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Abstract. Safety standards from different domains recommend the ex-
ecution of a process for keeping the system safety case up to date, when-
ever the system undergoes a change, however, without providing any
more specific guidelines on how to do this. Even if several (semi)automated
safety case maintenance approaches have been proposed in the literature,
currently, in the industry, the execution of this process is still manual,
being error prone and expensive. To this end, we present in this paper
the results of what is, to the best of our knowledge, the first Systematic
Literature Review (SLR) conducted with the goal to provide a holistic
overview of state-of-the-art safety case maintenance approaches. For each
identified approach, we analyze its strengths and weaknesses. We observe
that existing approaches are pessimistic, identifying a larger number of
safety case elements as impacted by a change than the number of the
actually impacted elements. Also, there is limited quantitative impact as-
sessment. Further, existing approaches only address a few system change
scenarios when providing guidelines for updating the safety case.
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1 Introduction

Motivation: The system safety case can be used as a medium for assessing the
impact system changes have on the system safety assurance [40]. Safety cases
are explicitly required or recommended by standards from different safety crit-
ical domains, such as ISO 26262 voluntary standard [39] and UL 4600 [41] for
automotive systems, the CENELEC EN 50129 standard for railway systems, the
IAEA’s safety standards for systems based on nuclear energy, the FAA Order
8900.1 FSIMS, Vol. 16, in the avionics or the JSP 318B standard for military air-
craft systems. A safety case is a specialization of an assurance case, which is an
argumentation that, based on certain evidence, a system satisfies certain system
requirements, in a defined operational environment [6]. As a small change to any
related safety work product may affect a large part of the safety case [25], [41],
the same standards also require that the system safety case reflects the current
status of the system. For example, ISO 26262 states that the safety case is a



2 C. Cârlan et al.

work product (e.g., hazards list, requirements specification, system design) gen-
erated by the execution of the system safety lifecycle and that the evidence in
the safety case is a compilation of the other safety work products. The same
standard, in Part 10, recommends maintaining the system safety case consistent
with the other safety work products. According to ISO 26262 and to UL 4600,
safety case maintenance is a two-phased process. First, given a change in a safety
work product, a change impact analysis (CIA) shall be conducted. Second, based
on identified impact, the safety case shall be updated correspondingly. However,
even if the maintenance of safety cases is a complex process, neither ISO 26262,
nor any standard in other domains provide guidelines on concrete techniques for
executing safety case maintenance. Currently, in practice, safety case mainte-
nance is manually executed by safety engineers, being an error-prone and time
and resource consuming process. Consequently, the inadequate management of
changes in the specification of the system or its operational context has led in
the past to accidents [4] or NHTSA recalls3. Automated change impact analysis
for the system safety case and the existence of guidelines for how to update it
given certain types of system changes would be beneficial. As such, safety case
maintenance approaches have gained much attention in research.

Objectives and Method: The scope of this work is (1) to synthesize a
comprehensive list of all automated safety case maintenance approaches pro-
posed in the literature in the time interval 2000-2020, based on the results of
a conducted systematic literature review (SLR) [26]; and (2) to report on the
results of an in-depth analysis of these approaches. We are especially interested
in assessing the following capabilities: 1) the degree of automation for CIA, 2)
the accuracy of CIA, 3) the provision of support for quantitative CIA, 4) the
provision of guidance for updating the safety case, 5) the availability of tool
support. Further, we also analyze the addressed change scenarios.

Results: The SLR resulted in the selection of 65 papers, presenting 26 ap-
proaches for safety case maintenance. The results of our conducted SLR highlight
three important limitations of existing approaches for safety case maintenance.
First, we conclude that existing approaches are pessimistic, as their identified
impact area of impact may be larger than the actual impact area. Second, we
observe that, in current literature, guidelines for updating the safety case only
address a few change scenarios. Another outcome of our analysis is that there is
limited support for assessing the impact of a change in a quantitative manner.

The remainder of this paper is organized as follows. In Section 2, we pro-
vide essential background on safety case maintenance and an overview of related
SLRs and mapping studies. In Section 3, we describe the protocol we used for
this SLR. Then, in Section 4, we synthesize and analyze existing work regarding
maintaining the system safety case consistent with other system and safety engi-
neering artifacts in the literature. Towards the end, in Section 5, we summarize
the results of our SLR, while highlighting the limitations of current approaches,
and, in Section 6, we conclude by proposing possible research directions.

