start(e) ≤ τ c − τ ′ then qi := qi − {e}

Figure 2: Algorithm for detecting E

5.1 Primitive expressions

The algorithm for primitive expressions establishes the relation between the algo-
rithm input and the interpretation function of the declarative semantics.

Lemma 5.1 Let Ei ∈P and let τ c be the current time. Then P (i, τ c) holds after
executing the loop body once.

Proof: Assuming that the interpretation represents the real-world, this holds triv-
ially. �

5.2 Disjunction

The disjunction operator is fairly simple and requires no auxiliary variables.

Lemma 5.2 Let Ei =Ej∨Ek and assume that P (j, τ)∧P (k, τ) holds. Then P (i, τ)
holds after executing the loop body once.

Proof: From P (j, τ) and P (k, τ) it is straightforward to show that P (i, τ) holds
when one or both of aj and ak are 〈〉. Otherwise, both aj and ak belong to
dis([[Ej]], [[Ek]]), and thus the one with maximum start time must be in [[Ei]]. If

7

the start times are equal, selecting ak is in accordance with the definition of rem.
�

5.3 Conjunction

For conjunctions, it is necessary to store the instance with maximum start time so far
from each of the two subexpressions. This is formalised by the following definition,
which states that li and ri have correct values at the start of time instant τ .

Definition 5.2 For 1≤ i ≤ m such that Ei = Ej +Ek, and for τ ∈ T , we define
C(i, τ) to hold if the following holds:

• li is an element in {e | e∈ [[Ej]] ∧ end(e)<τ} with maximum start time, or 〈〉
if that set is empty.

• ri is an element in {e | e∈ [[Ek]]∧ end(e)<τ} with maximum start time, or 〈〉
if that set is empty.

Lemma 5.3 For Ei =Ej +Ek we have

i) C(i, 0) holds for an initial state where li =〈〉 and ri =〈〉.

ii) Assume that P (j, τ) ∧ P (k, τ) ∧C(i, τ) holds. Then P (i, τ) ∧C(i, τ+1) holds
after executing the loop body once.

Proof: As i) follows trivially from the definition of C, we focus on showing ii). By
C(i, τ) and P (k, τ) we can see that li will contain the value specified by C(i, τ +1)
after the execution of the first conditional in the conjunction part of the algorithm.
The same holds for the second conditional and ri, so C(i, τ+1) holds after executing
the first two conditionals.

If the guard of the third conditional is satisfied, then ¬∃e(e∈con([[Ej]], [[Ek]]) ∧
end(e)=τ), and thus P (i, τ) holds after assigning 〈〉 to ai. If the guard is false, we
know that ∃e(e ∈ [[Ei]] ∧ end(e) = τ). For the case when one of aj and ak are 〈〉,
there is only one e∈con([[Ej]], [[Ek]]) with end(e)=τ , and thus this e is in [[Ei]].

For the other case, when neither aj nor ak is 〈〉, both aj ∪ ri and li ∪ ak belong
to con([[Ej]], [[Ek]]). If the inner conditional holds, we have start(ak)≤start(aj) and
by C(i, τ +1) we also have start(ak)≤ start(ri). Thus start(li ∪ ak)≤ start(aj ∪ ri)
which means that aj ∪ ri∈ [[Ei]] does not violate the constraints in the definition of
rem. Similarly, if the inner conditional is false, we have li ∪ ak∈ [[Ei]]. �

5.4 Negation

According to the semantics of the negation operator, an instance of B is an instance
of B−C unless it is invalidated by some instance of C occurring within its interval.
If the current instance of B is invalidated at all, it is invalidated by the instance
of C with maximum start time (of those that have occured so far). Thus, it is
sufficient to store a single start time, since the end time is trivially known to be less
than the end time of the current instance of B.

Definition 5.3 For 1 ≤ i ≤ m such that Ei = Ej−Ek, and for τ ∈ T , we define
N(i, τ) to hold if ti is the maximum start time of the elements in {e | e ∈ [[Ek]] ∧
end(e)<τ}, or −1 if this set is empty.

