In 7th Conference on the Engineering of Computer Based Systems
(ECBS 2021), May 26-27, 2021, Novi Sad, Serbia. ACM, New York

Thou Shalt Not Move

A Visibility-based Emergency Stop System for Smart Industries

Gabriele Capannini
Milardalen University
Vasteras, Sweden
gabriele.capannini@mdh.se

Jan Carlson
Milardalen University
Vasteras, Sweden
jan.carlson@mdh.se

Roger Mellander
ABB Robotics
Vasteras, Sweden
roger.mellander@se.abb.com

Stoppable
@ ™ hazard
< = Fixed wall
O

OO \ Emergency
O - stop button

0o

o “a .

e QBQ

Figure 1: A fence-less production environment with static and autonomous machines collaborating with human operators.

ABSTRACT

Nowadays, industries are crowded with automatized machinery
and robots that interact with human operators. In addition to other
safety measures already present, we propose a further tool to equip
such working places with a visibility-based emergency stop system
that only affects those machines that are visible from the position
of an emergency stop button when it is pressed. This paper presents
the realization of such a system and the preliminary results collected
from the conducted scalability experiments.

CCS CONCEPTS

+ Applied computing — Industry and manufacturing; - Com-
puting methodologies — Computer graphics.

KEYWORDS

Visibility, Emergency stop, Smart industries

ACM Reference Format:

Gabriele Capannini, Jan Carlson, and Roger Mellander. 2021. Thou Shalt
Not Move: A Visibility-based Emergency Stop System for Smart Industries.
In ECBS °21: 7th Conference on the Engineering of Computer Based Systems,
May 26-27, 2021, Novi Sad, Republic of Serbia. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3459960.3459966

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ECBS 21, May 26-27, 2021, Novi Sad, Republic of Serbia

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9057-6/21/05...$15.00
https://doi.org/10.1145/3459960.3459966

1 INTRODUCTION

The context of this work is a highly automatized factory, where
human operators share the space with autonomous vehicles as well
as stationary machines. Such a setup naturally comes with a number
of safety concerns, including safe routing of autonomous machines,
collision avoidance, etc. On top of these mechanisms, however,
there is a need for emergency stops that allows human operators to
manually stop the equipment if they discover a dangerous situation.

In a traditional factory, with only stationary machines, emer-
gency stops are installed on or near the machines, and it can be
statically decided what machines are controlled by each button.
In our context, however, some emergency stops are attached to
the moving vehicles or are part of the functionality of hand-held
devices used by the operators. Even the stationary emergency stops,
can not rely only on a static decision of what machines they should
control, since they should also stop any moving vehicle nearby.

There is, of course, always the possibility to let every emergency
stop control all stationary and moving machines, but in a large
factory this can be prohibitively costly. Instead, the starting point
for our work has been that an emergency button, when pressed,
should stop all machines that are visible from the position of that
particular button. From a safety perspective, we can approximate
this visibility as long as it is a safe over-approximation, i.e., we can
stop a machine even if it is in fact only almost visible, but we must
never fail to stop a machine that is, in fact, visible.

The main contribution of this paper is a novel algorithm able to
solve the visibility problem with the specific requirements intro-
duced in Section 2. Our algorithm, presented in Sections 3 and 4,
has then been used as a building block in the whole emergency stop
system described in Section 5. Results from a preliminary evaluation
of the visibility algorithm performance are provided in Section 6.

ECBS ’21, May 26-27, 2021, Novi Sad, Republic of Serbia

2 THE VISIBILITY PROBLEM

The planar visibility problem is of great relevance in the computer
graphics context, e.g., for the removal of hidden lines in 3D scenes,
as well as in computational geometry where it finds applications for
the shortest-path calculation in presence of obstacles. According
to the definition given by Asano et al. [3], the problem can be
formulated as it follows:

Definition 2.1. Given a set P of disjoint polygons and a query
point g, define the subset V(P, q) C P made of all those polygons
that are visible from g, where a polygon p is visible from gq if it
exists an open line segment from q to any point of p that does not
intersect any other polygon in P.

Such a definition, however, does not fully hold for our scenario
since there are some aspects to take into consideration:

(1) we cannot assume that the polygons enclosing the objects
are disjoint;

(2) due to their conformation and size, some objects let the
hypothetical observer placed in g see through them. This
contradicts the definition of visible polygon stated.

The following sections illustrate among other things, how the
proposed solution overcomes these issues.