3 https://betterembsw.blogspot.com/p/potentially-deadly-automotive-software.

html
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2 Background and Related Work

Safety case maintenance - basic concepts. Kelly and McDermid [25] elab-
orate on the two–phased safety case maintenance process recommended by ISO
26262. They classify impacted elements in two categories: elements directly im-
pacted by a system change (also called challenged safety case elements) and
indirectly impacted elements, which are only impacted due to the ”ripple effect”
of the impact propagation. Kelly and McDermid also differentiate between CIAs
that only identify potentially impacted elements, which still need to be manu-
ally checked by the safety engineer, and accurate CIA that only identify actually
impacted elements, which are surely invalidated by the change. Potentially im-
pacted elements may be either actually impacted elements or false positives,
meaning that they might not actually be invalidated by the change.

Related literature studies. While there are two works reporting on the
state of the art in safety case tools [29], and in safety case languages [21], to
the best of our knowledge, there is no review of current safety case maintenance
approaches. Maksimov et al. [29] report the results of a survey concerning tool
support for the creation and management of safety cases, while also analyzing
certain tool functionalities, among which the support provided for maintaining
safety case models consistent with other work products. Govardhanrao [21], in
her master thesis, presents the results of a comparative analysis scoping a se-
lection of argumentation languages. Among others, she assesses the support for
consistency checks between system design and developing safety cases and the
support offered to automatically update the safety argumentation, given system
changes. The two related reviews have certain important limitations. On the one
hand, the list of tools identified by Maksimov et al. is outdated – five relevant
tools have been reported in the literature after the publication of this survey,
namely in 2019 and 2020. On the other hand, the analysis performed by Go-
vardhanrao does not cover all the existing approaches, but a selection of those.
Further, none of the two works differentiates between the capability of identify-
ing directly impacted elements, and the capability of automatically computing
impact propagation, nor between accurate and inaccurate change impact analy-
ses. Finally, Maksimov et al. and Govardhanrao do not provide details regarding
the system change scenarios that are regarded by the maintenance approach.

3 Review Protocol

3.1 Establishing the Quasi-gold Standards by Manual Search

We first selected several publications as our quasi-gold standards (QGSs) [45].
We base our SLR on the results of the SLR conducted by Maksimov et al. [29].
As such, to establish our QGSs, we first started by manually selecting publica-
tions, which, according to Maksimov et al., present tools that have medium or
strong support for safety case maintenance [29]. While Maksimov et al. identify
17 publications describing 17 different tools implementing approaches for safety
case maintenance, after applying our filtering criteria (see Subsection 3.3), we
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only selected 13 from these publications. Based on our expert knowledge, to
these 13 selected publications we also added 3 publications, each discussing an-
other approach different to the ones identified by Maksimov et al. [29] and 2
deliverables presenting different capabilities of the AMASS platform [14].

We complemented the aforementioned QGSs with publications we manu-
ally selected. To this end, we conducted a manual search through the proceed-
ings published in the time frame 2000-2020 of a selection of venues that we
identified as highly relevant for the safety engineering research: International
Conference on Dependable Systems and Networks (DSN), International Con-
ference on Reliable Software Technologies (Ada-Europe), European Dependable
Computing Conference (EDCC), International Conference on Computer Safety,
Reliability and Security (SAFECOMP), Pacific Rim International Symposium
on Dependable Computing (PRDC), The International Conference/Workshop
on High-Assurance Systems Engineering (HASE), International Symposium on
Software Reliability Engineering (ISSRE), International Symposium on Model-
Based Safety and Assessment (IMBSA), International Conference on Software
Engineering (ICSE), International Conference on Model Driven Engineering
Languages and Systems (MODELS) and their satellite workshops. After filtering
out based on the criteria presented in Subsection 3.3, we identified 19 publica-
tions presenting additional capabilities of already identified approaches, but also
introducing 6 new approaches.