Lemma 5.4 For Ei =Ej−Ek we have

i) N(i, 0) holds for an initial state where ti =−1.

8

ii) Assume that P (j, τ)∧P (k, τ)∧N(i, τ) holds. Then P (i, τ)∧N(i, τ+1) holds
after executing the loop body once.

Proof: i) holds trivially, and for ii) it is straightforward to show that the first
conditional updates ti to the value specified by N(i, τ +1). If the guard of the
second conditional holds, then by P (j, τ) we have aj ∈ [[Ej]]. According to N(i, τ+1)
there is no e in [[Ek]] with start(aj)≤ start(e) and end(e)< start(aj)= τ , and thus
aj ∈neg([[Ej]], [[Ek]]), which means that P (i, τ) holds. �

5.5 Sequence

The sequence operator requires the most complex algorithm. The reason for this is
that in order to detect a sequence B;τC correctly, we must store several instances
of B. Once C occurs, the start time of that instance determines with which of the
stored instances of B it should be combined to form the instance of B;τC.

Definition 5.4 For 1≤ i ≤ m such that Ei = Ej ;τ ′Ek, and for τ ∈ T , we define
S(i, τ) to hold if all of the following conditions hold:

• ti is the maximum start time of the elements in {e | e∈ [[Ej]]∧ end(e)<τ}, or
−1 if this set is empty.

• qi is the set of every instance e ∈ [[Ej]] with end(e) < τ except when e is
invalidated by one (or more) of the following conditions:

1. start(e) < τ−τ ′

2. There is an instance e′∈ [[Ek]] with end(e′)<τ and end(e)<start(e′).

3. There is another instance e′ ∈ [[Ej]] with e′ 6= e, start(e)≤ start(e′) and
end(e′)<start(e).

Lemma 5.5 For Ei =Ej ;τ ′Ek we have

i) S(i, 0) holds for an initial state where qi =∅ and ti =−1.

ii) Assume that P (j, τ) ∧ P (k, τ) ∧ S(i, τ) holds. Then P (i, τ) ∧ S(i, τ +1) holds
after executing the loop body once.

Proof: We focus on ii) as i) holds trivially. The first conditional removes from
qi those instances of [[Ej]] that are invalidated, according to condition 2, by the
current instance of [[Ek]]. After the foreach statement, ai contains the removed
instances with maximum start time (or 〈〉 if no instances were removed). If ai =〈〉,
then by P (k, τ) and S(i, τ) we have ¬∃e(e ∈ [[Ei]] ∧ end(e) = τ), so P (i, τ) holds.
If ai 6= 〈〉, then ai ∪ ak ∈ seq([[Ej]], [[Ek]], τ ′) and then by S(i, τ) we have that any
e∈ seq([[Ej]], [[Ek]], τ ′) such that start(ai ∪ ak)≤ start(e) and end(e)≤ end(ai ∪ ak)
would imply start(ai ∪ ak)=start(e) and end(e)=end(ai ∪ ak). Thus, ai ∪ ak∈ [[Ei]]
satisfies the constraint in the definition of res, so P (i, τ) holds after assigning ai∪ak

to ai.
The second conditional adds the current instance of [[Ej]] to qi, unless it is

invalidated by some e′ ∈ [[Ej]] with start(e′) = ti and end(e′) < τ , as specified
by condition 3. Additionally, ti is updated to the value specified by S(i, τ +1).
Finally, the lastforeach statement removes all elements from qi that are invalidated
by condition 1 in S(i, τ +1). �

9

5.6 Putting it all together

The following theorem formalises the correctness of the algorithm.

Theorem 5.1 After executing the algorithm at time instants 0 to τ , P (i, τ) holds
for 1 ≤ i ≤ m.