3 MODELING REAL WORLD OBJECTS

This section describes how the real world objects (e.g., moving
robots, machinery, walls, and everything that can affect the compu-
tation of a visibility query) are modeled in the proposed solution.

The objects are represented by means of one or more bounding
volumes that enclose their plan-view orthographic projection and
form the polygons of Definition 2.1. The number and the type of
volumes employed to enclose the object depends on how complex
the shape to represent is and the accuracy we want to achievel.
For example, a machine made of a stationary base and a moving
arm can be fully enclosed in one simple box (similarly to Figure 2:
low accuracy, better performance) or in a set of tighter volumes:
one for each part of it (high accuracy, lower performance). In this
preliminary study, any object is represented by a single AABB.

Given a query point g, each bounding volume v is used to calcu-
late the segment s(v, q) representing v from the perspective of g,
as exemplified in Figure 2.

Figure 2: Sketch of how the red AABB v is represented by
different segments s(v, q), denoted by green lines, depending
on the relative position of q.

! In [6], the most popular bounding volumes are described: from the simple Axis-
Aligned Bounding Boxes (AABB’s) to the more complex Oriented Bounding Boxes.

G. Capannini, J. Carlson, R. Mellander

Observing Figure 2, it is worth noting how bounding the objects
in tighter volumes could lead to a more precise calculation of the
segments s(v, q1) and s(v, g2), thus more accurate solutions.

In addition to the bounding volume and the position, an object
representation is also provided of two Boolean attributes denoting:

e Transparency — This attribute has been added to address
issue (2) reported in Section 2. If the object let an operator see
the other objects behind it or if it is possible to see through
any part of its bounding volume, the object should be con-
sidered transparent. For example, the machine in Figure 2
would be considered transparent, since the corners of the
bounding volume can be seen through (and because it is
most likely possible to see over or under the “arm”).

o Stoppable — This attribute states if the object can be stopped
or not (e.g., distinguishing between walls and machines).

4 THE VISIBILITY ALGORITHM

Asano et al. [3] presented a method to build a data structure (in
quadratic time and space) on which it is possible to compute the visi-
bility query in linear time. This solution as well as other approaches
presented in [2, 4, 8] are efficient when the visibility problem is
solved repeatedly for the same set of polygons. Our context, instead,
is highly dynamic and the operations for updating the objects’ posi-
tion are at least as frequent as the visibility query requests. Hence,
we opted for storing data in lightweight structures so that object
positions can be updated quickly.

Initially, given a query point g, the segment s(v, q) is calculated
for each bounding volume v and, then, the endpoints of all segments
are sorted according to their polar angle determined in the polar
coordinate system where g is the reference point.

Similarly to the approach followed in [3], our algorithm proceeds
performing an angular sweep of the sorted endpoints. A ray p
originated from the query point g is fired towards each endpoint
and the segments intersected by p are analyzed to discover possibly
visible objects. Segments that intersect the ray p are stored in a
tree? T and, unlike Asano et al., our algorithm possibly analyzes all
of them. This solves issue (1) reported in Section 2 at the expense
of a higher time complexity during the query computation.

As the sweep proceeds, T is kept updated by adding and remov-
ing the segment s respectively when the first and second endpoint
of s occur. In particular, when s is going to be added to T, we look for
a possible non-transparent object in T of which segment is closer
to g than s is and, if we found it, we state that s is not visible for
the moment. When a segment s is about to be removed from T, no
operations are needed if s is transparent (since s does not affect the
visibility state of the other objects) while, if s is not-transparent,
we search for another non-transparent segment s’ € T of which
intersection point with p is closer to g than s. If s” exists, removing s
from T does not affect the visibility state of the other objects while,
if s was the closest segment to g, then we search for the second
non-transparent segment s”’ closest to q and (if any) all the objects
of which segment intersects p between s and s”” become visible (if
s’ does not exist, then all the objects represented in T are visible).

Figure 3 illustrates the algorithm in a simple scenario. During
the sweep, it first adds segment s, corresponding to the left wall,

2 T is implemented as a SuccTree: a lightweight, cache-friendly data structure [5].

Thou Shalt Not Move

and then segment sz, corresponding to the left machine. At this
point, sy is hidden by s; and thus not visible, but when s; is removed
from T (at T3), there is no (non-transparent) segment closer to g
than s is, and thus the left machine is visible from q. However, the
right machine is not visible from g since there is a non-transparent
segment (s3) closer to ¢ whenever the endpoints of segment s4 are
considered (i.e., at T and T7).