3.2 Automated Search and Snowballing

Next, while using a search string, we automatically search through the follow-
ing databases: ACM Digital library, IEEE, Springer, Elsevier, Google Scholar
and dblp. Based on the most frequent words found in the publications we in-
cluded in our QGS, we specified the following search string: (”safety case” AND
”maintenance”) OR (”assurance case” AND ”maintenance”) OR (”safety case”
AND ”change”) OR (”assurance case” AND ”change”) OR (”safety case” AND
”evolution”) OR (”assurance cases” AND ”evolution”). The search resulted in
3 selected publications. To mitigate the potential limitations due to blurry ter-
minology, we then applied snowballing [44], which resulted in the selection of 10
more relevant publications describing approaches already identified during the
other search phases.

3.3 Exclusion and Inclusion Criteria

During our search, we only selected publications whose title and abstract made
it explicit that the publication was presenting the results of primary research
on approaches for safety case maintenance, or at least for safety case change
impact analysis. Further, we also used some other inclusion criteria. First, we
only regarded the publications that appeared in 2000 or after. We chose 2000
to be the earliest date for our search, since this was the earliest publication
year of one paper which we identified as QGS. We searched all publications that
appeared until December 2020 - as the automatic and manual searches were
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finished in January 2021. Second, given a number of different papers presenting
the same approach, we considered all the papers, in order to ensure that we
do not miss any information regarding safety case maintenance support. We
excluded publications matching any of the following criteria: 1) publications
presenting approaches for assurance case modeling, but not having at least a
minimum support for assurance case maintenance; 2) publications describing
maintenance approaches for other types of assurance cases (e.g., security or trust
cases), 3) publications presenting support for safety case maintenance only as
future work; 4) books, tutorials or poster publications; 5) publications that have
not been peer-reviewed; 6) publications that are only available in the form of
abstracts/posters and presentations, 7) publications not written in English.

3.4 Evaluation Criteria

After identifying all existing approaches for safety case maintenance, we carried
out an in-depth analysis of these approaches, while using a set of evaluation cri-
teria (see Table 1-a). In conformance with the work of Kelly and McDermid [25],
we differentiate between approaches that support the automated identification
of challenges, i.e., of the safety case elements directly impacted by a system
change (EC1) and the automated identification of indirectly impacted elements
due to impact propagation (EC2). EC3 addresses the accuracy of CIA (i.e.,
freedom of false positives). Inspired by one work from our QGS, namely the one
of Jaradat and Bate [24], who propose a quantitative assessment of the change
impact, we defined evaluation criterion EC4. In accordance to the requirements
of ISO 26262 and UL4600, evaluation criterion EC5 assesses the capability of
approaches to provide guidance for updating the safety case in accordance to
the CIA results. Further, as UL4600 highly recommends the usage of tools to
execute impact analysis, we are also interested whether the identified approaches
have tool support (EC6).

According to ISO 26262 and UL 4600, given a change in the system specifica-
tion, the safety case needs to be re-evaluated. Different system change scenarios
have a different impact on the system safety case [1]. As such, we analyze the
change scenarios addressed by the identified safety case maintenance approaches,
especially considering the scenarios in Table 1-b. CS1-CS3 are general change
scenarios. However, since addressing more concrete change scenarios increases
the accuracy of CIA [27], we also address more concrete scenarios. A report on
an industrial survey conducted by de la Vara et al. [13] presents the state of
the practice with respect to safety evidence change impact analysis. The sur-
vey reports that requirement specifications are the artifacts most exposed to
changes during the entire system lifecycle (CS4). UL4600 requires that safety
case maintenance is executed given any change in the system design (CS5). ISO
26262 mandates the demonstration that all the safety critical requirements spec-
ified for the system under consideration have been designed, implemented and
tested. This is usually established by traceability links. The report of de la Vara
et al. emphasizes the fact that traceability links are bound to frequently undergo
changes during the entire system lifecycle. This is because changes in different
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engineering artifacts also trigger changes in the traceability links (CS6). The
results of the industrial survey conducted by de la Vara et al. also indicate that
safety analysis is frequently re-executed during the system lifecycle, outputing
new analysis results (CS7). Another type of engineering artifacts reported by
the survey conducted by de la Vara et al. as undergoing frequent changes are
verification and validation results (CS8). Whenever the system requirements,
design or source code change, re-verification shall be executed, in order to detect
early specification violations. Further, UL4600 requires the execution of safety
case maintenance given changes to the intended operational environment (i.e.,
contextual assumptions) (CS9). UL4600 also recommends that the impact a
system reconfiguration has on the system safety case needs to analyzed (CS10).