Proof: Induction over i using the lemmas shows that each subexpression is correctly
detected (since they are numbered bottom-up) provided that the state is correct at
the start of the time instant. Induction over time instants 0 to τ shows that the
state is correct at the start of each time instant, and thus the theorem holds. �

The algorithm is described for the case when the expression is unknown at
compile time, in which case the main loop selects dynamically which algorithm to
execute for each subexpression. If the expression is known at compile time, the
main loop can be unrolled and the top-level conditionals, as well as all indices, can
be statically determined. A concrete example of this is given in Figure 3.

Initialisation:
t5 := −1

Executed every time instant:
a1 := the current instance of A, or 〈〉 if there is none.
a2 := the current instance of B, or 〈〉 if there is none.
if a1 = 〈〉 or (a2 6= 〈〉 and start(a1) ≤ start(a2)) then a3 := a2

else a3 := a1

a4 := the current instance of C, or 〈〉 if there is none.
if a4 6= 〈〉 and t5 < start(a4) then t5 := start(a4)
if a3 6= 〈〉 and t5 < start(a3) then a5 := a3 else a5 := 〈〉

Figure 3: Statically simplified algorithm for detecting (A∨B)−C

6 Resource bounds

From the algorithm in the previous section, it is obvious that each disjunction,
conjunction and negation in the event expression requires a constant amount of
storage, and contributes with a constant factor to the computation time of the
whole detection algorithm. For the sequence operator, the memory usage depends
on the maximum size of qi. For a temporally restricted sequence, i.e., B;τC with
τ ∈ T , it follows from the definition of T that qi never contains more than τ +1
elements.

The remaining case is the temporally unrestricted sequence B;∞C, for which no
memory bound exists in the general case. For an important subset of expressions,
however, the sequence operator can be implemented more efficiently than in the
general case. If we know that all instances of C are instantanous (i.e., start time is
equal to end time), for example because C is primitive or a disjunction of primitives,
then there is no need to store several instances of B to detect B;τC correctly.

Definition 6.1 For an event expression A, let ins(A) hold iff

(A∈P) ∨ (A=B∨C ∧ ins(B) ∧ ins(C)) ∨ (A=B−C ∧ ins(B))

The improved algorithm for B;τC under the assumption that ins(C) holds, is shown
in Figure 4.

10

if ak = 〈〉 or li = 〈〉
then ai := 〈〉
else ai := li ∪ ak; li := 〈〉

if aj 6= 〈〉 and ti < start(aj)
then li := aj ; ti := start(aj)

if li 6= 〈〉 and start(li) ≤ τ c − τ ′

then li := 〈〉

Figure 4: Algorithm for Ei = Ej ;τ ′Ek when ins(Ek) holds

Definition 6.2 For 1 ≤ i ≤m such that Ei = Ej ;τ ′Ek, and for τ ∈ T , we define
Q(i, τ) to hold if all of the following conditions hold:

• ti is the maximum start time of elements in {e | e∈ [[Ej]]∧ end(e)<τ}, or −1
if this set is empty.

• li is an instance with maximum start time from the instances that would belong
to qi by Definition 5.4, or 〈〉 if that set is empty.

Lemma 6.1 For Ei =Ej ;τ ′Ek such that ins(Ek) holds, we have

i) Q(i, 0) holds for an initial state where li =〈〉 and ti =−1.

ii) Assume that P (j, τ) ∧ P (k, τ) ∧Q(i, τ) holds. Then P (i, τ) ∧Q(i, τ+1) holds
after executing the algorithm in Figure 4.

Proof: i) holds trivially. For ii) we see that if the first conditional holds then
¬∃e(e ∈ [[Ei]] ∧ end(e) = τ), so P (i, τ) holds after assigning 〈〉 to ai. Otherwise,
li ∪ ak ∈ seq([[Ej]], [[Ek]], τ ′) since end(li) < τ = start(ak) according to Q(i, τ) and
ins(Ek). By Q(i, τ) and ins(Ek) we have that li ∪ ak∈ [[Ei]] satisfies the constraint
in the definition of res, so P (i, τ) holds after assigning li ∪ ak to ai. Since the
current instance of [[Ek]] invalidates all instances of [[Ej]] that have occured earlier
(including li) according to condition 2, 〈〉 is assigned to li.