Figure 3: Example of the visibility algorithm.

Let n be the number of objects, the number of segments in T
is O(n) hence, according to the SuccTree properties, scanning T
costs O(nlogn). Since T is visited at most once for each ray p and
the rays are 2n, the time complexity to perform a query with our
algorithm is O(n? log n).

5 SOFTWARE ARCHITECTURE

The emergency stop system consists of an Emergency stop server and
anumber of Emergency stop clients for the machines and emergency
buttons. For simplicity, we assume that the emergency brake system
is the only system interested in tracking the position of the moving
machines, but in a more realistic setting this would typically be
handled by a separate service since positions are also used for, e.g.,
planning machine movement.
The Emergency stop server provides the following services:

e Register device — A new device entering the system needs
to register with the emergency stop service, including indi-
cating if it is a device that can be stopped and if it has an
emergency button.

e Update position — A registered device sends its current
position and bounding volume (i.e., its AABB) once if sta-
tionary, or periodically if it can move.

e Button pressed — Informing the server that an emergency
button has been pressed.

The Emergency stop clients provide the following services:

e Registration acknowledged — In reply to the registration,
the device receives a unique ID.
e Stop — Instructing the device to make an emergency stop.
Since the main non-functional concern is the emergency stop
end-to-end latency (i.e., the time from an emergency button be-
ing pressed to all visible machines being stopped), we have opted
for a solution where overall performance is sacrificed in order to

ECBS ’21, May 26-27, 2021, Novi Sad, Republic of Serbia

minimize this latency. Thus, rather than computing visibility only
when a certain button is pressed, i.e., as part of the Button pressed
service, the server also contains a periodic activity, Compute visi-
bility, in which the visibility is computed for all buttons. When an
emergency button is pressed, the systems can directly send a stop
message to the machines visible from that button, with very little
additional delay.

Button Server Machine 1 Machine 2
T pdate L 1T T
position
Update
position
Update
position
Compute
visibility
Update
position
Compute
visibility
Button {
pressed
Stop
T T T T

Figure 4: Example of message sequence in a simple scenario.

Figure 4 depicts a simple scenario with a static button and two
moving machines (ignoring the registration messages for brevity).
The button informs the server of its position once, while the ma-
chines update periodically. Here, the update period of the first
machine is shorter than that of the second, which would for exam-
ple be the case if it moves faster. At regular intervals, the server
recomputes the visibility information. When the button is pressed,
the visible machines (here, only Machine 2) are stopped.

6 EXPERIMENTAL RESULTS

In the perspective of creating the emergency stop system for smart
industries, we opted for developing our framework within the
Docker ecosystem [7]. We initially built a virtual scenario with
two types of Docker containers: clients and server providing, re-
spectively, the services described in Section 5. To test the system,
clients were designed to randomly send messages of different types
(i.e., bounding volume changed, position update, button pressed)
to the server. The server stores the incoming messages in a queue
and processes them one by one, updating position information and
sending stop messages to the visible clients as a result of a button
being pressed. To ease the creation of such a scenario, the Go pro-
gramming language was used to implement the Dockers containers,
since it offers several facilities for distributed computing [1].

In order to preliminary test the performance and scalability
of the proposed visibility algorithm, we also made a stand-alone

ECBS ’21, May 26-27, 2021, Novi Sad, Republic of Serbia

C*™* implementation of the visibility algorithm, and executed it for
scenarios with a varying number (n) of objects and a single query
point g. The objects are represented by AABBs with sizes randomly
generated within a given range of values according to the uniform
distribution. AABBs are placed around q in order to fill the space
according to a given density d. Transparent and stoppable AABBs
are, respectively, 25% and 50% of the overall n clients.

The results of the preliminary tests are shown in Table 1 and
Figure 5. The machine used for these experiments was equipped
with an Intel Core i3-1005G1 and 16 GB of memory. Changing the
percentage of transparent and stoppable objects in the tests, the
variation of the execution time of the algorithm is around 10%.

Table 1: Average elapsed time (in milliseconds) over 150 runs
for different values of n and d.

n d=10% d=50% d=90%
100 0.004 0.005 0.005
500 0.019 0.029 0.033

1,000 0.038 0.058 0.062
2,000 0.078 0.113 0.125
4,000 0.166 0.214 0.231
6,000 0.272 0.316 0.344
8,000 0.361 0.417 0.443

Despite the time complexity stated in Section 4, the algorithm
performs well in practice and the measured elapsed times grow
almost linearly with the input size n even in high-density scenarios
as depicted in Figure 5. The performance degrade for dense scenar-
ios is due to the larger number of AABBs stored simultaneously in
the SuccTree T, which requires more tests during the scan.