a) Evaluation Criteria b) Addressed change scenarios
ID Evalation Criteria ID Change Scenario

EC1
Support for automated
challenge detection

CS1 Deletion of any system artifact
CS2 Addition of any system artifact

EC2
Support for automated
impact propagation

CS3 Modification of any system artifact
CS4 Modification of a requirement

EC3
Accuracy of CIA
(i.e., freedom of false positives)

CS5 Modification of the system architecture

EC4
Support for quantitative
impact assessment

CS6
Modification of traceability links
within system artifacts

EC5
Support for updating
the safety case

CS7
Modification of risk assessment
(i.e., ASIL assignments,
according to ISO 26262)

EC6 Tool support
CS8 Addition of new verification evidence
CS9 Modification of operational environment
CS10 Modification of system parameter values

Table 1. Overview of the used evaluation criteria and the addressed change scenarios.

4 Review Results

Our SLR resulted in 65 selected publications, presenting 26 different approaches
for safety case maintenance. We present the identified approaches in Table 2,
together with an overview of their capabilities for keeping the system safety case
consistent with other safety artifacts. While for the analysis of each approach we
used all the publications we found during our literature search, in the table we
only reference one or two most relevant publications, due to space restrictions.

Commercial approaches. Our SLR revealed the existence of two safety
case maintenance approaches implemented in commercial tools. Both approaches
support the traceability between safety cases and other safety artifacts. NOR-
STA [43] addresses change scenario CS1, by identifying missing traceability
links. Further, NOR-STA recommends, given the addition of system model el-
ements, the addition of argumentation legs concerning the newly added model
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Approach
Automated Challenge

Detection

Automated
Impact

Propagation

False
Positives

Quantitative
CIA

Update
Guidance

Tool
Support

AC-ROS [10] yes [CS3] no no no yes yes

AdvoCATE [15]
no (safety case
regeneration) [CS2]

- no no no yes

AF3 [8] yes [CS1, CS3] yes yes no no yes

AMASS Platform
[14], [22], [20]

yes [CS1, CS2,
CS3, CS4]

no yes no no yes

ASCE [17], [32] yes [CS1, CS3] no yes no no yes

Checkable
Safety Cases [9]

yes [CS1, CS2,
CS5, CS6, CS7]

yes no no yes yes

D-CASE [18], [31] yes [CS3, CS4, CS10] no yes no yes yes

DMILS [11]
no (safety case
regeneration) [CS2]

- no no no yes

Dynamic Safety
Cases [2]

yes [CS3] yes no yes yes no

ENTRUST [7]
yes [CS3,
CS4, CS5]

no yes no no yes

ETB [12] yes [CS4, CS5] no yes no yes yes

Event-B
Extension [35]

yes [CS4, CS5] no yes no yes yes

GAGE [5] yes [CS5] no yes no yes yes

HIP-HOPS
extension [36]

yes [CS4, CS5] no yes no yes yes

Interlocking
Safety Cases [42]

yes [CS3] no no no yes yes

Isabelle/SACM [33]
yes [CS1, CS2,
CS3, CS4, CS5]

no yes no yes yes

MMINT-A [27], [37] yes [CS1, CS3, CS7] yes yes no no yes

NOR-STA [43] yes [CS1, CS2, CS3] no no no yes yes

Resolute [19] yes [CS5] no yes no yes yes

SAFA [1]
yes [CS1, CS2,
CS3, CS6]

no yes no yes yes

Safety Cases
for IMS [34]

yes [CS2, CS3] yes yes no yes no

Safety Case
Synthesis [3]

yes [CS4, CS5] no yes no yes yes

SAM [25] yes [CS1, CS2, CS3] yes yes no yes yes

SANESAM [24] yes [CS5] yes no yes no yes

SPIRIT [28]
yes [CS1, CS2
CS3, CS6]

yes yes no no yes

Weaving
Safety Cases [23]

no (safety case
regeneration)
[CS2, CS6]

- no no no yes

Table 2. Overview of the identified safety case maintenance approaches.
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element (CS2). The Assurance and Safety Case Environment (ASCE) [17], [32]
reflects the impact of modifications in referenced files on the safety case model.
Further, ASCE supports the comparison between two structured safety cases,
by specifying each version of a safety case as a Kripke structure.