The second conditional checks whether the current instance of [[Ej]] satisfies
condition 3, and updates li if neccesary. Finally, if li does not satisfy condition 1,
no other instance of [[Ej]] satisfies all three conditions, so 〈〉 is assigned to li. �

Trivially, the new sequence algorithm requires a constant amount of storage, and
thus the memory needed to detect an expression E is constant provided that for
any subexpression of E on the form B;τC for which ins(C) does not hold, we have
τ 6=∞.

Once the size limits of the qi variables have been established, the worst case
temporal complexity of the algorithm can be derived. A straightforward implemen-
tation of the qi variables gives a total complexity of O(mn), where m is the number
of subexpressions in E and n is the maximum size limit of the qi variables.

7 Conclusions and future work

We have presented a fully formal event algebra with operators for disjunction, con-
junction, negation and sequence. The algebra is defined in terms of a restriction
policy to allow an efficient implementation. This policy is carefully designed to
ensure that important algebraic properties correspond to the intuitive behaviour of
the operators also in the restricted version of the semantics.

11

An implementation of the algebra was presented and its semantics was proved
equal to the declarative semantics. Also, we have identified a subset of expressions
for which detection can be performed with bounded resources.

Our ongoing work includes investigating how to combine the algebra with lan-
guages that specifically target reactive systems, in particular Esterel [2], AFRP [12,
11] and Timber [4]. We are also investigating how information about primitive
event frequencies can be used to lower the size limits of the qi variables, resulting
in more precise worst case memory and time estimates.

References

[1] J. F. Allen and G. Ferguson. Actions and events in interval temporal logic.
Journal of Logic and Computation, 4(5):531–579, October 1994.

[2] G. Berry. The Esterel-V5 Language Primer. CMA and Inria, Sophia-Antipolis,
France, v 5.21, release 2.0 edition, May 1999.

[3] J. Carlson and B. Lisper. An interval-based algebra for restricted event de-
tection. In First Int. Workshop on Formal Modeling and Analysis of Timed
Systems (FORMATS 2003), Marseille, France, September 2003.

[4] M. Carlsson, J. Nordlander, and D. Kieburtz. The semantic layers of Timber.
In Proceedings of the First Asian Symposium on Programming Languages and
Systems (APLAS’2003), Lecture Notes in Computer Science, Beijing, China,
26–29 November 2003. Springer-Verlag.

[5] S. Chakravarthy and D. Mishra. Snoop: An expressive event specification
language for active databases. Data Knowledge Engineering, 14(1):1–26, 1994.

[6] A. Galton and J. C. Augusto. Two approaches to event definition. In Proc. of
Database and Expert Systems Applications 13th Int. Conference (DEXA’02),
volume 2453 of Lecture Notes in Computer Science, pages 547–556, Aix-en-
Provence, France, 2–6 September 2002. Springer-Verlag.

[7] S. Gatziu and K. R. Dittrich. Events in an active object-oriented database
system. In Proc. 1st Intl. Workshop on Rules in Database Systems (RIDS),
Edinburgh, UK, September 1993. Springer-Verlag.

[8] N. Gehani, H. V. Jagadish, and O. Shmueli. COMPOSE: A system for com-
posite specification and detection. In Advanced Database Systems, volume 759
of Lecture Notes in Computer Science. Springer, 1993.

[9] R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New
Generation Computing, 4:67–95, 1986.

[10] G. Liu, A. Mok, and P. Konana. A unified approach for specifying timing
constraints and composite events in active real-time database systems. In 4th
IEEE Real-Time Technology and Applications Symposium (RTAS ’98), pages
199–209, Washington - Brussels - Tokyo, June 1998. IEEE.

[11] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive programming,
continued. In Proceedings of the 2002 ACM SIGPLAN Haskell Workshop
(HASKELL-02), pages 51–64, New York, October 3 2002. ACM Press.

[12] Z. Wan and P. Hudak. Functional reactive programming from first principles.
ACM SIGPLAN Notices, 35(5):242–252, May 2000.

12