T T
—e—d=10%
041 g g=s0% N
—é —e—d=90%
o
Q
202 -
g
or | | | | | i
0 2,000 4,000 6,000 8,000
n

Figure 5: Plot of the experiment results in Table 1.

7 DISCUSSION AND FUTURE WORK

In this paper we have outlined a visibility-based emergency stop
system to be used in smart industries where autonomous machines
and human operators collaborate.

The dependability of the solution relies on visibility being safely
approximated, for example by over-approximating the actual ma-
chine shapes by bounding volumes and considering certain objects
transparent with respect to not always hiding other objects be-
hind them. In a concrete system instance, there is also a need to

G. Capannini, J. Carlson, R. Mellander

consider the relation between the frequency and accuracy of the
position updates and the amount of extra over-approximation of
the bounding boxes. Finally, from a reliability perspective, it should
be pointed out that there is always the possibility of stopping a
machine, regardless of the visibility, for example if its position has
not been updated recently enough.

The preliminary experiments indicate that the visibility algo-
rithm is sufficiently efficient for use as the basis of a emergency
stop systems, for problem sizes up to 8000 objects, which should be
more than sufficient for most industrial environments. Although the
results from these preliminary synthetic experiments are promis-
ing, they need to be complemented by experiments involving the
whole system and real scenarios to investigate the overall end-to-
end response time including delays caused by the communication
between server and clients, in a representative industrial setting.

The proposed solution presents a monolithic system where one
server-instance is responsible of the whole service. As a future
improvement, we believe that a distributed version where com-
putation can be divided among multiple machines, could lead to
several benefits. For example, partitioning the area to be covered
among multiple server instances could reduce the communication
overhead as well as the workload of the single instances. Moreover,
a distributed solution could provide fault tolerance, by dynamically
reassigning emergency stop responsibilities to other nodes in case
one node is unresponsive.

From the algorithmic point of view we also want to explore
how the algorithm can be improved by replacing the query-point
q with a query-area, representing the positions from which an
operator can reach the button, and then calculate the visibility from
any point inside that area. This increases the complexity of the
problem significantly, and would mostly likely require some type
of approximation algorithm.

ACKNOWLEDGMENTS

This work was supported by the Knowledge Foundation in Sweden
through the ACICS project (20190038).

REFERENCES

[1] VN Nikhil Anurag. 2018. Distributed computing with Go: practical concurrency and
parallelism for Go applications. Packt Publishing Ltd.

[2] B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang. 2002. Visibility queries and
maintenance in simple polygons. Discrete and Computational Geometry 27, 4 (June
2002), 461-483. https://doi.org/10.1007/s00454-001-0089-9

[3] Takao Asano, Tetsuo Asano, Leonidas Guibas, John Hershberger, and Hiaroshi
Imai. 1986. Visibility of Disjoint Polygons. Algorithmica 1, 1 (Jan. 1986), 49-63.

[4] Francisc Bungiu, Michael Hemmer, John Hershberger, Kan Huang, and Alexander
Kroéller. 2014. Efficient Computation of Visibility Polygons. arXiv:1403.3905 [¢s.CG]

[5] Gabriele Capannini and Thomas Larsson. 2018. Adaptive Collision Culling for
Massive Simulations by a Parallel and Context-Aware Sweep and Prune Algorithm.
IEEE Transactions on Visualization and Computer Graphics 24, 7 (2018), 2064-2077.

[6] Simena Dinas. 2019. Bounding Volume Hierarchies for Rigid Bodies. In Encyclope-
dia of Computer Graphics and Games, Newton Lee (Ed.). Springer.

[7] Piotr Dziurzanski, Shuai Zhao, Michal Przewozniczek, Marcin Komarnicki, and
Leandro Soares Indrusiak. 2020. Scalable distributed evolutionary algorithm
orchestration using Docker containers. Journal of Computational Science 40 (2020),
101069.

[8] Gert Vegter. 1990. The Visibility Diagram: A Data Structure for Visibility Problems
and Motion Planning. In Proceedings of the Second Scandinavian Workshop on
Algorithm Theory (Bergen, Sweden) (SWAT ’90). Springer, Berlin, 97-110.