Change impact propagation in safety cases. There are several ap-
proaches supporting change impact propagation, i.e., which identify the safety
case elements indirectly impacted by a change. The approach of Nicholson et
al. [34] is only presented in an abstract manner, and is only adequate for In-
tegrated Modular Systems (IMS). The Sensitivity ANalysis for Enabling Safety
Argument Maintenance (SANESAM) [24] is an accurate safety case maintenance
approach specifying any system change as the modification of the failure rates of
hardware components. SANESAM is a quantitative CIA and also provides sup-
port for impact propagation. AutoFOCUS3 (AF3) [8], SAM [25], SPIRIT [28]
and Model Management INTeractive for Assurance cases (MMINT-A) [27] offer
support for automated identification of challenged safety case elements and au-
tomated change impact propagation given the deletion (CS1) or modification of
any referenced artifact (CS3). However, all four approaches are prone to output
false positives. Additionally, MMINT-A checks for correct Automotive Safety
Integrity Level (ASIL) decomposition, given changes in the ASIL attribute of
safety case goals (CS7). Checkable Safety Cases [9] is a novel approach for ac-
curately checking the consistency between safety case and other system models,
supporting different change scenarios (CS1-CS5).

Automated (re)generation of safety cases via formal methods. Sev-
eral works, such as ETB [12], GAGE [5], the extension of Event-B for safety
case modeling [35], SACM/Isabelle [33], Resolute [19], the safety case synthe-
sis approach proposed by Bagheri et al. [3], and the HIP-HOPS extension for
modeling safety cases [36] propose the usage of formal verification methods for
the specification of entire safety cases, and/or the formal specification of system
safety properties referenced in the safety case. Some of these approaches even
support the automated generation of the system safety case, by instantiating
patterns with information from formal verification engines. The satisfaction of
formally specified safety claims can be verified against a certain system specifica-
tion (model or code) and the obtained verification results can be automatically
integrated as evidence in the system safety case. Given a change in a formally
specified safety requirement (CS4), it is checked if the system architecture or
the code (still) implements the respective requirement. However, the impact of
that change on the rest of the artifacts (e.g., hazards lists) is not assessed. Fur-
ther, given a change in the system architecture (CS5), some of these approaches
identify the impacted safety case claims and suggest for reverification. However,
given counter-evidence or additional evidence (CS8), which has not been refer-
enced in the safety case before, there is no support for change impact propagation
throughout the rest of the argumentation. All existing approaches may output
false positives, as not every system change invalidates the verification evidence.

(Re)generation of safety cases via automated pattern instantia-
tion. Approaches such as the weaving safety case models approach proposed



Safety Case Maintenance SLR 9

by Hawkins [23], DMILS [11], and AdvoCATE [15] remove the need for change
impact analysis altogether by instead regenerating the impacted part of the as-
surance case model, based on automated pattern instantiation (see Table 2).
The automated pattern instantiation is done by the usage of a third model (i.e.,
an instantiation model) containing the mappings between pattern parameters
to be instantiated and the values with which they shall be instantiated. On the
one hand, in the approach proposed by Hawkins [23], the parameters may be
instantiated with direct traceability links to other safety engineering models.
Therefore, given the deletion (CS1) or the modification (CS3) of a referenced
system model, the impact of the change on the safety case model is automati-
cally reflected and the patterns are automatically re-instantiated. However, the
approach is too pessimistic, triggering the need for re-instantiation whenever a
system change occurs, even when the change does not impact the validity of
the safety argumentation. On the other hand, in DMILS and AdvoCATE the in-
stantiation models only contain an ID or name of the referenced model elements,
instead of having a direct traceability link. Therefore, the user of AdvoCATE
needs to manually assess the impact of a system change on the safety case and
decide if the patterns shall be re-instantiated. However, AdvoCATE supports
the automated identification of outdated verification evidence and automated
integration of regenerated verification results as evidence in the system safety
case. None of these two approaches provides guidance for how to update the
assurance case given invalidated claims or evidence.

Safety cases updated at runtime. Some approaches such dynamic safety
cases proposed by Denney et al. [16], interlocking safety cases [42], ENTRUST [7],
AC-ROS [10] and D-CASE [30] support the automated update of assurance cases
at runtime, based on the feedback received from online monitors. However, these
frameworks only address changes of certain system configuration parameters at
runtime (specialization of CS3) and do not provide any solution for handling
changes of other assurance artifacts such as hazards, or requirements. Only the
dynamic safety cases approach supports to some extent change impact propa-
gation, either by computing how the confidence level is affected by a parameter
change or by propagation based on the relations between GSN elements.

Change impact analysis for safety cases. The Architecture-driven, Multi-
concern and Seamless Assurance and Certification of Cyber-Physical Systems
(AMASS) platform [14] and the Safety Artifact Forest Analysis (SAFA) [1] ap-
proach are unique approaches, which cannot be fit only into one of the categories
above. AMASS supports the identification of invalidated verification evidence
due to changes in system specification [22] (change scenarios CS4, CS5) and
change impact analysis given changes in the features of the systems [20]. AMASS
provides some support for updating the safety case by updating the contracts of
a system component, given changes in the contextual assumptions [38]. SAFA
automatically generates GSN structures based on a model specifying the trace-
ability links among different safety artifacts. Further, SAFA can compare two
different GSN structures in order to support the assessment of the evolution of a
safety case by identifying the elements added (CS2), deleted (CS1) or modified
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(CS3) in a new version of the same GSN structure. SAFA also provide guidance
for updating the safety case, given certain change scenarios, namely CS1, CS2,
CS3, CS4. The two approaches are bound to output false positives, and do not
support automated computation of impact propagation.

Threats to validity. One of the main threats to validity is that our results
may be incomplete. To address this threat, we used a hybrid search strategy,
combining manual and automated searches with snowballing. However, our re-
sults may be unreliable due to our lacunary interpretation of the capabilities
of some of the approaches, especially of the ones for which little information
was available. Internal validity. We conducted our SLR based on a defined re-
view protocol, as recommended by Kitchenham and Charters [26]. Further, the
selection of relevant publications was peer reviewed. While the third author of
this paper executed all the search phases presented before, after the execution
of each search phase, the first author of this paper reviewed all the exclusions
and the final set of included papers. Towards the end of the SLR, the second
author of this paper checked, agreed upon, and refined the whole set of extracted
data. External validity. Threats to validity such as bias in data selection, extrac-
tion, and classification may impair the generalizability of the results. While we
aimed at providing complete and valid results, the SLR protocol presented in
Section 3 could be used for further updates and/or replication reviews to rein-
force its results. For example, the review could be complemented by searching
for approaches for the maintenance of assurance cases addressing other types of
requirements, such as security, dependability, or trustworthiness.

5 Discussion

Inaccurate automated CIA. The results of our analysis show that all iden-
tified approaches have some support for automated detection of change impact,
by exploiting traceability links between safety case elements and other engineer-
ing artifacts. Only the approaches for (re)generating safety cases via automated
pattern instantiation remove the need for change impact analysis altogether.
However, 15 out of 26 identified approaches only support the identification of
challenged safety case elements, namely the ones directly impacted by a system
change, without also computing the impact propagation throughout the entire
safety argumentation. Further, with few exceptions, most of the approaches are
inaccurate, namely they are prone to output false positives (see Figure 1-a). The
approaches that do not provide false negatives only focus on very specific types
of changes or are only adequate to be used for specific types of systems.

Lack of support for quantitative CIA. Only 2 out of 26 approaches
provide support for the quantitative assessment of change impact (see Figure 1-
b). The dynamic safety cases approach proposes the assessment of the impact a
system change has on the confidence in the safety argumentation. However, there
are no details provided on the implementation of this assessment. SANESAM
computes the impact of system changes on the results of a failure probability
analysis. However, such analysis can only be done for hardware components.
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Limited support for updating the safety case. In Figure 1-c, we see
that only for certain system change scenarios some guidance for updating the
impacted safety case is provided, whereas 9 approaches do not offer any guid-
ance. 7 out of 26 approaches propose re-verification given changes in either the
system requirements or in the implementing system specification (i.e., system
architecture, system configuration, or source code). However, these approaches
do not give any guidelines on what to do if the newly generated verification
results are negative or if additional evidence (i.e., evidence that has not been
referenced in the safety case) is generated. Further, these approaches are bound
to output false positives, meaning that they cannot determine if the verifica-
tion evidence actually needs to be re-generated, given a certain change. Another
type of safety case update recommendation is provided by SAFE, MMINT-A
and NOR-STA. Given the addition of a new element in a referenced set of ele-
ments, these approaches can identify that the argumentation is incomplete, and
suggest the addition of new claims in the argumentation regarding the newly
added elements. Further, all the approaches for maintaining safety cases consis-
tent with the system configuration at runtime propose to switch from one safety
case to another, in correspondence to the system re-configuration.

Few addressed change scenarios. Each of the state-of-the-art approaches
for safety case maintenance addresses one or more change scenarios (see 1-f).
However, not every change scenario we identified as relevant for current practice
in Table 1 is addressed by current approaches. Some change scenarios are poorly
addressed in the literature. While approaches such as ETB, GAGE, Event-B
Extension, Resolute, HIP-HOPS extension, ENTRUST and SAFA can detect
the addition of new verification evidence, which they integrate in the safety case
(CS8), they do not assess the extent of the impact the new evidence has on
the safety argumentation. Moreover, to our knowledge, there is no approach ad-
dressing the modification of contextual assumptions (CS9). Currently, given the
modification of a contextual assumption, the entire argumentations depending
on that assumption needs to be manually checked by the safety engineer.

Tool support. Most of the identified approaches have some tool support (see
Figure 1-d). The approach proposed by Nicholson et al. [34] and the dynamic
safety cases proposed by Denney et al. do not provide tool support, and also their
usage is not exemplified, leaving certain open questions regarding how to actually
apply them. Used safety case languages. 19 of the identified approaches can
be applied for safety case models compliant with the GSN (see Figure 1-e).

6 Summary and Future Lines of Work

In the recent years, due to the stringent practical needs for automating safety as-
surance, we have witnessed a boom in state-of-the-art approaches for automated
safety case maintenance. In this paper, we reported on the results of a systematic
literature review, which we conducted to identify all the existing approaches for
safety case maintenance. These results may be extended by also searching for
maintenance approaches for any type of assurance cases. Further, another pos-
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Fig. 1. Statistics on existing safety case maintenance approaches.

sible extension of the SLR is to also consider product-line oriented approaches,
which integrate maintenance of safety cases with variability approaches. The
SRL resulted in the selection of 65 papers, presenting 26 different approaches
for safety case maintenance, within the interval 2000-2020. While analyzing the
strengths and weaknesses of the identified approaches, we identified a set of lit-
erature gaps, from which we drew some future lines of work. More accurate
CIAs. With few exceptions, the existing safety case maintenance approaches
are inaccurate. More accurate CIA, requiring less involvement of safety engi-
neers, would be beneficial as it would decrease the time and effort needed for
the execution of the whole safety case maintenance process. Quite recently, it
was estimated that, the change of one line of code in an avionics system costs
around 1 million dollars, and that it takes approximately one year to be im-
plemented4.Increased support for safety case update. Our SLR results
showed that guidance for how to update the safety case is only available for few
change scenarios, which may have serious consequences5. Quantitative CIAs.
There are few approaches assessing the impact of a change in a quantitative
manner. Quantitative analyses could provide the safety engineers with a better
understanding of the implications of a certain change on the system safety, es-
pecially in the context of systems dominated by uncertainty [2]. Addressing
more change scenarios. According to our analysis results, there is a lack of
support in handling change scenarios CS5-CS10 specified in Table 1. Similar
to Kokaly et al. [27], we believe that these gaps could be covered if safety case

4 https://insights.securecodewarrior.com/one-line-of-code-1-million/
5 https://libertyvillepersonalinjurylawyer.com/software-fault-liability/
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maintenance approaches would focus on more concrete change scenarios, and
by enhancing safety case models with metadata specifying the sensitivity of the
safety case to specific system changes.
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